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Program development workflow

Implementation questions
I which algorithm to use?
I how to implement the algorithm efficiently?
I how to set-up a compiler?

Compiler’s questions
I how to map variables to registers?
I which unrolling factor to use for a loop?
I which functions should be inlined?
I and many others...

Execution
I how many nodes and threads assign to the program?
I should accelerators be used?
I how to mix MPI and OpenMP threads?

A compiler works with heuristics, people usually too.
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Tuning of the program

We can empirically tune those possibilities

I use different algorithm

I change code optimizations

I use different compiler flags

I execute in a different number of threads

I etc.

A tuning allows us to outperform heuristics – we just test what
works better.

I however, we have to invest more time into development

I there are vertical dependencies, so we cannot perform tuning
steps in isolation

I the optimum usually depends on hardware and input
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Autotuning

The tuning can be automated

I then we talk about autotuning

Autotuning

I in design time, we define the space of tuning parameters,
which can be changed

I during autotuning, a combination of tuning parameters is
repeatedly selected and empirically evaluated

I a search method is used to traverse the space of tuning
parameters efficiently

I performed according to some objective, usually performance,
but may be also energy consumption, numerical precision of
pareto-optimal combination of several objectives
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Taxonomy of Autotuning

Tuning scope

I what properties of the application are changed by autotuner

I e.g. compiler flags, number of threads, parameters of the
source code

Tuning time

I off-line autotuning (performed once, e.g. after SW
installation)

I on-line autotuning (performed in runtime)

Developer involvement

I transparent, or requiring only minor developer assist (e.g.
compiler flags tuning)

I low-level, requiring the developer to identify tunning
opportunities (e.g. code parameters tuning)
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Our focus

We target autotuning of code parameters

I the source code is changed during a tuning process

I the user defines how tuning parameters influence the code

I very powerful (source code may control nearly everything)
I implementation is difficult

I requires recompilation
I runtime checks of correctness/precision
I non-trivial expression of tuning parameters
I we have no implicit assumptions about tuning space

I heterogeneous computing (we are tuning OpenCL or CUDA
code)

I offline and online autotuning
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Motivation Example

Let’s solve a simple problem – vectors addition

I we will use CUDA

I we want to optimize the code
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Motivation Example

__global__ void add(float* const a, float* b) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

b[i] += a[i];

}

It should not be difficult to write different variants of the code...
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Optimization

__global__ void add(float4∗ const a, float4∗ b) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

b[i] += a[i];

}

Kernel has to be executed with n/4 threads.
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Optimization

__global__ void add(float2∗ const a, float2∗ b) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

b[i] += a[i];

}

Kernel has to be executed with n/4 threads.
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Optimization

__global__ void add(float* const a, float* b, const int n) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

for (; i < n; i += blockDim.x*gridDim.x)

b[i] += a[i];

}

Kernel has to be executed with n/m threads, where m can be
anything.
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What to Optimize?

Mixture of:

I thread-block size

I vector variables

I serial work

i.e. 3D space – and this is trivial example...
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Autotuning

Autotuning tools may explore code parameters automatically

__global__ void

add(VECTYPE* const a, VECTYPE* b, const int n) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

#if SERIAL WORK > 1

for (; i < n; i += blockDim.x*gridDim.x)

#endif

b[i] += a[i];

}
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Is autotuning worthwile?

OK, so there are multiple variants of a code, but does it make
sense to autotune?

I yes, tuning parameters interact, some sort of automatic search
make sense

And wouldn’t be enough to use a simple script?

I let’s consider 3D Fourier Reconstruction1 as an example

I the complex code in CUDA, brings an order of magnitude
speedup over parallel CPU implementation

I we have identified 7 tuning parameters forming a tuning space
of 430 configurations

I we have tuned it for different GPUs to see performance
portability

1
D. Sťrelák, C. O. S. Sorzano, J. M. Carazo, J. Filipovič. A GPU Acceleration of 3D Fourier Reconstruction in

Cryo-EM, accepted in International Journal of High Performance Computing Applications.
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3D Fourier Reconstruction Portability

Tabulka : Performance portability of 3D Fourier Reconstruction

P100 GTX1070 GTX750 GTX680

Tesla P100 100% 95% 44% 96%
GTX 1070 88% 100% 31% 50%
GTX 750 65% 67% 100% 94%
GTX 680 71% 72% 71% 100%

We can gain over 3× speedup when tuning for each GPU
architecture.
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3D Fourier Reconstruction Portability

Tabulka : Sensitivity on input images in 3D Fourier Reconstruction (GTX
1070)

128x128 91x91 64x64 50x50 32x32

128x128 100% 100% 77% 70% 32%
91x91 100% 100% 76% 68% 33%
64x64 94% 94% 100% 91% 67%
50x50 79% 78% 98% 100% 86%
32x32 65% 67% 80% 92% 100%

We can gain over 3× speedup when tuning for specific input size.
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Is autotuning worthwile?

It is impractical to re-tune implementation for each combination of
HW and input manually.

I even offline tuning is not practical here, as we have too much
combinations

I the best solution is to tune application when HW and input
size is defined
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Kernel Tuning Toolkit

We have developed a Kernel Tuning Toolkit (KTT)

I a framework allowing to tune code parameters for OpenCL
and CUDA

I allows both offline and online tuning

I enables cross-kernel optimizations

I mature implementation, documented, with examples

I https://github.com/Fillo7/KTT
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Kernel Tuning Toolkit

Typical workflow similar to CUDA/OpenCL

I initialize the tuner for a specified device

I create input/output of the kernel

I create kernel

I create a tuning space for the kernel

I assign input/output to the kernel

I execute or tune the kernel

KTT creates a layer between an application and OpenCL/CUDA.
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KTT Sample Code

// Initialize tuner and kernel

ktt::Tuner tuner(platformIndex , deviceIndex );

const ktt:: DimensionVector ndRangeDimensions(inputSize );

const ktt:: DimensionVector workGroupDimensions (128);

ktt:: KernelId foo = tuner.addKernelFromFile(kernelFile , "foo",

ndRangeDimensions , workGroupDimensions );

// Creation and assign of kernel arguments

ktt:: ArgumentId a = tuner.addArgumentVector(srcA ,

ktt:: ArgumentAccessType :: ReadOnly );

ktt:: ArgumentId b = tuner.addArgumentVector(srcB ,

ktt:: ArgumentAccessType :: WriteOnly );

tuner.setKernelArguments(foo ,

std::vector <ktt::ArgumentId >{a, b});

// Addition of tuning variables

tuner.addParameter(foo , "UNROLL", {1, 2, 4, 8});

tuner.tuneKernel(foo);

tuner.printResult(foo , "foo.csv", ktt:: PrintFormat ::CSV);
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Unique features of KTT

Cross-kernel optimizations

I the user can add specific code for kernels execution

I the code may query tuning parameters

I the code may call multiple kernels

I allows tuning code parameters with wider influence, as tuned
kernels do not need to be functionally equivalent
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Reduction
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Unique features of KTT

Online autotuning

I KTT can be called to execute a kernel and retrieve results or
try different combination of tuning parameters before the
execution

I transparent for the application

I errors need to be handled explicitly

I tuning can be queried in any time
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Online Tuning Sample

// Main application loop

while(application_run) {

...

if (tuningModeOn)

tuner.tuneKernelByStep(foo , {b});

else {

ktt:: ComputationResult best = tuner ->getBestComputationResult(foo);

tuner.runKernel(compositionId , best.getConfiguration (), {b});

}

...

}
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3D Fourier Reconstruction

Online tuning must mimic rich functionality of OpenCL/CUDA
API.

Obrázek : Architecture of 3D Fourier Reconstruction.
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3D Fourier Reconstruction
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Obrázek : Performance of online tuned 3D Fourier reconstruction.
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