
Lesson 11 – Physically-based rendering
Image-based lighting
PV227 – GPU Rendering

Jiří Chmelík, Jan Čejka
Fakulta informatiky Masarykovy univerzity

5. 12. 2018

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 1 / 29



Physically-based rendering (PBR)

Physically-based rendering: Theory (cont.)
I Light & Lights
I BRDF
I Sensors (cameras, eyes)

Image-based lighting

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 2 / 29



Light – quantities and units

Quantities and units
I Radiant energy
I Radiant flux
I Irradiance
I Intensity
I Radiance

Different equations use different quantities
Convertible between each other

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 3 / 29



Light – quantities and units (cont.)

Radiant energy (Q)
I “Energy of one photon”
I Joule: J

Radiant flux, radiant power (Φ)
I “Energy per second”
I dQ/dt
I Watt: W = J/s
I Great to describe the power of lights like light bulb, area lights, . . .

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 4 / 29



Light – quantities and units (cont.)

Irradiance (E)
I “Flux through area”
I dΦ/dA
I Watt per square meter: W/m2

I Drops with the square of the distance
I Great to describe the power of strong distant lights like the sun

Intensity (I)
I “Flux through a cone of directions”
I dΦ/dω
I Watt per steradian: W/sr
I Does not drop with the distance

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 5 / 29



Light – quantities and units (cont.)

Radiance (L)
I “Flux through a cone of directions from an area” or “Flux through an

area from a cone of directions”
I d2Φ/dAprojdω
I Watt per square meter: W/m2sr
I This is what sensors measure

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 6 / 29



BRDF

Bidirectional Reflectance Distribution Function
Describes the relation between the incoming and outcoming light

f (~l , ~v) =
dLo(~v)

dE(~l)

Surface is illuminated from direction~l with irradiance dE(~l)
It is reflected in various directions
dLo(~v) is the outcoming radiance in direction ~v

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 7 / 29



Properties of BRDF

For non-area lights:

f (~l , ~v) =
Lo(~v)

EL cos(θi)

Energy conservation (for each incoming direction~l :∫
Ω

f (~l , ~v) cos θodωo < 1

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 8 / 29



BRDF – Examples

BRDF of diffuse light:

f (~l , ~v) =
Cdiff

π

Note: this is what we use in shaders:
dif = max(0.0, dot(N, L)) * Cdiff;

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 9 / 29



BRDF – Examples

BRDF in the Cook-Torrance paper

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 10 / 29



BRDF – Examples

BRDF in TriAce (presented at SIGGRAPH 2010 course)

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 11 / 29



BRDF – Examples

BRDF in Frostbite (presented at SIGGRAPH 2014 course)

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 12 / 29



Sensors

Many small sensors, each measure irradiance (flux through an
area) over time
System of lences and aperatures, which define the cone

I Lences in camera or eye, aperature of a camera, pupil in an eye
I So instead of irradiance, the system measures radiance
I Remember Depth-of-field techniques

The result is the energy
Conversion to the output signal (logarithmic etc.)

I Linear color space (RGB) vs. non-linear spaces (sRGB)
I Remember HDR, gamma correction

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 13 / 29



Image-based lighting

Image-based lighting

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 14 / 29



Image-based lighting

Use the light from a texture
I Environment textures, light probes
I Usually HDR cubemap textures

Evaluate the integral using the BRDF to obtain the final color
I Sampling the directions

F Uniform sampling
F Non-uniform importance sampling

I Precomputation

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 15 / 29



Task: Implement image-based lighting

Based on Real Shading in Unreal Engine 4 (presented at
SIGGRAPH 2013 Course)
With some changes, we use:

I Uniform sampling for diffuse light
I Importance sampling for specular light
I Cook-Torrance based material

F Fresnel as at the previous lecture
F Geometry attenuation as at the previous lecture
F Microfacet distribution is not important (according to the paper)

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 16 / 29



Legend to the following equations

~N, ~T , ~B are surface normal, tangent, and bitangent
~L is direction to the light, ~V is direction to the viewer
~H is half-vector, vector between the light and the viewer

All dot products are non-negative, e.g.: max(0, ~N · ~L)
I For better result, clamp them to be non-zero, e.g. not less than

0.001, to avoid divisions by zero

All vectors are normalized
Fresnel(~V · ~H) = F0 + (1− F0)(1− ~V · ~H)5

Geom. atten. G = min(1, 2·(~N·~H)·(~N·~V )

(~V ·~H)
, 2·(~N·~H)·(~N·~L)

(~V ·~H)
)

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 17 / 29



Uniform sampling for diffuse lighting

Output: Random direction ~r on a hemisphere (in the direction of z)
Input: Two random numbers R.x and R.y , uniformly distributed in

(0,1)
begin

φ← 2π · R.x
cos(θ)← R.y
sin(θ)←

√
1− cos2(θ)

~r .x ← sin(θ) cos(φ)
~r .y ← sin(θ) sin(φ)
~r .z ← cos(θ)
return ~r

end

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 18 / 29



Computation of diffuse lighting

Output: Diffuse color color
begin

color ← (0,0,0)
forall diffuse samples i do

R.x ,R.y ← i-th pair of random numbers
~r ← random direction from R.x ,R.y
~L← ~r .x · ~T +~r .y · ~B +~r .z · ~N
light ← SampleCubeTexture(~L)/#samples
color ← color + Cdiff · (~N · ~L) · light

end
return color

end

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 19 / 29



Non-uniform importance sampling for specular lighting

Output: Random direction ~r on a hemisphere (in the direction of z)
Input: Two random numbers R.x and R.y , uniformly distributed in

(0,1), roughtness m
begin

φ← 2π · R.x
cos(θ)←

√
1−R.y

1+(m2−1)R.y

sin(θ)←
√

1− cos2(θ)
~r .x ← sin(θ) cos(φ)
~r .y ← sin(θ) sin(φ)
~r .z ← cos(θ)
return ~r

end

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 20 / 29



Computation of specular lighting

Output: Specular color color
begin

color ← (0,0,0)
forall specular samples i do

R.x ,R.y ← another i-th pair of random numbers
~r ← random direction from R.x ,R.y
~H ← ~r .x · ~T +~r .y · ~B +~r .z · ~N
~L← reflect(−~V , ~H)

light ← SampleCubeTexture(~L)/#samples
F ← Fresnel(. . .)
G← GeometricAttenuation(. . .)

color ← color + F ·G · (~V · ~H)/((~N · ~H) · (~N · ~V )) · light
end
return color

end

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 21 / 29



Task: Test scene

Test scene

Materials: red/green/blue plastics, iron, copper, gold, alluminium,
silver
Roughness: 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 22 / 29



Task: IBL with diffuse lighting

Task 1: Implement diffuse lighting
I Fragment shader object_fragment.glsl
I Try higher number of samples
I Try sampling higher mipmap-levels of cube map texture

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 23 / 29



Task: IBL with diffuse lighting

Result, metals have zero diffuse light

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 24 / 29



Task: IBL with specular lighting

Task 2: Implement specular lighting
I Try higher number of samples
I Try sampling higher mipmap-levels of cube map texture
I Try using a mask texture to change the roughness

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 25 / 29



Task: IBL with specular lighting

Result, with masked roughness

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 26 / 29



Task: Layered material

Task 3: Create a thin shiny layer
I The layer is completely transparent (except for the perfect

reflection)
I Set its base Fresnel reflectance to 0.04 (it is a dielectric material)
I Try using a mask texture to create parts of semitransparent white

areas.

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 27 / 29



Task: Layered material

Result, with masked semitransparent areas

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 28 / 29



Things we used

Depth-prepass
I Some graphic cards reorder evaluation of fragment shaders and

evaluation of the depth test (when safe)
F Depth test is first, skipping FS when the fragment is hidden

I Sometimes, it is benefical to render the whole scene very simply
into depth buffer first, and then into the color buffer

F Each fragment is evaluated only once
F Rendering the objects from the closest also helps

Early depth tests
I Fragment shader: layout (early_fragment_tests) in;
I Forces the above behaviour
I Stencil test is also performed before running the fragment shader
I Do not use this when you change the fragment depth or when you

discard the fragment

PV227 – GPU Rendering (FI MUNI) Lesson 11 – PBR, IBL 5. 12. 2018 29 / 29


