Redux

“... predictable state container for JavaScript apps.” -- Redux docs

Zuzana Dankovcikova

http://redux.js.org/

Why do we need Redux?

We have already solved many problems of state management by
* treating data as immutable objects and

* having most of the data stored in the root component.

Problem 1: What is “root component”

New feature request:

- Displaying number of TODOs in the
navigation bar?

= “Unrelated” components dependent
on the same data.

—> Lifting state up. But until when? How
to make it scalable?

Todo app

1.

2

3

4

5.

IMake a coffee

Drink it

Code all day

Sleep

Repeat

Buy milk...

https://facebook.github.io/react/docs/lifting-state-up.html

Problem 2: Callbacks chain

Click./

Todo app —
1. Make a coffee Cancel

2. Drink it x

Todoltem
3. Code all day x
Buy milk_.. Add \

v <TodoApp>
v <div className="centainer”:
v cdiv classMame="row": TOdO|temE
P cdiv classMame="col-sm-12"»_ </ /div> dlt
v <div classMame="col-sm-12 col-md-&">
v <TodoList»
v «div classMame="tode-1ist">
v <TodoItem key="8" Index={1}»
¥ <div key="1" className="todo-1list_ item">»
P <div className="todo-1list item-index"»_</div>
v <ItemEdit>
v <form classMame="todo-1ist item-editing"»
<input value="Make a coffee" classMame="form-control”:»</input>
<button type="submit® className="btn btn-primary">Save</button>
<button type="button® className="btn btn-default"»Cancel</button:
«fform»
</ItemEdit>

Problem 2 Callbacks chain

render ()

{

(

<Todolist

list={ .

editedItemId={
createNewFormVisible={
isDragging={ 2
onDelete={ ._deleteItem}

onExpand={ ._startEditing}
onCancel={ ._cancelEditing}
onSave={ ._updateItem}
onReorder={ ._moveItem}

onCreateNewClick={ _showCreateNewForm}
onCreateCancel={ _hideCreateNewForm}
onCreate={ ._createNewItem}
onDragStarted={ _itemDragStarted}
onDragEnded={ _itemDragEnded}

TodoltemE
dit

Todoltem

WITHOUT REDUX WITH REDUX

-

s - b A
t STORE

‘h_ﬂ

\

\

(© COMPONENT INITIATING CHANGE

Motivation

Complex state management made easy

 Scalable state management

- Deterministic and easily traceable changes

- State is decoupled from presentation (won't break with every Ul change)
+ Better dev tools than console.log()

+ Better testability

3 Principles of Redux

Single source of truth:
"The whole state of your app is stored in an object tree inside a single store."

State is read-only:
"The only way to change the state tree is to emit an action, an object describing what happened.”

Changes are made with pure functions:
“To specify how the actions transform the state tree, you write pure reducers."

Building blocks

Action
 describes Ul changes

| AP

Store
* receives action via dispatcher
* calls root reducer

Actions

Reducer
* (prevState, action) => newsState

View
 gets notified about state change
 re-renders with new data

A

9J01S

Actions & Action creators

“Actions are payloads of information that send data from your application to your store. They
are the only source of information for the store”

A new developer can go through all defined actions and immediately see the entire API — all the
user interactions that are possible in your app.

Action - simple JS objects describing data change Action creator - helper function for creating actions

createltem = (text) => ({
: TODO APP ITEM CREATE

{

: uuid()
. text

Reducers

Action describes WHAT has happened, reducer specifies HOW the state should change

* 1 root reducer that can be composed from many others
* Pure function (prevState, action) => nextState

What is a pure function? (args) => result

* It does not make outside network or database calls.

* Its return value depends solely on the values of its parameters.

* Its arguments should be considered "immutable” (must not be changed)

* Calling a pure function with the same set of arguments will always return the same value.

Pure or impure?

getMagicNumber = => Math.random ()

Date () .toLocaleTimeString ()

addFive = (val) => wval +

count =

increaseCount = (val) => count += wval

Red ucers DISPATCH

{current state}
{action)

Previous state argument

* Specify default value

* Return same reference
for irrelevant action type

REDUCER

counter (state
(action.)

state +
state -

state

{

NEW STATE
Fi

-
hh---

STORE

action) {

-

m redux-02-reducers

Reducer composition

ACTION ACTION

oY (\ 0
A" LY gD

@L @ @
/\ /\

/\

Store

Single store for whole app managed by Redux (we only provide a root reducer)

* Holds application state;

« Allows access to state via getState();

+ Allows state to be updated via dispatch(action);

* Registers listeners via subscribe(listener);

* Handles unregistering of listeners via the function returned by subscribe(listener).

-- Redux docs

http://redux.js.org/docs/basics/Store.html

m redux-03-install-redux

Minimalistic API

* createStore(rootReducer)
* store.getState()

* store.dispatch(action)

* store.subscribe(listener)

* combineReducers({...})

* What is the store lifecycle?
= initial call to reducer + call on every dispatched action

Moving state to the Redux store

GOAL: No internal state in TodoApp.jsx

? How do we inject state to TodoApp component?
? How do we subscribe to changes?

m redux-04-install-react-redux

React-redux integration

You can connect your existing app to the store by hand.

But you would loose many optimizations react-redux package
brings.

Use react-redux library instead:

1. Wrap your root component in <Provider>
2. Connect components to redux store

* connect(mapStateToProps, mapDispatchToProps)(Component)

https://github.com/reactjs/react-redux/blob/master/docs/api.md

m redux-05-eidtedltemId-reducer

Should all components be stateless?

“How much” state should we move to the redux store?

Does your state influence more components in your application?
— (and the common parent is way up in the hierarchy)

— move state to redux store

— TodoApp.jsx - rendering number of items in navbar

— TodoItem.jsx - if you want just one item to be editable at a time

Is the state well encapsulated and local for the component?
—> It can stay in the stateful component.
— TodoItemEdit.jsx - temporary value of the input field

"- Kentico

What about our props explosion?

<TodolList <Todolist
list={ . . list={
editedItemId={ . . editedItemId={
createNewFormVisible={ . . createNewFormVisible={
isDragging={ 2 . isDragging={
onDelete={ ._deleteltem} onDelete={
onExpand={ ._startEditing} onExpand={
onCancel={ ._cancelEditing} onCancel={
onSave={ ._updateItem} onSave={
onReorder={ ._moveItem} onReorder={
onCreateNewClick={ ._showCreateNewForm}a onCreateNewClick={
onCreateCancel={ ._hideCreateNewForm} onCreateCancel={
onCreate={ ._createNewItem} onCreate={
onDragStarted={ ._itemDragStarted} onDragStarted={
onDragEnded={ ._itemDragEnded} onDragEnded={

Performance

Which components are re-rendered when we edit one todo item?
- Whole app is re-rendered

How to fix this?

e . .
-,:: Kentico redux-06-connect-item

Connecting more components

'g Kentico

Connecting more components to store

<TodolList <TodoList
list={ . . list={
editedItemId={ . . editedItemId—{
createNewFormVisible={ . . createNewFormVisible={
isDragging={ . onCreateNewClick={
onDelete={ ._deleteltem} />
onExpand={ ._startEditing}
onCancel={ ._cancelEditing}
onSave={ ._updateItem}
onReorder={ ._moveItem}
onCreateNewClick={ ._showCreateNewForm}a
onCreateCancel={ ._hideCreateNewForm}
onCreate={ ._createNewItem}
onDragStarted={ ._itemDragStarted}
onDragEnded~={ ._itemDragEnded}

3 Principles of Redux - recap

Single source of truth:
"The whole state of your app is stored in an object tree inside a single store."

State is read-only:
"The only way to change the state tree is to emit an action, an object describing what happened.”

Changes are made with pure functions:
“To specify how the actions transform the state tree, you write pure reducers."

Benefits

State described as plain object and arrays:

* Inject initial state during server rendering

 Persist to and load from localStorage

« Ul is function of state (state -> Ul -> deterministic behavior)
* Immutability (React performance)

State changes described as plain objects

* Replaying the history (reproducing bugs)

 Pass actions over network in collaborative environments (Google Docs, Trello live updates)
* Implementing undo

* Awesome tooling

State modification as pure functions
 Testability
* Hot reloading

3rd party modules integration (middleware, libs that need to store state...)

Drawbacks

- Boilerplate & Verbosity
-> have a look at Repatch

* "One huge object"
-> pretty much eliminated by reducer composition and ImmutableJS

« "Component state vs Redux store"” dillema
-> see #1287 and: "Do whatever is less awkward."

https://hackernoon.com/repatch-the-simplified-redux-2c4aa5c25fa9
https://github.com/reactjs/redux/issues/1287

Be declarative
Action describes what has happened, reducer decides how to react

editedItemId = (state = action) => { dispatch ({
(action.) { :
TODO LIST ITEM START EDITING:
action.

TODO LIST ITEM CANCEL EDITING:
TODO LIST ITEM UPDATE:
TODO LIST ITEM DELETE:

dispatch ({

})

Task

git clone https://github.com/KenticoAcademy/PV247-2018.git
cd PV247-2018

git checkout -b solution-1 redux-task-1
cd ©05-redux

npm install

npm start

https://github.com/KenticoAcademy/PV247-2018.git

Task

1. Implement removeTodo action
a) Action type
b) Action creator
¢) Handling in reducer
d) Connect Todoltem
2. Implement # of todos in the navigation

a) Component capable of rendering number
b) Connect component and pass number of todos
¢) Render container component in app menu
3. [Bonus] Make sure only one item at a time can be editable

a) You need to store editedItemld in store (todoApp)

Redux vol 2. - advanced stuff

* Normalization, memorization, selectors...
* Optimizing performance

* Async action - communicating with API

* How to cleverly structure your state

