Systems Identification in Systems Biology

David Šafránek

Brno, 6.10.2014 1/48

Outline

Introduction

2 The Approach: Parametric Identification

System Identifiability Problem

Overview of Approaches

Brno, 6.10.2014 2/48

Outline

Introduction

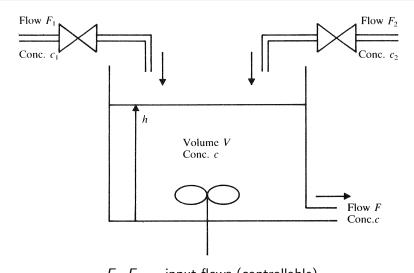
2 The Approach: Parametric Identification

3 System Identifiability Problem

4 Overview of Approaches

Brno, 6.10.2014 3/48

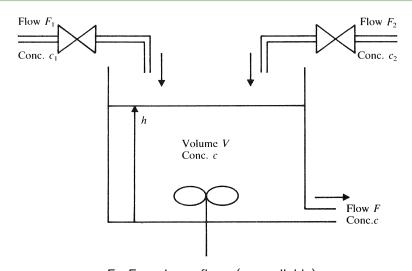
Dynamical Systems in Engineering A Stirred Tank



 F_1, F_2 ... input flows (controllable) c_1, c_2 ... input concentrations (uncontrollable)

 $_{\text{Brno, 6.10.2014}}F,c$... outputs of the system, can be observed (measured)

Dynamical Systems in Engineering A Stirred Tank



 F_1, F_2 ... input flows (controllable) c_1, c_2 ... input concentrations (uncontrollable) GOAL: Keep the outputs F, c constant.

Dynamical Systems in Engineering A Stirred Tank – Mathematical Model



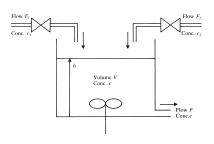
dynamics of the volume:
$$\frac{dV}{dt} = F_1 + F_2 - F$$

 $F=a\sqrt{2gh}$ (Torricelli's law of fluid dynamics) where a ... effective area of the flow, $g\sim 10m/sec^2$

V = Ah where A is tank area (independent on h)

Brno, 6.10.2014 5/48

Dynamical Systems in Engineering A Stirred Tank – Mathematical Model



dynamics of the volume: $\frac{dV}{dt} = F_1 + F_2 - F$

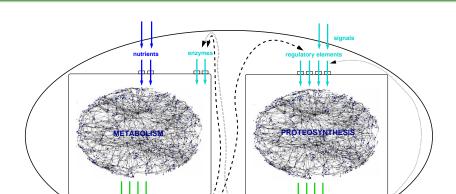
 $F=a\sqrt{2gh}$ (Torricelli's law of fluid dynamics) where a ... effective area of the flow, $g\sim 10m/sec^2$

V = Ah where A is tank area (independent on h)

problems: *a* is difficult to obtain, does this form of the Torricelli's law really apply for the real case?

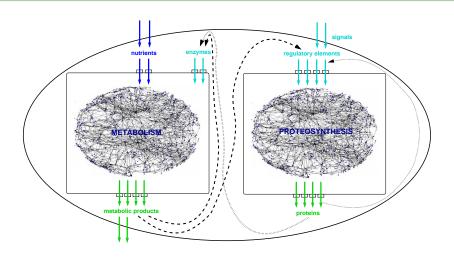
Brno, 6,10,2014 5/48

Dynamical Systems in Biology Processes Driving the Living Cell



Brno, 6.10.2014 6/48

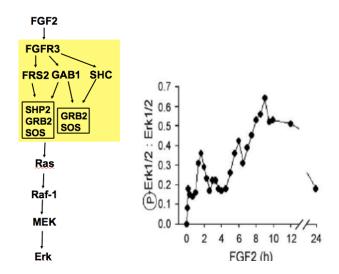
Dynamical Systems in Biology Processes Driving the Living Cell



questions: how to control cyanobacteria to gain max ethanol how to control *E. coli* to gain insuline, ...

Brno, 6.10.2014 6/48

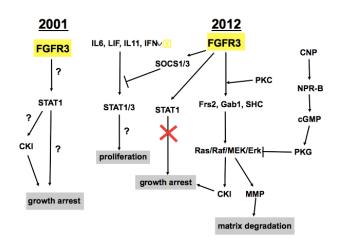
Dynamical Systems in Biology Signalling Pathways



joint work with P. Krejčí, Masaryk University Brno/Medical Genetics Institute, Cedars-Sinai Medical Center, L.A.

Brno, 6.10.2014 7/48

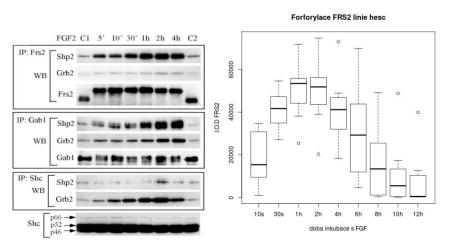
Dynamical Systems in Biology Signalling Pathways



What is the right topology?

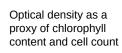
Wet-lab Measurements Western blots/Northern blots

- western blots
- measurements of protein binding (presence of certain proteins)



Wet-lab Measurements

Photobioreactor Data

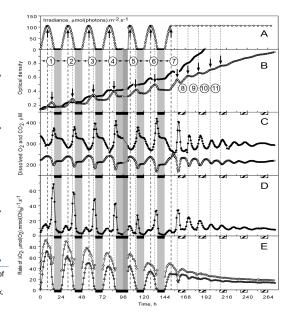


Concentration of dissolved O2 and CO2 influenced by photosynthetic activity

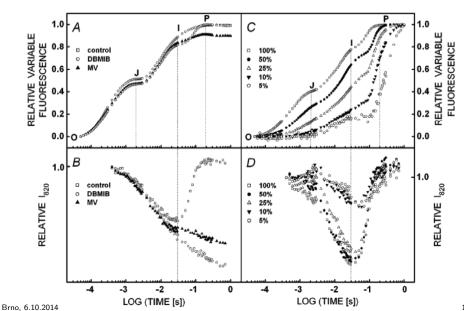
Rate of respiration as an indicator of metabolic changes

Rate of oxygen evolution

Červený, J., Nedbal, L. (2009) Metabolic rhythms of the cyanobacterium *Cyanothece* sp. ATCC 51142 correlate with modeled dynamics of circadian clock. *J. Biol. Rhythms* 24, 295-303.



Wet-lab Measurements Fluorometer Data



11/48

Outline

1 Introduction

2 The Approach: Parametric Identification

System Identifiability Problem

4 Overview of Approaches

Brno, 6.10.2014 12/48

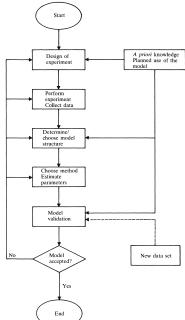
The Approach: System Identification

- INPUT: controlled perturbance of input stimuli
- OUTPUT: measurements of observed variables
- GOAL: find a system that reliably maps INPUT to OUTPUT

The Approach: System Identification

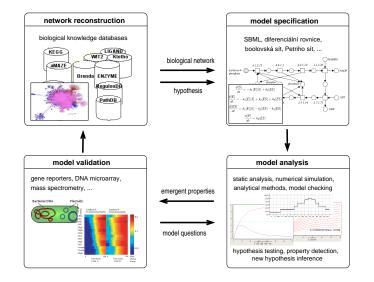
- INPUT: controlled perturbance of input stimuli
 - typically interesting patterns exploring most of (expected) systems response
 - pulses, oscillations, ...
- OUTPUT: measurements of observed variables
 - time-series or steady state data
 - not all variables might be observed
 - measurements might be very imprecise ⇒ noisy data
- GOAL: find a system that reliably maps INPUT to OUTPUT
 - mapping might be non-linear
 - extrinsic noise on both input, output side
 - system might be affected by intrinsic noise (internal stochasticity)

System Identification Workflow



System Identification Workflow

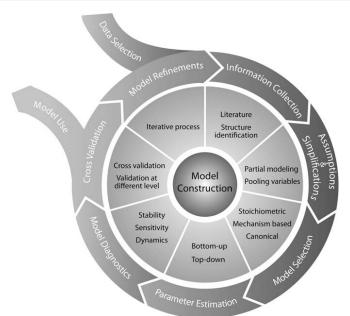
Modelling in Systems Biology



Brno, 6.10.2014 15/48

System Identification Workflow

Modelling in Systems Biology



System Identification Concepts

- ullet system ${\cal S}$
 - mathematical description of the real-world **process**
 - can be an idealization
 - not necessarily required to be known
- \bullet model structure \mathcal{M}
 - non-parametric (table, mapping, frequency diagram, ...)
 - parametric (with a parameter vector θ) $\mathcal{M}(\theta)$
- ullet identification method ${\mathcal I}$
 - depends on available data, kind of the process, ...
- ullet experimental condition ${\cal E}$
 - concrete setting of identification experiment
 - selection and generation of input signals
 - prefiltering of data

Brno, 6,10,2014 17/48

Parametric Identification: Problem Statement

Definition

Parametric model $\mathcal{M}(\theta)$ describing *n* dynamically evolving *autonomous* variables is defined by a set of equations:

$$\dot{x}(t) = f(x(t), u(t), p)$$

$$y(t) = g(x(t), s) + \epsilon(t)$$

where

- $x(t) \in \mathbb{R}^n$ for $t \ge 0$ is a vector of **internal model states**
- $u(t) \in \mathbb{R}^u$ for $t \ge 0$ is a vector of **input stimuli**
- $y(t) \in \mathbb{R}^m$ for $t \ge 0$ is a vector of **observables**
- \bullet $\epsilon(t)$ is a normally distributed measurement noise

If m < n we speak about *partially observable* models. Parameter θ is defined as a vector $\langle p, x(0), s \rangle$.

Parametric Identification: Problem Statement

$$\chi^{2}(\theta) = \sum_{k=1}^{m} \sum_{l=1}^{d} \left(y_{kl}^{D} - y_{k}(\theta, t_{l}) \right)^{2}$$

- y_{kl}^D is /th measurement point of the observable y_k taken at time t_l
- $y_k(\theta, t_l)$ is model-predicted y_k at time t_l by employing parameter estimate θ
- parameter estimate $\hat{\theta}$ is obtained as a value that minimizes $\chi^2(\theta)$:

$$\hat{\theta} = \operatorname{argmin} \left[\chi^2(\theta) \right].$$

• objective function and reduction to optimisation problem

Parametric Identification: Problem Statement Interpretation in Biology

- internal states biochemical substances in the cell
- observables substances that can be measured in time (e.g., metabolites or fluorescence reporters)
- input stimuli profile of nutrient support, signalling stimuli or light program
- differential equations define continuous-time deterministic (population-average) evolution of biochemical substances
- autonomity comes from biochemistry and thermodynamics
 - mass-action kinetics, enzyme kinetics, ...
 - in this setting x(t) and p are always positive

Brno, 6.10.2014 20/48

Parametric Identification: Problem Statement

Mathematical Models in Biology

- mechanistic models
 - mass-action systems
 - describes rate of any elementary reaction $\sum_{i=1}^{n} X_i \to ...$:

$$v = k \prod_{i=1}^{n} X_i^{\sigma_i}$$

where σ_i denotes kinetic order given by stoichiometry

- easily obtainable model structure if reaction network is known
- ullet non-linearity is regular if stoichiometry ≤ 1
- typically leads to over-parametrised models
- Michaelis-Menten systems
 - enzyme kinetics based on pseudo-steady-state approximation
 - reduces number of variables and parameters
 - but for general case very complicated non-linear equations

similar are Hill systems (generalisation of MM)

Brno, 6.10.2014 21/48

Parametric Identification: Problem Statement

Mathematical Models in Biology

- canonical models
 - S-systems
 - for each species X_i one set of influxes and one set of effluxes is specified in terms of power-law functions:

$$\dot{X}_i = \alpha_i \prod_{j=1}^n X_j^{\sigma_{ij}} - \beta_i \prod_{j=1}^n X_j^{\rho_{ij}}$$

where n is the number of all system variables, α, β are rate constants for production and degradation, $\sigma, \rho \in \mathbb{R}$ are kinetic orders

- generalised mass-action (GMA) systems
 - for each species X_i a sum of influxes/effluxes is specified (not aggregated)

$$\dot{X}_i = \sum_{k=1}^{n_i} \left(\gamma_{ik} \prod_{i=1}^n X_j^{f_{ikj}} \right)$$

where n_j is number of fluxes affecting X_i , γ positive rate constants, and $f \in \mathbb{R}$

Brno, 6.10,2014 22/48

Outline

1 Introduction

2 The Approach: Parametric Identification

System Identifiability Problem

4 Overview of Approaches

Brno, 6.10.2014 23/48

System Identifiability: Theoretical Concept

Define the (theoretical) set of exact parameter values:

$$D_T(S, \mathcal{M}) = \{\theta \mid \mathcal{M}(\theta) \text{ matches the system behaviour } \}$$

Ideally this set should be a singleton. In case of higher cardinality we speak about *overparameterization*.

Assume an estimate $\hat{\theta}(N; S, \mathcal{M}, \mathcal{I}, \mathcal{E})$ where N is the number of measurements in observed variable y.

Brno, 6.10.2014 24/48

System Identifiability: Theoretical Concept

Define the (theoretical) set of exact parameter values:

$$D_T(S, \mathcal{M}) = \{\theta \mid \mathcal{M}(\theta) \text{ matches the system behaviour } \}$$

Ideally this set should be a singleton. In case of higher cardinality we speak about *overparameterization*.

Assume an estimate $\hat{\theta}(N; S, \mathcal{M}, \mathcal{I}, \mathcal{E})$ where N is the number of measurements in observed variable y.

Definition

System \mathcal{S} is (parameter) **identifiable under** \mathcal{M} , \mathcal{I} and \mathcal{E} iff $\hat{\theta}(N; \mathcal{S}, \mathcal{M}, \mathcal{I}, \mathcal{E}) \to D_T(\mathcal{S}, \mathcal{M})$ as $N \to \infty$.

Brno, 6.10.2014 24/48

System Identifiability: Confidence Intervals

 $\hat{\theta}_i$ is associated a confidence interval $[\sigma_i^-, \sigma_i^+]$ with the meaning that true value of θ_i is located in $[\sigma_i^-, \sigma_i^+]$ with probability α

asymptotic confidence

$$\sigma_i^{\pm} = \hat{\theta}_i \pm \sqrt{\Delta_{\alpha}(\chi^2) \cdot C_{ii}}$$

where

- $\Delta_{\alpha}(\chi^2)$ is α -quantile for χ^2
- $C = 2 \cdot H^{-1}$
- H is Hessian matrix (describing curvature of χ^2 around $\hat{\theta}_i$ by second-order partial derivatives)

Brno, 6.10.2014 25/48

System Identifiability: Confidence Intervals

 $\hat{\theta}_i$ is associated a confidence interval $[\sigma_i^-, \sigma_i^+]$ with the meaning that true value of θ_i is located in $[\sigma_i^-, \sigma_i^+]$ with probability α

asymptotic confidence

$$\sigma_i^{\pm} = \hat{\theta}_i \pm \sqrt{\Delta_{\alpha}(\chi^2) \cdot C_{ii}}$$

where

- $\Delta_{\alpha}(\chi^2)$ is α -quantile for χ^2
- $C = 2 \cdot H^{-1}$
- H is Hessian matrix (describing curvature of χ^2 around $\hat{\theta}_i$ by second-order partial derivatives)
- gives a good approximation of actual uncertainty of $\hat{\theta}_i$ if:
 - data have small error
 - amount of data is large wrt number of parameters

• exact if y(t) depends linearly on θ

Brno, 6.10.2014 25/48

System Identifiability: Confidence Intervals

• finite sample confidence

$$\{\theta \mid \chi^2(\theta) - \chi^2(\hat{\theta}) < \Delta_{\alpha}\}$$

where Δ_{α} is α -quantile as in the previous case

ullet gives an approximation of actual uncertainty of $\hat{ heta}_i$ up-to a statistically computed threshold

Brno, 6.10.2014 26/48

System Identifiability

Definition

Parameter θ_i is **identifiable** iff the confidence interval $[\sigma_i^-, \sigma_i^+]$ of the estimate $\hat{\theta}_i$ is finite.

Brno, 6.10.2014 27/48

System Identifiability

Definition

Parameter θ_i is **identifiable** iff the confidence interval $[\sigma_i^-, \sigma_i^+]$ of the estimate $\hat{\theta}_i$ is finite.

Reasons leading to non-identifiability:

- structural: model structure
- practical: precision of measured data

Brno, 6.10.2014 27/48

Structural Identifiability

Definition

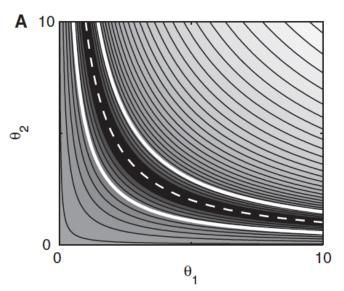
A parameter θ_i is **structurally identifiable** if a unique minimum of $\chi^2(\theta)$ exists with respect to θ_i .

- structural identifiability requires uniqueness of the solution
- redundant parameterisation of the model causing insufficient mapping of internal states x to observables y
- denote $\theta_{amb} \subset \theta$ the set of ambiguous parameters
- values of θ_{amb} may be varied without any change in y (and thus $\chi^2(\theta)$ keeps constant)
- in such a case there must be functional relations h among the parameters in θ_{amb} that are invariant wrt $\chi^2(\theta)$, and moreover:

$$\forall i, \theta_i \in \theta_{amb}. \, \sigma_i^- = -\infty \wedge \sigma_i^+ = \infty$$

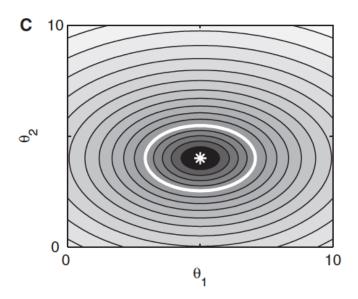
Brno, 6.10.2014 28/48

Structural Identifiability Structuraly Non-identifiable Parameters



functional relation between parameters: $h(\theta_{amb}) = \theta_1 \cdot \theta_2 - 10 = 0$

Structural Identifiability Structuraly Identifiable Parameters



Brno, 6.10.2014 30/48

Practical Identifiability

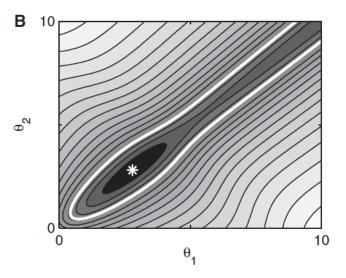
Definition

A parameter estimate $\hat{\theta}_i$ is **practically non-identifiable** if the finite sample confidence interval is infinitely extended in decreasing and/or increasing direction although there exists a unique minimum of χ^2 .

- practical identifiability implies structural identifiablitity
- practical non-identifiability does not decide on structural identifiability
- detailed analysis can be used to improved experiment design

Brno, 6.10.2014 31/48

Structural Identifiability Structuraly Non-identifiable System



confidence region is infinitely extended for $\theta_1 \to \infty$ and $\theta_2 \to \infty$

Brno, 6.10.2014 32/48

Detecting Identifiability

- differential algebraic methods to analyse the system equations can detect structural identifiability, computionally hard
- detection of χ^2 flateness using simulated and experimental data
 - approximation of curvature measures by quadratic approximation of χ^2 at $\hat{\theta}$
 - computation of Hessian or Fisher information matrix
 - appropriate for linear relations h among parameters
 - practical non-identifiability cannot be detected

Brno, 6.10.2014 33/48

\bullet explore the parameter space for each parameter in the direction of least increase in χ^2

- in particular this allows to follow the functional relations $h(\theta_{sub}) = 0$
- for practical identifiability detect crossing of the quantile threshold
- profile likelihood χ^2_{PL} is defined for each parameter θ_i :

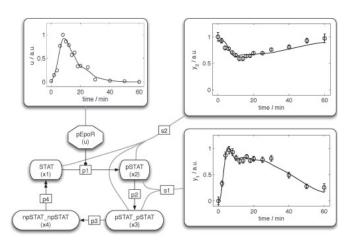
$$\chi^2_{PL}(\theta_i) = \min_{\theta_{j \neq i}} \left[\chi^2(\theta) \right].$$

Brno, 6.10.2014 34/48

Experiment Design Profile Likelihood Method by Raue et al. 2009

- suggestion of additional targeted measurements
- need measurements that narrow the confidence interval
- ullet explore trajectories along PL of $heta_i$ to improve estimation of $heta_i$

Brno, 6.10.2014 35/48

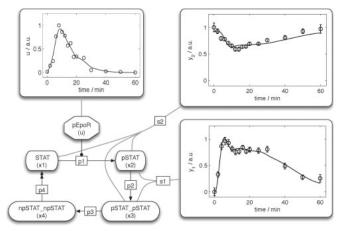


studied system, external stimuli and measured vs. simulated data

Brno, 6.10.2014 36/48

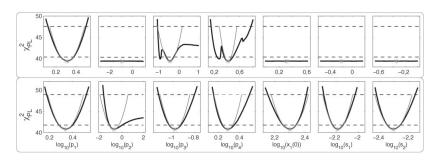
Parameter Identification

Signalling Pathway Example by Raue et al. 2009



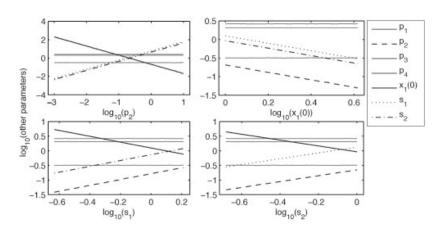
studied system, external stimuli and measured vs. simulated data

$$\begin{array}{ll} \dot{x}_1 = -p_1 \cdot x_1 \cdot u + 2 \cdot p_4 \cdot x_4^{\tau} & y_1 = s_1 \cdot (x_2 + 2 \cdot x_3) \\ \dot{x}_2 = +p_1 \cdot x_1 \cdot u - p_2 \cdot x_2^2 & y_2 = s_2 \cdot (x_1 + x_2 + 2 \cdot x_3) \\ \dot{x}_3 = +\frac{1}{2} \cdot p_2 \cdot x_2^2 - p_3 \cdot x_3 \\ \dot{x}_4 = +p_3 \cdot x_3 - p_4 \cdot x_4^{\tau} & \end{array}$$



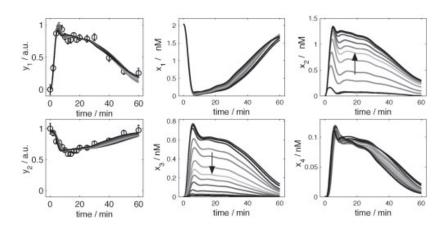
profile likelihood and its quadratic approximation

Brno, 6.10.2014



relations among parameters

Brno, 6.10.2014 38/48



further PL-based analysis for experimental planning

Brno, 6.10.2014 39/48

Outline

1 Introduction

2 The Approach: Parametric Identification

3 System Identifiability Problem

4 Overview of Approaches

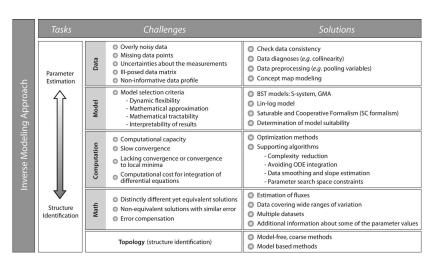
Brno, 6.10.2014 40/48

Parameter Identification: Approaches Overview

- bottom-up vs. top-down modelling
 - bottom-up means detailed reconstruction from first principles
 - top-down (inverse) approach starts from high-throughput data
- steady-state vs. transient modelling
 - steady-state data give simplifying assumption (time is abstracted by long-run view)
 - works well for processes with a unique stable state
 - availability of internal system variables at steady-state (e.g., metabolism)
 - transient analysis more complicated (requires detection of initial states and appropriate time-series resolution is needed to inverse modelling)

Brno, 6.10.2014 41/48

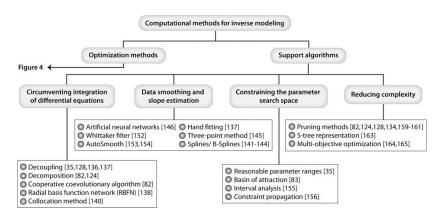
Inverse Modelling Approach



I-Chun Chou, E.O. Voit / Mathematical Biosciences 219 (2009) 57-83

Brno, 6,10,2014 42/48

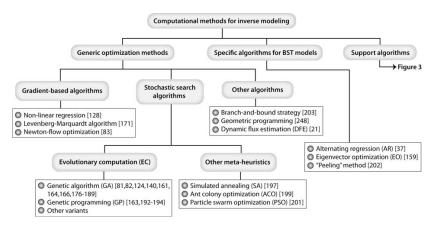
Inverse Modelling Methods



I-Chun Chou, E.O. Voit / Mathematical Biosciences 219 (2009) 57-83

Brno, 6.10,2014 43/48

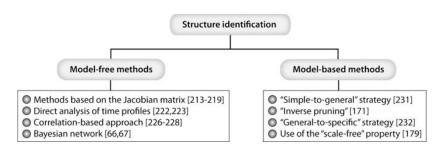
Optimisation Methods



I-Chun Chou, E.O. Voit / Mathematical Biosciences 219 (2009) 57-83

Brno, 6.10,2014 44/48

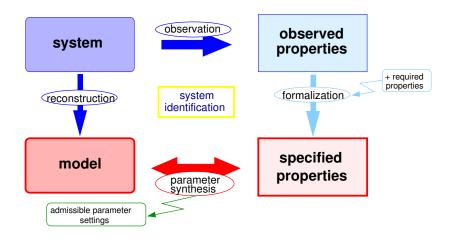
Structure Identification



I-Chun Chou, E.O. Voit / Mathematical Biosciences 219 (2009) 57-83

Brno, 6.10.2014 45/48

Parameter Exploration and Synthesis by Model Checking



Brno, 6.10.2014 46/48

Parameter Synthesis from LTL Specifications

Robustness

Given an LTL property φ and a parameterized model \mathcal{M} check if $\mathcal{M}(\theta) \models \varphi$ holds for all possible parameterizations $\theta \in \mathcal{P}$ (valuations of parameters), \mathcal{P} is called the parameter space.

Parameter Synthesis Problem

Given an LTL property φ and a parameterized model \mathcal{M} find the maximal set $P \subseteq \mathcal{P}$ of parameterizations such that $\mathcal{M}(\theta) \models \varphi$ for all $\theta \in P$.

Problem Reduction

Robustness is reduced to Parameter Synthesis Problem by taking the set \mathcal{P} of all possible parameterizations as P.

Brno, 6,10,2014 47/48

References

- T. Söderström, P. Stoica. System Identification. Prentice-Hall, 1989.
- I-Chun Chou, E.O. Voit. Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathematical Biosciences 219 (2009) 57-83
- A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller and J. Timmer. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, Vol. 25 no. 15 2009, pages 1923-1929.
- discussions with Stephan Müller, Jan van Schuppen, Alessandro Abate

Brno, 6.10.2014 48/48