
Introduction
Motivation

Kernel Tuning Toolkit

Autotuning
Introduction to autotuning, overview of our research

Jǐŕı Filipovič et al.
Institute of Computer Science

Masaryk University

25. ř́ıjna 2018

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Program development workflow

Implementation questions
I which algorithm to use?
I how to implement the algorithm efficiently?
I how to set-up a compiler?

Compiler’s questions
I how to map variables to registers?
I which unrolling factor to use for a loop?
I which functions should be inlined?
I and many others...

Execution
I how many nodes and threads assign to the program?
I should accelerators be used?
I how to mix MPI and OpenMP threads?

A compiler works with heuristics, people usually too.
Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Tuning of the program

We can empirically tune those possibilities

I use different algorithm

I change code optimizations

I use different compiler flags

I execute in a different number of threads

I etc.

A tuning allows us to outperform heuristics – we just test what
works better.

I however, we have to invest more time into development

I there are vertical dependencies, so we cannot perform tuning
steps in isolation

I the optimum usually depends on hardware and input

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Autotuning

The tuning can be automated

I then we talk about autotuning

Autotuning

I in design time, we define the space of tuning parameters,
which can be changed

I during autotuning, a combination of tuning parameters is
repeatedly selected and empirically evaluated

I a search method is used to traverse the space of tuning
parameters efficiently

I performed according to some objective, usually performance,
but may be also energy consumption, numerical precision of
pareto-optimal combination of several objectives

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Taxonomy of Autotuning

Tuning scope

I what properties of the application are changed by autotuner

I e.g. compiler flags, number of threads, parameters of the
source code

Tuning time

I off-line autotuning (performed once, e.g. after SW
installation)

I on-line autotuning (performed in runtime)

Developer involvement

I transparent, or requiring only minor developer assist (e.g.
compiler flags tuning)

I low-level, requiring the developer to identify tunning
opportunities (e.g. code parameters tuning)

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Our focus

We target autotuning of code parameters

I the source code is changed during a tuning process

I the user defines how tuning parameters influence the code

I very powerful (source code may control nearly everything)
I implementation is difficult

I requires recompilation
I runtime checks of correctness/precision
I non-trivial expression of tuning parameters
I we have no implicit assumptions about tuning space

I heterogeneous computing (we are tuning OpenCL or CUDA
code)

I offline and online autotuning

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Motivation Example

Let’s solve a simple problem – vectors addition

I we will use CUDA

I we want to optimize the code

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Motivation Example

__global__ void add(float* const a, float* b) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

b[i] += a[i];

}

It should not be difficult to write different variants of the code...

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Optimization

__global__ void add(float4∗ const a, float4∗ b) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

b[i] += a[i];

}

Kernel has to be executed with n/4 threads.

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Optimization

__global__ void add(float2∗ const a, float2∗ b) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

b[i] += a[i];

}

Kernel has to be executed with n/4 threads.

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Optimization

__global__ void add(float* const a, float* b, const int n) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

for (; i < n; i += blockDim.x*gridDim.x)

b[i] += a[i];

}

Kernel has to be executed with n/m threads, where m can be
anything.

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

What to Optimize?

Mixture of:

I thread-block size

I vector variables

I serial work

i.e. 3D space – and this is trivial example...

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Autotuning

Autotuning tools may explore code parameters automatically

__global__ void

add(VECTYPE* const a, VECTYPE* b, const int n) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

#if SERIAL WORK > 1

for (; i < n; i += blockDim.x*gridDim.x)

#endif

b[i] += a[i];

}

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Is autotuning worthwile?

OK, so there are multiple variants of a code, but does it make
sense to autotune?

I yes, tuning parameters interact, some sort of automatic search
make sense

And wouldn’t be enough to use a simple script?

I let’s consider 3D Fourier Reconstruction1 as an example

I the complex code in CUDA, brings an order of magnitude
speedup over parallel CPU implementation

I we have identified 7 tuning parameters forming a tuning space
of 430 configurations

I we have tuned it for different GPUs to see performance
portability

1
D. Sťrelák, C. O. S. Sorzano, J. M. Carazo, J. Filipovič. A GPU Acceleration of 3D Fourier Reconstruction in

Cryo-EM, accepted in International Journal of High Performance Computing Applications.

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

3D Fourier Reconstruction Portability

Tabulka : Performance portability of 3D Fourier Reconstruction

P100 GTX1070 GTX750 GTX680

Tesla P100 100% 95% 44% 96%
GTX 1070 88% 100% 31% 50%
GTX 750 65% 67% 100% 94%
GTX 680 71% 72% 71% 100%

We can gain over 3× speedup when tuning for each GPU
architecture.

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

3D Fourier Reconstruction Portability

Tabulka : Sensitivity on input images in 3D Fourier Reconstruction (GTX
1070)

128x128 91x91 64x64 50x50 32x32

128x128 100% 100% 77% 70% 32%
91x91 100% 100% 76% 68% 33%
64x64 94% 94% 100% 91% 67%
50x50 79% 78% 98% 100% 86%
32x32 65% 67% 80% 92% 100%

We can gain over 3× speedup when tuning for specific input size.

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Is autotuning worthwile?

It is impractical to re-tune implementation for each combination of
HW and input manually.

I even offline tuning is not practical here, as we have too much
combinations

I the best solution is to tune application when HW and input
size is defined

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Kernel Tuning Toolkit

We have developed a Kernel Tuning Toolkit (KTT)

I a framework allowing to tune code parameters for OpenCL
and CUDA

I allows both offline and online tuning

I enables cross-kernel optimizations

I mature implementation, documented, with examples

I https://github.com/Fillo7/KTT

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning

https://github.com/Fillo7/KTT


Introduction
Motivation

Kernel Tuning Toolkit

Kernel Tuning Toolkit

Typical workflow similar to CUDA/OpenCL

I initialize the tuner for a specified device

I create input/output of the kernel

I create kernel

I create a tuning space for the kernel

I assign input/output to the kernel

I execute or tune the kernel

KTT creates a layer between an application and OpenCL/CUDA.

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

KTT Sample Code

// Initialize tuner and kernel

ktt::Tuner tuner(platformIndex , deviceIndex );

const ktt:: DimensionVector ndRangeDimensions(inputSize );

const ktt:: DimensionVector workGroupDimensions (128);

ktt:: KernelId foo = tuner.addKernelFromFile(kernelFile , "foo",

ndRangeDimensions , workGroupDimensions );

// Creation and assign of kernel arguments

ktt:: ArgumentId a = tuner.addArgumentVector(srcA ,

ktt:: ArgumentAccessType :: ReadOnly );

ktt:: ArgumentId b = tuner.addArgumentVector(srcB ,

ktt:: ArgumentAccessType :: WriteOnly );

tuner.setKernelArguments(foo ,

std::vector <ktt::ArgumentId >{a, b});

// Addition of tuning variables

tuner.addParameter(foo , "UNROLL", {1, 2, 4, 8});

tuner.tuneKernel(foo);

tuner.printResult(foo , "foo.csv", ktt:: PrintFormat ::CSV);

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Unique features of KTT

Cross-kernel optimizations

I the user can add specific code for kernels execution

I the code may query tuning parameters

I the code may call multiple kernels

I allows tuning code parameters with wider influence, as tuned
kernels do not need to be functionally equivalent

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Reduction

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Unique features of KTT

Online autotuning

I KTT can be called to execute a kernel and retrieve results or
try different combination of tuning parameters before the
execution

I transparent for the application

I errors need to be handled explicitly

I tuning can be queried in any time

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

Online Tuning Sample

// Main application loop

while(application_run) {

...

if (tuningModeOn)

tuner.tuneKernelByStep(foo , {b});

else {

ktt:: ComputationResult best = tuner ->getBestComputationResult(foo);

tuner.runKernel(compositionId , best.getConfiguration (), {b});

}

...

}

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

3D Fourier Reconstruction

Online tuning must mimic rich functionality of OpenCL/CUDA
API.

Obrázek : Architecture of 3D Fourier Reconstruction.

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning



Introduction
Motivation

Kernel Tuning Toolkit

3D Fourier Reconstruction

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  50  100  150  200  250  300  350  400

p
e
rf

o
rm

a
n
c
e
 (

M
P

ix
e
ls

/s
)

runtime (seconds)

online best
online median

online worst
offline, fitted

offline, different resolution
offline, different HW

Obrázek : Performance of online tuned 3D Fourier reconstruction.

Jǐŕı Filipovič et al.Institute of Computer Science Masaryk UniversityAutotuning


	Introduction
	Motivation
	Kernel Tuning Toolkit

