

Experimental Approach

- Experimenter controls all environmental factors
 - Study relations by manipulating independent variables
 - Observe effect on one or more dependent variables
 - Nothing else changes
- There is no difference in user performance (time and error rate) when selecting an item from a pull down or a pull right menu of 4 items

File Edit	View	Insert		File 🗭	-
New				Edit ⊄>	
Open				View ⇔	
Close				Insert 🕏	
Save					

A

 \forall

Validity

A

 \forall

- External validity
 - Confidence that results applies to real situations
 - Usually good in natural settings
- Internal validity
 - Confidence in our explanation of experimental results
 - Usually good in experimental settings
- Trade-off: Natural vs Experimental
 - Precision and direct control over experimental design versus
 - Desire for maximum generalizability in real life

situations

Usability Engineering Approach

- Observe people using systems in simulated settings
 - People brought in to artificial setting that simulates aspects of real world setting

- People given specific tasks to do

- Observations / measures made

- Good for uncovering 'big effects'

as people do their tasks

- Look for problem areas /

successes

- Usability Engineering Approach .
 - products in real use outside of lab?
- Problems
 - Non-typical users tested
 - Non-typical tasks
 - Different physical environment
 - Different social context
 - motivation towards experimenter vs motivation towards boss
 - Partial Solution
 - Use real users
 - Task-centered system design tasks
 - Environment similar to real situation

- · How many users should you observe?
 - Observing many users is expensive
 - But individual differences matter

- best 25% of users ~2x faster than slowest 25%
- Partial solution
 - Reasonable number of users tested
 - Reasonable range of users
 - Big problems usually detected with handful of users
- Small problems / fine measures need many users

- Low cost methods to gather usability problems

 Approximate: capture most large and many minor problems
- Qualitative:
 - Observe user interactions
 - Gather user explanations and opinions
 - Produces a description, usually in non-numeric terms
 - Anecdotes, transcripts, problem areas, critical incidents...
- Quantitative
 - Count, log, measure something of interest in user actions
 - Speed, error rate, counts of activities, etc

 \mathbf{A}

 \forall

Discount Usability Evaluation .

- Methods
 - Inspection/cognitive walkthrough
 - Extracting the conceptual model
 - Direct observation
 - Think-aloud
 - Constructive interaction
- Query techniques
 - Interviews and questionnaires
- Continuous evaluation
- User feedback and field studies

Cognitive Walkthrough

- Given:
 - a specification of the system (not neccesarily complete, but fairly detailed)
 - a description of the task the user is to perform on the system (representative for most users ...)
 - a complete, written list of the actions needed to complete the task
 - an indication of who the users are and what kind of experience and knowledge the evaluators can assume about them

 \forall

 \forall

Cognitive Walkthrough.

- Step through the action sequence and critique the system using questions:
 - Is the effect of the action the same as the user's goal at that point ?
 - Will users see that the action is available ?
 - Once users found the correct action, will they know it is the one they need ?
 - After the action is taken, will users understand the feedback they get ?

- How?
 - Show the user static images of
 The prototype or screens during use
 - Ask the user explain
 - The function of each screen element
 - How they would perform a particular task
- What?
 - Initial conceptual model
 - How person perceives a screen the very first time it is viewed
 - Formative conceptual model
- How person perceives a screen after its been used for a while
 Value?
 - Good for eliciting people's understanding before & after use
 - Poor for examining system exploration and learning

HCI2000

Direct Observations

- Evaluator observes users interacting with system
 - In lab:
 - User asked to complete a set of pre-determined tasks
- In field:
 - User goes through normal duties
- Value
 - Excellent at identifying gross design/interface problems
 - Validity depends on how controlled/contrived the situation is

– oser s reconstruction may be wrong
 – Sometimes difficult to find people!

• Pre-addressed reply envelope gives far better response

HCI

5

- Built-in gripe facility
- Best combined with trouble-shooting facility
 - Users always get a response (solution?) to their gripes

 \forall

 \forall

 \forall

Continuous Evaluation .

- Case/field studies
 - Careful study of "system usage" at the site
 - Good for seeing "real life" use
 - External observer monitors behavior
 - Site visits

of Setting

 \forall

 \forall

 \forall

Ethics

- Testing can be a distressing experience
 - Pressure to perform, errors inevitable
 - Feelings of inadequacy
 - Competition with other subjects
- Golden rule
 - Subjects should always be treated with respect

Ethics - Before the Test

- Don't waste the user's time
 - Use pilot tests to debug experiments, questionnaires etc
 - Have everything ready before the user shows up
- Make users feel comfortable
 - Emphasize that it is the system that is being tested, not the user
 - Acknowledge that the software may have problems
 - Let users know they can stop at any time
- Maintain privacy
 - Tell user that individual test results will be completely confidential
- Inform the user
 - Explain any monitoring that is being used
 - Answer all user's questions (but avoid bias)
- Only use volunteers
 - User must sign an informed consent form

Ethics - During the Test

- Don't waste the user's time

 Never have the user perform unnecessary tasks
- Make users comfortable
 - Try to give user an early success experience
 - Keep a relaxed atmosphere in the room
 - Coffee, breaks, etc
 - Hand out test tasks one at a time
 - Never indicate displeasure with the user's performance
 - Avoid disruptions
 - Stop the test if it becomes too unpleasant
- Maintain privacy
- Do not allow the user's management to observe the test

Ethics - After the Test

- · Make the users feel comfortable
 - State that the user has helped you find areas of improvement
- · Inform the user
 - Answer particular questions about the experiment that could have biased the results before
- Maintain privacy
 - Never report results in a way that individual users can be identified
 - Only show videotapes outside the research group with the user's permission

What you Now Know

- Debug designs by observing how people use them

 Quickly exposes successes and problems
 - Quickly exposes successes and problems
 - Specific methods reveal what a person is thinking
 - But naturalistic vs laboratory evaluations is a trade-off
- Methods:
 - Conceptual model extraction
 - Direct observation
 - Think-aloud
 - Constructive interaction
 - Query via interviews, retrospective testing and questionnaires
 - Continuous evaluation via user feedback and field studies
- Ethics are important

