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Dynamical Systems in Engineering
A Stirred Tank

F1,F2 ... input flows (controllable)
c1, c2 ... input concentrations (uncontrollable)

F , c ... outputs of the system, can be observed (measured)
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Dynamical Systems in Engineering
A Stirred Tank

F1,F2 ... input flows (controllable)
c1, c2 ... input concentrations (uncontrollable)

GOAL: Keep the outputs F , c constant.
Brno, 6.10.2014 4/48



Dynamical Systems in Engineering
A Stirred Tank – Mathematical Model

dynamics of the volume: dV
dt = F1 + F2 − F

F = a
√

2gh (Torricelli’s law of fluid dynamics)
where a ... effective area of the flow, g ∼ 10m/sec2

V = Ah where A is tank area (independent on h)

problems: a is difficult to obtain, does this form of the Torricelli’s
law really apply for the real case?
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Dynamical Systems in Biology
Processes Driving the Living Cell

nutrients enzymes

metabolic products

signals

proteins

regulatory elements

METABOLISM PROTEOSYNTHESIS

questions: how to control cyanobacteria to gain max ethanol
how to control E. coli to gain insuline, ...
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Dynamical Systems in Biology
Signalling Pathways

joint work with P. Krejč́ı, Masaryk University Brno/Medical Genetics Institute, Cedars-Sinai Medical Center, L.A.
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Dynamical Systems in Biology
Signalling Pathways

What is the right topology?
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Wet-lab Measurements
Western blots/Northern blots

western blots
measurements of protein binding (presence of certain proteins)
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Wet-lab Measurements
Photobioreactor Data

  

Optical density as a 
proxy of chlorophyll 
content and cell count

Concentration of 
dissolved O2 and CO2 
influenced by 
photosynthetic activity

Rate of respiration as 
an indicator of 
metabolic changes

Rate of oxygen 
evolution

Červený, J., Nedbal, L. (2009) Metabolic rhythms of 
the cyanobacterium Cyanothece sp. ATCC 51142 
correlate with modeled dynamics of circadian clock. 
J. Biol. Rhythms 24, 295-303.
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Wet-lab Measurements
Fluorometer Data
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The Approach: System Identification

INPUT: controlled perturbance of input stimuli

OUTPUT: measurements of observed variables

GOAL: find a system that reliably maps INPUT to OUTPUT
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The Approach: System Identification

INPUT: controlled perturbance of input stimuli

typically interesting patterns exploring most of (expected)
systems response
pulses, oscillations, ...

OUTPUT: measurements of observed variables

time-series or steady state data
not all variables might be observed
measurements might be very imprecise ⇒ noisy data

GOAL: find a system that reliably maps INPUT to OUTPUT

mapping might be non-linear
extrinsic noise on both input, output side
system might be affected by intrinsic noise (internal
stochasticity)
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System Identification Workflow

Brno, 6.10.2014 14/48



System Identification Workflow
Modelling in Systems Biology

SBML, diferenciální rovnice, 

boolovská sít, Petriho sít, ...

biological knowledge databases

biological network

hypothesis

model analysis

analytical methods, model checking

static analysis, numerical simulation,

new hypothesis inference

gene reporters, DNA microarray,

mass spectrometry, ... emergent properties

model questions

hypothesis testing, property detection,

model validation

network reconstruction model specification
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System Identification Workflow
Modelling in Systems Biology
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System Identification Concepts

system S
mathematical description of the real-world process
can be an idealization
not necessarily required to be known

model structure M
non-parametric (table, mapping, frequency diagram, ...)
parametric (with a parameter vector θ) M(θ)

identification method I
depends on available data, kind of the process, ...

experimental condition E
concrete setting of identification experiment
selection and generation of input signals
prefiltering of data
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Parametric Identification: Problem Statement

Definition

Parametric model M(θ) describing n dynamically evolving
autonomous variables is defined by a set of equations:

ẋ(t) = f (x(t), u(t), p)
y(t) = g(x(t), s) + ε(t)

where

x(t) ∈ Rn for t ≥ 0 is a vector of internal model states

u(t) ∈ Ru for t ≥ 0 is a vector of input stimuli

y(t) ∈ Rm for t ≥ 0 is a vector of observables

ε(t) is a normally distributed measurement noise

If m < n we speak about partially observable models.
Parameter θ is defined as a vector 〈p, x(0), s〉.
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Parametric Identification: Problem Statement

χ2(θ) =
m∑

k=1

d∑
l=1

(
yDkl − yk(θ, tl)

)2

yDkl is lth measurement point of the observable yk taken at
time tl

yk(θ, tl) is model-predicted yk at time tl by employing
parameter estimate θ

parameter estimate θ̂ is obtained as a value that minimizes
χ2(θ):

θ̂ = argmin
[
χ2(θ)

]
.

objective function and reduction to optimisation problem
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Parametric Identification: Problem Statement
Interpretation in Biology

internal states – biochemical substances in the cell

observables – substances that can be measured in time (e.g.,
metabolites or fluorescence reporters)

input stimuli – profile of nutrient support, signalling stimuli or
light program

differential equations define continuous-time deterministic
(population-average) evolution of biochemical substances

autonomity comes from biochemistry and thermodynamics

mass-action kinetics, enzyme kinetics, ...
in this setting x(t) and p are always positive
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Parametric Identification: Problem Statement
Mathematical Models in Biology

mechanistic models
mass-action systems

describes rate of any elementary reaction
∑n

i=1 Xi → ...:

v = k
n∏

i=1

Xσi
i

where σi denotes kinetic order given by stoichiometry
easily obtainable model structure if reaction network is known
non-linearity is regular if stoichiometry ≤ 1
typically leads to over-parametrised models

Michaelis-Menten systems

enzyme kinetics based on pseudo-steady-state approximation
reduces number of variables and parameters
but for general case very complicated non-linear equations
similar are Hill systems (generalisation of MM)

Brno, 6.10.2014 21/48



Parametric Identification: Problem Statement
Mathematical Models in Biology

canonical models
S-systems

for each species Xi one set of influxes and one set of effluxes
is specified in terms of power-law functions:

Ẋi = αi

n∏
j=1

X
σij

j − βi
n∏

j=1

X
ρij
j

where n is the number of all system variables, α, β are rate
constants for production and degradation, σ, ρ ∈ R are kinetic
orders

generalised mass-action (GMA) systems

for each species Xi a sum of influxes/effluxes is specified (not
aggregated)

Ẋi =

ni∑
k=1

(
γik

n∏
j=1

X
fikj
j

)
where nj is number of fluxes affecting Xi , γ positive rate
constants, and f ∈ R
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System Identifiability: Theoretical Concept

Define the (theoretical) set of exact parameter values:

DT (S,M) = {θ | M(θ) matches the system behaviour }

Ideally this set should be a singleton. In case of higher cardinality
we speak about overparameterization.

Assume an estimate θ̂(N;S,M, I, E) where N is the number of
measurements in observed variable y .

Definition

System S is (parameter) identifiable under M, I and E iff
θ̂(N;S,M, I, E)→ DT (S,M) as N →∞.
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System Identifiability: Confidence Intervals

θ̂i is associated a confidence interval [σ−i , σ
+
i ] with the meaning

that true value of θi is located in [σ−i , σ
+
i ] with probability α

asymptotic confidence

σ±i = θ̂i ±
√

∆α(χ2) · Cii

where

∆α(χ2) is α-quantile for χ2

C = 2 · H−1

H is Hessian matrix (describing curvature of χ2 around θ̂i by
second-order partial derivatives)

gives a good approximation of actual uncertainty of θ̂i if:

data have small error
amount of data is large wrt number of parameters
exact if y(t) depends linearly on θ
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System Identifiability: Confidence Intervals

finite sample confidence

{θ | χ2(θ)− χ2(θ̂) < ∆α}

where ∆α is α-quantile as in the previous case

gives an approximation of actual uncertainty of θ̂i up-to a
statistically computed threshold
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System Identifiability

Definition

Parameter θi is identifiable iff the confidence interval [σ−i , σ
+
i ] of

the estimate θ̂i is finite.

Reasons leading to non-identifiability:

structural: model structure

practical: precision of measured data
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Structural Identifiability

Definition

A parameter θi is structurally identifiable if a unique minimum of
χ2(θ) exists with respect to θi .

structural identifiability requires uniqueness of the solution

redundant parameterisation of the model causing insufficient
mapping of internal states x to observables y

denote θamb ⊂ θ the set of ambiguous parameters

values of θamb may be varied without any change in y (and
thus χ2(θ) keeps constant)

in such a case there must be functional relations h among the
parameters in θamb that are invariant wrt χ2(θ), and moreover:

∀i , θi ∈ θamb. σ
−
i = −∞∧ σ+

i =∞
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Structural Identifiability
Structuraly Non-identifiable Parameters

functional relation between parameters: h(θamb) = θ1 · θ2 − 10 = 0
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Structural Identifiability
Structuraly Identifiable Parameters
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Practical Identifiability

Definition

A parameter estimate θ̂i is practically non-identifiable if the
finite sample confidence interval is infinitely extended in decreasing
and/or increasing direction although there exists a unique
minimum of χ2.

practical identifiability implies structural identifiablitity

practical non-identifiability does not decide on structural
identifiability

detailed analysis can be used to improved experiment design
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Structural Identifiability
Structuraly Non-identifiable System

confidence region is infinitely extended for θ1 →∞ and θ2 →∞
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Detecting Identifiability

differential algebraic methods to analyse the system equations
can detect structural identifiability, computionally hard

detection of χ2 flateness using simulated and experimental
data

approximation of curvature measures by quadratic
approximation of χ2 at θ̂
computation of Hessian or Fisher information matrix
appropriate for linear relations h among parameters
practical non-identifiability cannot be detected
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Detecting Identifiability
Profile Likelihood Method by Raue et al. 2009

explore the parameter space for each parameter in the
direction of least increase in χ2

in particular this allows to follow the functional relations
h(θsub) = 0

for practical identifiability detect crossing of the quantile
threshold

profile likelihood χ2
PL is defined for each parameter θi :

χ2
PL(θi ) = minθj 6=i

[
χ2(θ)

]
.

Brno, 6.10.2014 34/48



Experiment Design
Profile Likelihood Method by Raue et al. 2009

suggestion of additional targeted measurements

need measurements that narrow the confidence interval

explore trajectories along PL of θi to improve estimation of θi
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Parameter Identification
Signalling Pathway Example by Raue et al. 2009

studied system, external stimuli and measured vs. simulated data
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Parameter Identification
Signalling Pathway Example by Raue et al. 2009

studied system, external stimuli and measured vs. simulated data
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Parameter Identification
Signalling Pathway Example by Raue et al. 2009

profile likelihood and its quadratic approximation
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Parameter Identification
Signalling Pathway Example by Raue et al. 2009

relations among parameters

Brno, 6.10.2014 38/48



Parameter Identification
Signalling Pathway Example by Raue et al. 2009

further PL-based analysis for experimental planning
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Parameter Identification: Approaches Overview

bottom-up vs. top-down modelling

bottom-up means detailed reconstruction from first principles
top-down (inverse) approach starts from high-throughput data

steady-state vs. transient modelling

steady-state data give simplifying assumption (time is
abstracted by long-run view)
works well for processes with a unique stable state
availability of internal system variables at steady-state (e.g.,
metabolism)
transient analysis more complicated (requires detection of
initial states and appropriate time-series resolution is needed to
inverse modelling)
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Inverse Modelling Approach

I-Chun Chou, E.O. Voit / Mathematical Biosciences 219 (2009) 57-83
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Inverse Modelling Methods

I-Chun Chou, E.O. Voit / Mathematical Biosciences 219 (2009) 57-83
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Optimisation Methods

I-Chun Chou, E.O. Voit / Mathematical Biosciences 219 (2009) 57-83
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Structure Identification

I-Chun Chou, E.O. Voit / Mathematical Biosciences 219 (2009) 57-83
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Parameter Exploration and Synthesis by Model Checking

reconstruction

observation

model

system properties
observed

propertiesparameter

identification
system formalization

specified

admissible parameter
settings

properties
+ required

synthesis
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Parameter Synthesis from LTL Specifications

Robustness

Given an LTL property ϕ and a parameterized model M check if
M(θ) |= ϕ holds for all possible parameterizations θ ∈ P
(valuations of parameters), P is called the parameter space.

Parameter Synthesis Problem

Given an LTL property ϕ and a parameterized model M find the
maximal set P ⊆ P of parameterizations such that M(θ) |= ϕ
for all θ ∈ P.

Problem Reduction

Robustness is reduced to Parameter Synthesis Problem by taking
the set P of all possible parameterizations as P.
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