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@ Introduction
© The Approach: Parametric Identification
© System Identifiability Problem

@ Overview of Approaches
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@ Introduction
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Dynamical Systems in Engineering
A Stirred Tank

Flow F, >< >< Flow F,
Conc. ¢, ll l l “ Conc. ¢,
h
Volume V
Conc. ¢
—_—
e  Flow F
| Conc.c

Fi, F ... input flows (controllable)
c1, ¢ ... input concentrations (uncontrollable)

F,c ... outputs of the system, can be observed (measured)
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Dynamical Systems in Engineering
A Stirred Tank

Flow F,

Volume V
Conc. ¢

—_—
e  Flow F

I Conc.c

Fi, F ... input flows (controllable)

c1, ¢ ... input concentrations (uncontrollable)
GOAL: Keep the outputs F, ¢ constant.
Brno, 6.10.2014
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Dynamical Systems in Engineering
A Stirred Tank — Mathematical Model

‘‘‘‘‘‘‘

—_—
Flow F
Conc.c

dynamics of the volume: CZT\t/ =F+FR—-F

F = a\/2gh (Torricelli's law of fluid dynamics)
where a ... effective area of the flow, g ~ 10m/se<:2

V = Ah where A is tank area (independent on h)
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Dynamical Systems in Engineering
A Stirred Tank — Mathematical Model

Flow F,

«««««««

—_—
Flow F
Conc.c

dynamics of the volume: CZT\t/ =F+FR—-F

F = a\/2gh (Torricelli's law of fluid dynamics)
where a ... effective area of the flow, g ~ 10m/se<:2

V = Ah where A is tank area (independent on h)

problems: a is difficult to obtain, does this form of the Torricelli’s
law really apply for the real case?
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Dynamical Systems in Biology

Processes Driving the Living Cell

nutrients

.
R

ik

metabolic products
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Dynamical Systems in Biology
Processes Driving the Living Cell

nutrients

.
R

ik

metabolic products

questions: how to control cyanobacteria to gain max ethanol
how to control E. coli to gain insuline, ...
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Dynamical Systems in Biology
Signalling Pathways
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joint work with P. Krej&i, Masaryk University Brno/Medical Genetics Institute, Cedars-Sinai Medical Center, L.A.
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Dynamical Systems in Biology
Signalling Pathways

001

FGFR3

Brno, 6.10.2014

IL6, LIF, IL11, IFNv

SOCS1/3

STAT1/3 STAT1

?

proliferation

growth arrest

2012
FGFR3
CNP
e
NPR-B
Frs2, Gab1, SHC l
cGMP
Ras:'RaﬁMEKIErk'——_ PKG
~

CKI  MMP

/

matrix degradation

What is the right topology?

8/48



Wet-lab Measurements

Western blots/Northern blots

@ western blots
@ measurements of protein binding (presence of certain proteins)
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Wet-lab Measurements

Photobioreactor Data
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Wet-lab Measurements

Fluorometer Data
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© The Approach: Parametric Identification
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The Approach: System Identification

@ INPUT: controlled perturbance of input stimuli
@ OUTPUT: measurements of observed variables
@ GOAL: find a system that reliably maps INPUT to OUTPUT
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The Approach: System Identification

o INPUT: controlled perturbance of input stimuli
o typically interesting patterns exploring most of (expected)
systems response
e pulses, oscillations, ...

@ OUTPUT: measurements of observed variables

e time-series or steady state data
e not all variables might be observed
e measurements might be very imprecise = noisy data

@ GOAL: find a system that reliably maps INPUT to OUTPUT

e mapping might be non-linear

e extrinsic noise on both input, output side

e system might be affected by intrinsic noise (internal
stochasticity)
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System ldentification Workflow

Design of A priori knowledge
experiment Planned use of the
model

Perform
experiment
Collect data

Determine/
choose model
structure
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System ldentification Workflow

Modelling in Systems Biology

Brno, 6.10.2014

network reconstruction

biological knowledge databases

model validation

gene reporters, DNA microarray,
mass spectrometry, ...

Bacterial oA Plasids

model specification

SBML, diferencidlni rovnice,
boolovska sit, Petriho sit, ...

biological network . ,,,Zl:)“"’"
hypothesi > T
ypothesis
OO

emergent properties
—

_>
model questions

}

model analysis

static analysis, numerical simulation,
analytical methods, model checking
i, i

hypothesis testing, property detection,
new hypothesis inference
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System ldentification Workflow

Modelling in Systems Biology

2.
ar
IMeter Estimatio™
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System ldentification Concepts

system §

e mathematical description of the real-world process
e can be an idealization
@ not necessarily required to be known

model structure M

e non-parametric (table, mapping, frequency diagram, ...)
e parametric (with a parameter vector §) M(6)

o identification method 7
e depends on available data, kind of the process, ...

o experimental condition £

e concrete setting of identification experiment
e selection and generation of input signals
o prefiltering of data
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Parametric ldentification: Problem Statement

Definition
Parametric model M(0) describing n dynamically evolving
autonomous variables is defined by a set of equations:

x(t) = f(x(t), u(t), p)
y(t) = g(x(2),s) + €(t)
where
e x(t) € R” for t > 0 is a vector of internal model states
@ u(t) € RY for t > 0 is a vector of input stimuli
e y(t) € R™ for t > 0 is a vector of observables

@ ¢(t) is a normally distributed measurement noise

If m < n we speak about partially observable models.
Parameter 6 is defined as a vector (p, x(0),s).
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Parametric ldentification: Problem Statement

m

d 2
0) =33 (v8 - (o 1))

k=1 I=1
° yﬁ is [th measurement point of the observable y, taken at
time t;

@ yi(0,t;) is model-predicted yy at time t; by employing
parameter estimate 6

@ parameter estimate 6 is obtained as a value that minimizes
X(0): X
0 = argmin [X2(9)] .

@ objective function and reduction to optimisation problem
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Parametric Identification: Problem Statement

Interpretation in Biology

Brno, 6.10.2014

internal states — biochemical substances in the cell

observables — substances that can be measured in time (e.g.,
metabolites or fluorescence reporters)

input stimuli — profile of nutrient support, signalling stimuli or
light program

differential equations define continuous-time deterministic
(population-average) evolution of biochemical substances
autonomity comes from biochemistry and thermodynamics

e mass-action kinetics, enzyme kinetics, ...
e in this setting x(t) and p are always positive

20/48



Parametric Identification: Problem Statement

Mathematical Models in Biology

@ mechanistic models
@ mass-action systems

o describes rate of any elementary reaction 3 7, Xi — ...:

v=k ﬁ X7
i=1

where ¢ denotes kinetic order given by stoichiometry
o easily obtainable model structure if reaction network is known
@ non-linearity is regular if stoichiometry <1
o typically leads to over-parametrised models
e Michaelis-Menten systems
@ enzyme kinetics based on pseudo-steady-state approximation
e reduces number of variables and parameters
@ but for general case very complicated non-linear equations
e similar are Hill systems (generalisation of MM)
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Parametric Identification: Problem Statement

Mathematical Models in Biology

@ canonical models
e S-systems

o for each species X; one set of influxes and one set of effluxes
is specified in terms of power-law functions:

n

=I5 - o ]x
=1

j=1

where n is the number of all system variables, «, 3 are rate
constants for production and degradation, o, p € R are kinetic
orders

o generalised mass-action (GMA) systems

o for each species X; a sum of influxes/effluxes is specified (not

aggregated)
n; n
Xi:E (’Yikllxjkj>
k=1 j=1

where n;j is number of fluxes affecting X;, « positive rate
constants, and f € R
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© System Identifiability Problem
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System ldentifiability: Theoretical Concept

Define the (theoretical) set of exact parameter values:
D7 (S, M) = {0 | M(0) matches the system behaviour }

Ideally this set should be a singleton. In case of higher cardinality
we speak about overparameterization.

Assume an estimate HA(N;S,M,I,S) where N is the number of
measurements in observed variable y.
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System ldentifiability: Theoretical Concept

Define the (theoretical) set of exact parameter values:
D7 (S, M) = {0 | M(0) matches the system behaviour }

Ideally this set should be a singleton. In case of higher cardinality
we speak about overparameterization.

Assume an estimate HA(N;S,M,I,S) where N is the number of
measurements in observed variable y.

Definition

System S is (parameter) identifiable under M, 7 and & iff
O(N;S,M,Z,E) — Dr(S, M) as N — cc.
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System ldentifiability: Confidence Intervals

0; is associated a confidence interval [0, 0,-+] with the meaning
that true value of 0; is located in [0, , o;"] with probability «

@ asymptotic confidence
o =0 £1/Da(x?) - Gi

o A,(x?) is a-quantile for x?

o C=2-H1

o H is Hessian matrix (describing curvature of x? around 0; by
second-order partial derivatives)

where
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System ldentifiability: Confidence Intervals

0; is associated a confidence interval [0, 0] with the meaning
that true value of 0; is located in [0, , o;"] with probability «

@ asymptotic confidence
o =0 £1/Da(x?) - Gi

o A,(x?) is a-quantile for x?

o C=2-H1

o H is Hessian matrix (describing curvature of x? around 0; by
second-order partial derivatives)

where

@ gives a good approximation of actual uncertainty of b; if:

e data have small error
e amount of data is large wrt number of parameters
o exact if y(t) depends linearly on 6
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System ldentifiability: Confidence Intervals

@ finite sample confidence

{013(0) = x*(0) < Ao}

where A, is a-quantile as in the previous case

@ gives an approximation of actual uncertainty of 6; up-to a
statistically computed threshold
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System Identifiability

Definition

Parameter ¢; is identifiable iff the confidence interval [0, 0] of
the estimate 6; is finite.
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System Identifiability

Definition

Parameter ¢; is identifiable iff the confidence interval [0, 0] of
the estimate 6; is finite.

Reasons leading to non-identifiability:

@ structural: model structure

@ practical: precision of measured data
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Structural Identifiability

Definition

A parameter 0; is structurally identifiable if a unique minimum of
x2(0) exists with respect to 6.

@ structural identifiability requires uniqueness of the solution

@ redundant parameterisation of the model causing insufficient
mapping of internal states x to observables y

o denote 0, C 0 the set of ambiguous parameters

@ values of 0,,, may be varied without any change in y (and
thus x?(6) keeps constant)

@ in such a case there must be functional relations h among the
parameters in 0, that are invariant wrt x2(6), and moreover:

Vi, 0; € Hamb-o','_ = —OO/\O'?_ =00
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Structural Identifiability

Structuraly Non-identifiable Parameters

A 10

0 10

9

functional relation between parameters: h(0,m,p) =601 -62 —10=10
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Structural Identifiability
Structuraly Identifiable Parameters

C 10

:

i
X

0
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Practical Identifiability

Definition

A parameter estimate 0; is practically non-identifiable if the
finite sample confidence interval is infinitely extended in decreasing
and/or increasing direction although there exists a unique
minimum of 2.

@ practical identifiability implies structural identifiablitity

@ practical non-identifiability does not decide on structural
identifiability

@ detailed analysis can be used to improved experiment design
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Structural Identifiability

Structuraly Non-identifiable System

0 10
91

confidence region is infinitely extended for #; — oo and 6y — oo
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Detecting ldentifiability

o differential algebraic methods to analyse the system equations
can detect structural identifiability, computionally hard

o detection of x? flateness using simulated and experimental

Brno, 6.10.2014

data

approximation of curvature measures by quadratic
approximation of x? at 6

e computation of Hessian or Fisher information matrix
e appropriate for linear relations h among parameters
e practical non-identifiability cannot be detected
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Detecting Identifiability
Profile Likelihood Method by Raue et al. 2009

@ explore the parameter space for each parameter in the
direction of least increase in x?

@ in particular this allows to follow the functional relations
h(esub) =0

@ for practical identifiability detect crossing of the quantile
threshold

o profile likelihood X%L is defined for each parameter 6;:

X2PL(91') = min@j#i [X2('9)] :

Brno, 6.10.2014 34/48



Experiment Design

Profile Likelihood Method by Raue et al. 2009

@ suggestion of additional targeted measurements
@ need measurements that narrow the confidence interval

@ explore trajectories along PL of ; to improve estimation of 6;

Brno, 6.10.2014 35/48



Parameter |dentification
Signalling Pathway Example by Raue et al. 2009
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studied system, external stimuli and measured vs. simulated data
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Parameter |dentification
Signalling Pathway Example by Raue et al. 2009

tima { min

o

20 a0 80
npSTAT _npSTAT PSTAT | |.\STAT time ! min
ES] {x3) % ’,

studied system, external stimuli and measured vs. simulated data

X|=—p1-X1-u+2-p4- xi yi=s1-(04+2-x3)
= +P1 SXpu—po- X% ya=s9-(x; +x0+2-x3)
= +2 P2 X% —pP3-Xx3
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Parameter ldentification

Signalling Pathway Example by Raue et al. 2009

2
XpL

0.2
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profile likelihood and its quadratic approximation
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Parameter ldentification

Signalling Pathway Example by Raue et al. 2009

3—2 e =1 _‘_‘-""---._____‘_
B 4 p =
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relations among parameters
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Parameter ldentification

Signalling Pathway Example by Raue et al. 2009

1 2
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further PL-based analysis for experimental planning

Brno, 6.10.2014 39/48



@ Overview of Approaches
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Parameter Identification: Approaches Overview

@ bottom-up vs. top-down modelling

e bottom-up means detailed reconstruction from first principles
e top-down (inverse) approach starts from high-throughput data
@ steady-state vs. transient modelling

o steady-state data give simplifying assumption (time is
abstracted by long-run view)

o works well for processes with a unique stable state

o availability of internal system variables at steady-state (e.g.,
metabolism)

e transient analysis more complicated (requires detection of
initial states and appropriate time-series resolution is needed to
inverse modelling)

Brno, 6.10.2014 41/48



Inverse Modelling Approach

Challenges

Solutions

Parameter

o= Estimation
O
©
<
Q
Q
<
D
=
<
o
o
=
[}
)
B
()
>
s

Structure

Identification

© Overly noisy data
© Missing data points.

© Check data consistency

s S © Data diagnoses (e.g. collinearity)
s © Uncertainties about the measurements oo ing ( i {ables)

© lll-posed data matrix ata preprocessing ?.g, pooling variables)

© Non-informative data profile © Concept map modeling

© Model selection criteria © BST models: S-system, GMA
E - Dynamic ﬂgxlblllty o © Lin-log model
I - Mathematical approximation © Saturable and . Jism (5C .
= - Mathematical tractability aturablean ! )

- Interpretability of results © Determination of model suitability
; © Computational capacity © Optimization methods
g © Slow convergence © Supporting algorithms
£ o Lacking convergence or convergence - Complexity reduction
'E=- to local minima - Avoiding ODE integration
S Computational cost for integration of - Data smoothing and slope estimation
differential equations - Parameter search space constraints
Estimation of fl

© Distinctly different yet equivalent solutions O Estima |onf; u)_(es .
&5 . . P © Data covering wide ranges of variation
i} © Non-equivalent solutions with similar error .
s © Multiple datasets

© Error compensation

© Additional information about some of the parameter values

Topology (structure identification)

© Model-free, coarse methods
© Model based methods

Brno, 6.10.2014
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Inverse Modelling Methods

C ional methods for inverse modeli
[ ]
Optimization methods Support algorithms
Figure4 ¢—————— I
Circumventing integration Data smoothing and Constraining the parameter Reducing complexity
of differential equations slope estimation search space 1

@ Artificial neural networks [146] © Hand fitting [137] @ Pruning methods [82,124,128,134,159-161]
© Whittaker filter [152] © Three-point method [145] © S-tree representation [163]
© AutoSmooth [153,154] © Splines/ B-Splines [141-144] © Multi-objective optimization [164,165]

© Decoupling [35,128,136,137]

© Decomposition [82,124]

© Cooperative coevolutionary algorithm [82]
@ Radial basis function network (RBFN) [138]
© Collocation method [140]

© Reasonable parameter ranges [35]
© Basin of attraction [83]

© Interval analysis [155]

© Constraint propagation [156]

I-Chun Chou, E.O. Voit / Mathematical Biosciences 219 (2009) 57-83
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Optimisation Methods

(< ional hods for inverse modeli

Generic optimization methods Specific algorithms for BST models Support algorithms

[ | I | I LP Figure 3

Gradient-based algorithms Stochastic search Other algorithms
algorithms

| |

© Branch-and-bound strategy [203]
© Geometric programming [248]

© Dynamic flux estimation (DFE) [21]

© Non-linear regression [128)
© Levenberg-Marquardt algorithm [171]
Q Newton-flow optimization [83]

T | © Alternating regression (AR) [37]

. . . Eigenvector optimization (EQ) [159]
Evolutionary computation (EC) Other meta-heuristics 8 upiermy met:od [202] ]

| |
Q@ Genetic algorithm (GA) [81,82,124,140,161, © Simulated annealing (SA) [197]
164,166,176-189] @ Ant colony optimization (ACO) [199]
© Genetic programming (GP) [163,192-194] © Particle swarm optimization (PSO) [201]
© Other variants

I-Chun Chou, E.O. Voit / Mathematical Biosciences 219 (2009) 57-83
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Structure Identification

Structure identification

Model-free methods

Model-based methods

© Methods based on the Jacobian matrix [213-219]
© Direct analysis of time profiles [222,223]

© Correlation-based approach [226-228]

O Bayesian network [66,67]

© “simple-to-general”strategy [231]
© "Inverse pruning”[171]

© “General-to-specific” strategy [232]
© Use of the "scale-free” property [179]

I-Chun Chou, E.O. Voit / Mathematical Biosciences 219 (2009) 57-83
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Parameter Exploration and Synthesis by Model Checking

system

econstruction

system
identification

model

admissible parameter
settings

parameter
synthesis
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specified
properties

+ required
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Parameter Synthesis from LTL Specifications

Robustness

Given an LTL property ¢ and a parameterized model M check if
M(0) = ¢ holds for all possible parameterizations 6 € P
(valuations of parameters), P is called the parameter space.

Parameter Synthesis Problem

| \

Given an LTL property ¢ and a parameterized model M find the
maximal set P C P of parameterizations such that M(0) = ¢
for all 9 € P.

| A

Problem Reduction

Robustness is reduced to Parameter Synthesis Problem by taking
the set P of all possible parameterizations as P.
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