Lesson 10 – Physically-based rendering **Microfacets** PV227 – GPU Rendering

Jiří Chmelík, Jan Čejka Fakulta informatiky Masarykovy univerzity

28. 11. 2018

- Think about the physics behind everything:
	- \blacktriangleright Light
	- \blacktriangleright Lights
	- **EXECUTE:** Materials
	- \triangleright Sensors / Eyes
- o In practice, still approximations
- More and more popular in real-time rendering, in rendering engines

Light propagation – Homogeneous media

- Light interacts with the material it travels through
- In homogeneous materials, the light is absorbed \bullet
	- \blacktriangleright Loses some of its energy
	- \triangleright Clean water, glass, air, oil, ...

Low Absorbtion **High Absorbtion**

Light propagation – Heterogeneous media

- Light interacts with the material it travels through \bullet
- In heterogeneous materials, the light is scattered \bullet
	- \triangleright Scatters the energy without losses
	- \blacktriangleright Milk, skin, wood, (dirty water, air with fog), ...

Low Scattering **High Scattering**

Light propagation – Absorbtion vs. Scattering

Absorbtion vs. Scattering

Light interaction – Materials

- Light changes its direction at the boundary between two materials
	- \blacktriangleright Reflection
	- \triangleright Refraction
	- \triangleright Without losses of energy

Reflection

- \circ Perfect reflection: $θ_i = θ_o$
- Amount of reflected light depends on θ*ⁱ* and on the wavelength \bullet
- Described by Fresnel equations \bullet

- Depends on the wavelength, reflection has a color (!) \bullet
- Metals have usually higher values \bullet
- Dielectrics have usually lower values \bullet
- Mostly without any change until 50 $^{\circ}$, then goes straight to one \bullet
- In practice: Schlick's approximation:

$$
F_{\textit{Schlick}}(F_0,L,N)=F_0+(1-F_0)(1-L\cdot N)^5
$$

where *F*⁰ is Fresnel reflection at 0◦ , *L* is direction to light, *N* is surface normal

Fresnel reflection at 0◦

Fresnel reflections at 0° for some materials

Snell's law

$$
\frac{\sin \theta_i}{\sin \theta_t} = \frac{v_1}{v_2}
$$

- \bullet In metals, all energy is absorbed
- In homogeneous materials, the light continues in different direction \bullet
- In heterogeneous materials (including skin, wood, plastic, . . .), the \bullet light is scattered and absorbed
- Diffuse lighting
	- \triangleright When all the (non-absorbed) light exits the surface at approximately the same point as the light enters.

Refraction – sub-surface scattering

- Sub-surface scattering (SSS)
	- \triangleright When all the (non-absorbed) light exits the surface at different places.

- "Does not exist in PBR"
- Average of lighting coming from all directions.
- Only some objects are flat (mirrors, water surface, . . .), others are \bullet not
- With microfacets, the surface is represented with very small facets
	- \triangleright Smaller then 'pixel', not for displacement in geometry, not for normal mapping
	- \blacktriangleright (Larger than light's wavelength)
	- \blacktriangleright Each mifrofacet is a flat surface
- Many microfacets models, for different materials
	- \triangleright Different distribution of orientation of facets
	- \triangleright Different shadowing between facets
	- \triangleright Different approximation of the model

Microfacets

Top: smooth surface, Bottom: rough surface

- We are usually interested in facets which are oriented in the proper direction to give us perfect reflection.
	- \triangleright i.e. facets that are oriented in the half-vector direction
- Gaussian distribution, . . .

- Shadowing: Facets occlude the light for other facets \bullet
- Masking: Facets cannot be seen due to other facets ۰
- Interreflection: Facets reflect the light to other facets, and then the \bullet light is reflected to the viewer

- Cook-Torrance (1982)
- Oren-Nayar (1994)
- Ashikhmin-Shirley (2000) \bullet
- Normalized Blinn-Phong (2008) \bullet

Legend to the following equations

- \cdot \vec{N} . \vec{T} , \vec{B} are surface normal, tangent, and bitangent
- $\overline{\mathcal{L}}$ is direction to the light, \overrightarrow{V} is direction to the viewer
- \overrightarrow{H} is half-vector, vector between the light and the viewer
- All dot products are non-negative, e.g.: max $(0,\vec{N}\cdot\vec{L})$ \bullet
- All vectors are normalized
- All results must be multiplied by light's intensity and color \bullet
- $\emph{Fresnel}(\vec{V}\cdot\vec{H})=\emph{F}_0+(1-\emph{F}_0)(1-\vec{V}\cdot\vec{H})^5$
- Useful for most surfaces, metals,
- All microfacets are perfect mirrors \bullet
- Single parameter *m* (roughness), usually in range (0, 1)

Cook-Torrance cont.

Diffuse: \circ

$$
I_{diff} = Color_{diff} \cdot (\vec{N} \cdot \vec{L})
$$

Specular:

$$
I_{\textit{spe}} = \frac{F \cdot G \cdot D}{4 \cdot (\vec{N} \cdot \vec{V})}
$$

where

$$
\blacktriangleright \text{ Fresnel } F = \text{Fresnel}(\vec{V} \cdot \vec{H})
$$

- ► Geom. atten. $G = min(1, \frac{2 \cdot (\vec{N} \cdot \vec{H}) \cdot (\vec{N} \cdot \vec{V})}{\sqrt{V} \cdot \vec{H}})$ $\frac{(\vec{H})\cdot(\vec{N}\cdot\vec{V})}{(\vec{V}\cdot\vec{H})}, \frac{2\cdot(\vec{N}\cdot\vec{H})\cdot(\vec{N}\cdot\vec{L})}{(\vec{V}\cdot\vec{H})}$ $\frac{\overline{(v \cdot H)^{(N \cdot L)}}}{\overline{(\vec{V} \cdot \vec{H})}}$
- Beckmann distribution $D = \frac{e}{a}$ $\frac{(\vec{N}\cdot\vec{H})^2 - 1}{m^2\cdot(\vec{N}\cdot\vec{H})^2}$ *m*2·(*N*~ ·*H*~) 4
- \blacktriangleright (*m* is roughness of the material)
- Diffuse is energy-conserving, specular is energy-conserving, but not together

Oren-Nayar

- For non-shiny objects like concrete, flowerpots, bricks, Moon
- All microfacets are Lambertian (diffuse) surfaces
- No specular highlights \bullet
- Retroreflections at boundaries
- Single parameter *m* (roughness)

Oren-Nayar cont.

Diffuse: ۵

$$
I_{\text{diff}} = \text{Color}_{\text{diff}} \cdot (\vec{N} \cdot \vec{L}) \cdot (A + B \cdot \max(0, \cos(\phi)) \cdot C)
$$

where

 \blacktriangleright $\theta_i = \arccos(\vec{N} \cdot \vec{L})$ \blacktriangleright θ_o = arccos($\vec{N} \cdot \vec{V}$) $\blacktriangleright \ \alpha = \max(\theta_i, \theta_o)$ \blacktriangleright $\beta = min(\theta_i, \theta_o)$ ► $\cos(\phi) = norm\left(\vec{V} - \vec{N}\cdot(\vec{V}\cdot\vec{N})\right) \cdot norm\left(\vec{L} - \vec{N}\cdot(\vec{L}\cdot\vec{N})\right)$ \blacktriangleright *A* = 1.0 − 0.5 · $\frac{m^2}{m^2+0}$ *m*2+0.57 \blacktriangleright *B* = 0.45 · $\frac{m^2}{m^2+0}$ *m*2+0.09 \blacktriangleright $C = \sin(\alpha) \cdot \tan(\beta)$

Diffuse is energy-conserving \bullet

Ashikhmin-Shirley

- For brushed objects (metal) with anisotropic reflections
- All microfacets are perfect mirrors \bullet
- \bullet Two parameters *shin_T*, *shin*_B: shininess exponents in tangent and bitangent directions, usually greater than 1

Ashikhmin-Shirley cont.

Diffuse (not energy-conserving with specular):

$$
I_{diff} = Color_{diff} \cdot (\vec{N} \cdot \vec{L})
$$

• or diffuse (energy-conserving with specular):

$$
I_{diff} = Color_{diff} \cdot (\vec{N} \cdot \vec{L})
$$

$$
\cdot \frac{28}{23} (1 - F_0) \left(1 - \left(1 - \frac{(\vec{N} \cdot \vec{L})}{2} \right)^5 \right) \left(1 - \left(1 - \frac{(\vec{N} \cdot \vec{V})}{2} \right)^5 \right)
$$

where

► F₀ is Fresnel reflection at 0°

Specular:

$$
I_{spe} = Fresnel(\vec{V} \cdot \vec{H}) \cdot (\vec{N} \cdot \vec{L}) \cdot \\
\frac{\sqrt{(shin_{\mathcal{T}} + 1)(shin_{\mathcal{B}} + 1)}}{8} \cdot \frac{(\vec{N} \cdot \vec{H})^{\frac{shin_{\mathcal{T}} \cdot (\vec{T} \cdot \vec{H})^2 + shin_{\mathcal{T}} \cdot (\vec{B} \cdot \vec{H})^2}{1 - (\vec{N} \cdot \vec{H})^2}}}{(\vec{V} \cdot \vec{H}) \cdot \max((\vec{N} \cdot \vec{L}), (\vec{N} \cdot \vec{V}))}
$$

Normalized Blinn-Phong

- Improvement of the original Blinn-Phong (1977) \bullet
- Specular is energy conserving, without creating or losing energy
- Diffuse is the same Ò.

$$
I_{diff} = Color_{diff} \cdot (\vec{N} \cdot \vec{L})
$$

• Original specular

$$
I_{spe} = (\vec{N} \cdot \vec{L}) \cdot Color_{spe} \cdot (\vec{N} \cdot \vec{H})^{shin}
$$

Normalized specular \bullet

$$
I_{spe} = (\vec{N} \cdot \vec{L}) \cdot Color_{spe} \cdot \frac{shin + 8}{8} (\vec{N} \cdot \vec{H})^{shin}
$$

where *shin* is shininess exponent

PV227 – GPU Rendering (FI MUNI) [Lesson 10 – PBR, Microfacets](#page-0-0) 28. 11. 2018 27 / 34

Normalized Blinn-Phong cont.

Original Blinn-Phong, *Colorspe* = 120/255 \bullet

shin = 25 *shin* = 50 *shin* = 75 *shin* = 100 Normalized Blinn-Phong, *Colorspe* = 32/255

shin = 25 *shin* = 50 *shin* = 75 *shin* = 100

Task 1: Implement Normalized Blinn-Phong

- ► Fragment shader *BlinnPhongNormalized fragment.glsl*
- \blacktriangleright Parameters in variables:
	- ^F *Colordiff* in *material_diffuse*
	- ^F *Colorspe* in *material_specular*
	- ^F *shin* in *material_shininess*
- \triangleright Compare with the original Blinn-Phong

- **Task 2:** Implement Cook-Torrance
	- ^I Fragment shader *CookTorrance_fragment.glsl*
	- \blacktriangleright Parameters in variables:
		- ^F *Colordiff* in *material_diffuse*
		- \star F_0 in *material fresnel*
		- ^F *m* in *material_roughness*
	- \triangleright Notice the highlight when looking from near surface angles
	- \triangleright Comparative with Blinn-Phong. To get approx. the same result:
		- \star Set Specular color and Fresnel color to the same value

★ Set roughness =
$$
\sqrt{\frac{2}{2+shininess}}
$$

- **Task 3:** Implement Oren-Nayar
	- ^I Fragment shader *OrenNayar_fragment.glsl*
	- \blacktriangleright Parameters in variables:
		- ^F *Colordiff* in *material_diffuse*
		- ^F *m* in *material_roughness*
	- ► Set *roughness* to 0.5 and compare with Blinn-Phong with black *specular*

Task 4: Implement Ashikhmin-Shirley

- ► Fragment shader AshikhminShirley fragment.glsl
- \blacktriangleright Parameters in variables:
	- ^F *Colordiff* in *material_diffuse*
	- \star F_0 in *material fresnel*
	- ^F *shin^T* in *material_shininess_tangent*
	- ^F *shin^B* in *material_shininess_bitangent*
- \blacktriangleright Test on cylinder or teapot, set different shininess in tangent and bitangent directions (e.g. 20 and 500)
- \blacktriangleright When using simple computation for diffuse color, and setting shininess to the same values, the result should be compatible with Blinn-Phong.

Further reading

SIGGRAPH cources on PBR:

- \blacktriangleright [http://renderwonk.com/publications/](http://renderwonk.com/publications/s2010-shading-course/) [s2010-shading-course/](http://renderwonk.com/publications/s2010-shading-course/)
- ▶ [http://blog.selfshadow.com/publications/](http://blog.selfshadow.com/publications/s2012-shading-course/) [s2012-shading-course/](http://blog.selfshadow.com/publications/s2012-shading-course/)
- \blacktriangleright [http://blog.selfshadow.com/publications/](http://blog.selfshadow.com/publications/s2013-shading-course/) [s2013-shading-course/](http://blog.selfshadow.com/publications/s2013-shading-course/)
- ^I [http://blog.selfshadow.com/publications/](http://blog.selfshadow.com/publications/s2014-shading-course/) [s2014-shading-course/](http://blog.selfshadow.com/publications/s2014-shading-course/)
- ▶ [http://blog.selfshadow.com/publications/](http://blog.selfshadow.com/publications/s2015-shading-course/) [s2015-shading-course/](http://blog.selfshadow.com/publications/s2015-shading-course/)
- ▶ [http://blog.selfshadow.com/publications/](http://blog.selfshadow.com/publications/s2016-shading-course/) [s2016-shading-course/](http://blog.selfshadow.com/publications/s2016-shading-course/)
- Cook, R., Torrance, K.: *A Reflectance Model for Computer Graphics*
- Oren, M., Nayar, S.: *Generalization of Lambert's Reflectance Model*
- Ashikhmin, M., Shirley, P.: *An Anisotropic Phong BRDF Model*
- Akenine-Möller, T., et al.: *Real-Time Rendering*
- Pharr, M., et al.: *Physically Based Rendering, From Theory to Practice*