
Lecture 8

Petr Svirák

Routing in general

HTTP
• Plain ASCII text (messages) sent between a client and a server

• initiated by client (browser) – request

• provides server data – response

POST /form.html HTTP/1.1
Host: localhost:3000

{ "email": "abc@mno.xyz"}

HTTP/1.1 200 OK
Connection: keep-alive
Content-length: 23
Content-type: application/json;
charset=utf-8
Date: Wed, 24 Oct 2018 20:15:46 GMT
etag →W/"17-Z51rgDtEQ9F6PHZZ4zRl8FfQaL8“

{ "id": “123", "email": "abc@mno.xyz" }

URI
• Unique Resource Identifier

• URI and URL often used interchangeably, URN almost unused

• URL breakdown:

userinfo host port
┌─┴─────┐┌────┴────────┐┌┴─┐

https://john.doe@www.example.com:123/forum/questions/?tag=networking&order=newest#top
└─┬─┘└────────┬────────────────────┘└─┬─────────────┘└──┬───────────────────────┘└┬─┘
scheme authority path query fragment

Server-side Routing
• Default routing available

• Causes complete page refresh

• SEO friendly

• Scheme –> protocol

• Host –> DNS

• Port, Path –> server

• Path, Query –> server-side application

• Query, Fragment –> client-side application (JS or browser (anchors))

https://www.example.com:123/forum/questions/?tag=networking&order=newest#top
└─┬─┘└───────┬────────┘└┬─┘└──────┬────────┘└──────────┬───────────────┘└┬─┘
scheme host port path query fragment

Client-side Routing (before HTML5)
• Limited by API (query was „readonly“)

• Fragments are not sent to server

• Some browsers hide query and/or fragments (suboptimal for URL slugs)

• SEO unfriendly (fragments are ignored, parameters in query must often be explicitly listed)

• Scheme –> protocol

• Host –> DNS

• Port, Path –> server

• Path, Query –> server-side application

• Query, Fragment –> client-side application (JS or browser (anchors))

Tag: router-02-fragmets-manually

https://www.example.com:123/forum/questions/?tag=networking&order=newest#top
└─┬─┘└───────┬────────┘└┬─┘└──────┬────────┘└──────────┬───────────────┘└┬─┘
scheme host port path query fragment

https://github.com/KenticoAcademy/PV247-2018/tree/router-02-fragmets-manually

Client-side Routing (after HTML5)
• HTML5 added history.pushState, history.replaceState and the onpopstate event

• (almost) as SEO friendly as server-side routing

• Social networks often require a server-side middleware to get meta-tags right

• Server needs to serve or redirect to client‘s code (SPA) from unknown routes

• Scheme –> protocol

• Host –> DNS

• Port, Path –> server

• Path, Query –> client-side application (JS)

• Fragments –> client-side application (mostly browser (anchors))

Tag: router-03-path-manually

https://www.example.com:123/forum/questions/?tag=networking&order=newest#top
└─┬─┘└───────┬────────┘└┬─┘└──────┬────────┘└──────────┬───────────────┘└┬─┘
scheme host port path query fragment

https://github.com/KenticoAcademy/PV247-2018/tree/router-03-path-manually

React router

Routers
• Wrapper component around the app (similar to react-redux’s <Provider>

• What type of routes is used

• StaticRouter –> server-side rendering and static routing
https://www.fencyDomain.rip/some-custom-routes/here/and/there

• HashRouter –> client-side routing that only uses fragment part of URL

https://www.fencyDomain.rip/#some-custom-routes/here/and%23there

• BrowserRouter –> leverages HTML5’s history API to work URL in browser

https://www.fencyDomain.rip/some-custom-routes/here/and#there

• NativeRouter –> react-native routing (in mobile apps)

• MemoryRouter –> stores URL in memory only (test, apps lacking adress bar)

https://github.com/KenticoAcademy/PV247-2018/tree/router-04-react-router

Link components
• anchors (<a/>) –> <Link /> components

• prevent roundtrip to the server

• props

• to – relative path that always begin at application root level (“/”)

• replace – instead of add up to (browser’s) history, clicking link just replaces last record

• NavLink extends link by allowing special style/class to be added when link matches location

• Cannot be used with Bootstrap since activity of a navigation link is not set at anchor tag level

Static routing
• Routes are defined at one place and prior application start
• Similar to (and typical for) server-side applications

• Rails, Express, Ember, Angular, MVC
• react-router v3 and earlier

• Since routes form a (static) hierarchy, component design bends to the very same pattern
• Components need to know they are routed (must render children)
• Route components are not true components

• only other Route children are allowed and they never render themselves

<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="about" component={About} />
<Route path="inbox" component={Inbox}>

<Route path=“messages" component={Messages} />
<Route path=“settings" component={Settings} />

</Route>
<Route component={Profile}>

<Route path=“picture" component={Picture} />
</Route>

</Route>

https://www.fencyDomain.rip/

Static routing example

<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="about" component={About} />
<Route path="inbox" component={Inbox}>
<Route path=“messages" component={Messages} />
<Route path=“settings" component={Settings} />

</Route>
<Route component={Profile}>
<Route path=“picture" component={Picture} />

</Route>
</Route>

<App>
<Home />

</App>

https://www.fencyDomain.rip/about

Static routing example

<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="about" component={About} />
<Route path="inbox" component={Inbox}>
<Route path=“messages" component={Messages} />
<Route path=“settings" component={Settings} />

</Route>
<Route component={Profile}>
<Route path=“picture" component={Picture} />

</Route>
</Route>

<App>
<About />

</App>

https://www.fencyDomain.rip/picture

Static routing example

<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="about" component={About} />
<Route path="inbox" component={Inbox}>
<Route path=“messages" component={Messages} />
<Route path=“settings" component={Settings} />

</Route>
<Route component={Profile}>
<Route path=“picture" component={Picture} />

</Route>
</Route>

<App>
<Profile>
<Picture />

</Profile>
</App>

https://www.fencyDomain.rip/inbox/messages
vs.

https://www.fencyDomain.rip/inbox/settings

Static routing example

<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="about" component={About} />
<Route path="inbox" component={Inbox}>
<Route path=“messages" component={Messages} />
<Route path=“settings" component={Settings} />

</Route>
<Route component={Profile}>
<Route path=“picture" component={Picture} />

</Route>
</Route>

<App>
<Inbox>
<Messages />

</Inbox>
</App>

<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="about" component={About} />
<Route path="inbox" component={Inbox}>
<Route path=“messages" component={Messages} />
<Route path=“settings" component={Settings} />

</Route>
<Route component={Profile}>
<Route path=“picture" component={Picture} />

</Route>
</Route>

<App>
<Inbox>
<Settings />

</Inbox>
</App>

Dynamic routing
• Starting with react-router v4

• Route evaluates during render phase (on the fly)

• when route matches, specified component is rendered

• when route does not match, null is rendered

• Declarativity supports versatility

• Responsive routing (in combination with media query)

• Conditional routing (based on user data – e.g. permission, time-bound, ...)

• Headings on page as sub-routes

• Recursive routing

• Allows inclusive routing where multiple (sub)routes get matched to single path

Route component
• Props

• path – string that has to match with current location (URL)

might include paramters (e.g. „/thread/:threadId/:selectedCommentId?“)

https://www.npmjs.com/package/path-to-regexp is used for matching

• exact – matches only if location is exactly same as path (stops inclusion)

• render * – invoked only when path matches (match routeProp is never null)

• component * – renders only when path matches (match routeProp is never null)

• children * – renders always (if path does not match, match routeProp is null)

• Rendering method (marked with *) are all provided with set of routeProps that include:

• match – if not null, contains details on matched path

(e.g. Route parameter or whether the match is exact)

• location&history – https://reacttraining.com/react-router/web/api/history/history-is-mutable

Tag: router-05-basic-routing

https://www.npmjs.com/package/path-to-regexp
https://github.com/KenticoAcademy/PV247-2018/tree/router-05-basic-routing

Inclusive rendering

• Inclusive (by default) –> any match renders, including “subpaths”

• Example: for “/api/call/maybe-not” renders:

Tag: router-06-inclusive-routing

<div>
<Route path="/" component={() => <h1>Home</h1>} />
<Route path="/api" component={() => <h2>Api</h2>} />
<Route path="/api/call" component={() => <h3>Call</h3>} />
<Route path="/api/call/:number" component={({match}) => <h4>{match.params.number}</h4>} />

</div>

<div>
<h1>Home</h1>
<h2>Api</h2>
<h3>Call</h3>
<h4>maybe-not</h4>

</div>

https://github.com/KenticoAcademy/PV247-2018/tree/router-06-inclusive-routing

Exclusive rendering

• Exclusive within Switch – only first match renders

• Example: for “/api/call/me-maybe” renders:

• Example: for “/api/call/me-maybe”, if all routes were exact, renders:

Tag: router-07-exclusive-routing

<Switch>
<Route path="/" component={() => <h1>Home</h1>} />
<Route path="/api" component={() => <h2>Api</h2>} />
<Route path="/api/call" component={() => <h3>Call</h3>} />
<Route path="/api/call/:number" component={({match}) => <h4>{match.params.number}</h4>} />

</Switch>

<h1>Home</h1>

<h4>me-maybe</h4>

https://github.com/KenticoAcademy/PV247-2018/tree/router-07-exclusive-routing

Parameters

(short demo)

Tag: router-08-redirect-parameters-declarative-routing

https://github.com/KenticoAcademy/PV247-2018/tree/router-08-redirect-parameters-declarative-routing

Recursive routes

(short demo)

Tag: router-09-recusrive-routing

https://github.com/KenticoAcademy/PV247-2018/tree/router-09-recusrive-routing

Redirect component
• Props

• to – where should be location redirected (equivalent of Link’s to)

• push – if true, redirect add new history entry (opposite of Link’s replace)

• from – has to match with current location for redirect to trigger (equivalent of Route’s path)

• exact – equivalent of Route’s exact

• Can be used with e.g. access-controlled resources or responsive routing

• Can pass parameters from one route to another

Tag: router-08-redirect-parameters-declarative-routing

https://github.com/KenticoAcademy/PV247-2018/tree/router-08-redirect-parameters-declarative-routing

withRouter & redux
• withRouter is equivalent of using a component in a route:

<Route component={Component} />

• Every change in URL causes re-render of the component

• The connect result wrapped in withRouter effectively adds RouteComponentProps to

wrapped each container.

• But unless the history gets explicitly passed to a (thunk) action, actions cannot result in redirect

• Also, replaying actions does not take effect on routing thus is easily becomes useless

• https://github.com/supasate/connected-react-router to the rescue

Tags: router-12-withRouter & router-13-with-redux

https://github.com/supasate/connected-react-router
https://github.com/KenticoAcademy/PV247-2018/tree/router-12-withRouter
https://github.com/KenticoAcademy/PV247-2018/tree/router-13-with-redux

Excercise
• Open Lecture8 folder in IDE
• Install packages (npm install --no-optional) & Start app (npm run start)

• Task 1
• Assignment tag: router-task-1
• Solution tag: router-solution-1
• Show the "NotFound" component anytime an unknown route is matched in Content component

• Task 2
• Assignment tag: router-task-2
• Solution tag: router-solution-2
• Allow only authenticated users to access Profile component.

• Anonymous users should be redirected to /Auth route.

• Use authenticationStore.isAuthenticated to determine when user is authorized

• Use Docs: https://reacttraining.com/react-router/web/guides/quick-start
• Attend to all TODOs in the code (there are 4 places requiring your attention)

https://github.com/KenticoAcademy/PV247-2018/tree/router-task-1
https://github.com/KenticoAcademy/PV247-2018/tree/router-solution-2
https://github.com/KenticoAcademy/PV247-2018/tree/router-task-2
https://github.com/KenticoAcademy/PV247-2018/tree/router-solution-2
https://reacttraining.com/react-router/web/guides/quick-start

Other sources
• Demo notes

• Code examples

• Tag: router-10-breadcrumb

• Tag: router-14-without-unnecessary-rerenders

• Tag: router-15-all-examples-enabled

• Read through official documentation:

• https://reacttraining.com/react-router/web/guides/philosophy

• https://reacttraining.com/react-router/web/guides/quick-start

• https://reacttraining.com/react-router/web/example/preventing-transitions

• https://reacttraining.com/react-router/web/example/auth-workflow

https://github.com/KenticoAcademy/PV247-2018/tree/router-10-breadcrumb
https://github.com/KenticoAcademy/PV247-2018/tree/router-14-without-unnecessary-rerenders
https://github.com/KenticoAcademy/PV247-2018/tree/router-15-all-examples-enabled
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/example/preventing-transitions
https://reacttraining.com/react-router/web/example/auth-workflow

