Lecture 8

Petr Svirak

Routing in general

HTTP

 Plain ASCII text (messages) sent between a client and a server

 initiated by client (browser) — request

* provides server data — response

URI

Unique Resource Identifier
URI and URL often used interchangeably, URN almost unused

URL breakdown:

Server-side Routing

« Default routing available
« Causes complete page refresh
« SEO friendly

https://www.example.com

I_l__J L __l____J
scheme host fragment

Port, Path —> server
Path, Query —> server-side application
Query, Fragment —> client-side application (JS or browser (anchors))

router-02-fragmets-manually

Client-side Routing (before HTML5)

« Limited by API (query was ,readonly”)

« Fragments are not sent to server

« Some browsers hide query and/or fragments (suboptimal for URL slugs)

« SEO unfriendly (fragments are ignored, parameters in query must often be explicitly listed)

https://www.example.com:123/forum/questions/

I_l__J L __T_____J I_I_I L_—I' |

scheme host port path

Port, Path —> server
Path, Query —> server-side application
Query, Fragment —> client-side application (JS or browser (anchors))

https://github.com/KenticoAcademy/PV247-2018/tree/router-02-fragmets-manually

m router-03-path-manually

Client-side Routing (after HTML5)

« HTML5 added history.pushState, history.replaceState and the onpopstate event
* (almost) as SEO friendly as server-side routing

« Social networks often require a server-side middleware to get meta-tags right
« Server needs to serve or redirect to client's code (SPA) from unknown routes

https://www.example.com:123

I_l__J L

scheme

Port, Path —> server
Path, Query —> client-side application (JS)
Fragments —> client-side application (mostly browser (anchors))

https://github.com/KenticoAcademy/PV247-2018/tree/router-03-path-manually

React router

m https://github.com/KenticoAcademy/PV247-2018/tree/router-04-react-router

Routers

* Wrapper component around the app (similar to react-redux’s <Provider>
« What type of routes is used

- StaticRouter —> server-side rendering and static routing
https://www.fencyDomain.rip/some-custom-routes/here/and/there

* HashRouter —> client-side routing that only uses fragment part of URL
https://www.fencyDomain.rip/#some-custom-routes/here/and%23there

- BrowserRouter —> leverages HTML5's history API to work URL in browser
https://www.fencyDomain.rip/some-custom-routes/here/and#there

« NativeRouter —> react-native routing (in mobile apps)
* MemoryRouter —> stores URL in memory only (test, apps lacking adress bar)

Link components

 anchors (<a/>) —> <Link /> components
« prevent roundtrip to the server

° props
° 1o - relative path that always begin at application root level (“/")
°© replace - instead of add up to (browser’s) history, clicking link just replaces last record

» NavLink extends link by allowing special style/class to be added when link matches location
» Cannot be used with Bootstrap since activity of a navigation link is not set at anchor tag level

Routes are defined at one place and prior application start
Similar to (and typical for) server-side applications
Rails, Express, Ember, Angular, MVC
react-router v3 and earlier
Since routes form a (static) hierarchy, component design bends to the very same pattern
Components need to know they are routed (must render children)
Route components are not true components
only other Route children are allowed and they never render themselves

<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="about" component={About} />
<Route path="inbox" component={Inbox}>
<Route path=“messages" component={Messages} />

<Route path=“settings" component={Settings} />
</Route>
<Route component={Profile}>
<Route path=“picture" component={Picture} />
</Route>
</Route>

<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="about" component={About} />
<Route path="inbox" component={Inbox}>
<Route path=“messages" component={Messages} />
<Route path=“settings" component={Settings} />
</Route>
<Route component={Profile}>
<Route path=“picture" component={Picture} />
</Route>
</Route>

<App>
<Home />
</App>

<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="about" component={About} />
<Route path="inbox" component={Inbox}>
<Route path=“messages" component={Messages} />
<Route path=“settings" component={Settings} />
</Route>
<Route component={Profile}>
<Route path=“picture" component={Picture} />
</Route>
</Route>

<App>
<About />
</App>

<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="about" component={About} />
<Route path="inbox" component={Inbox}>
<Route path=“messages" component={Messages} />
<Route path=“settings" component={Settings} />
</Route>
<Route component={Profile}>
<Route path=“picture" component={Picture} />
</Route>
</Route>

<App>
<Profile>
<Picture />
</Profile>
</App>

<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="about" component={About} />
<Route path="inbox" component={Inbox}>
<Route path=“messages"” component={Messages} />
<Route path=“settings"” component={Settings} />
</Route>
<Route component={Profile}>
<Route path=“picture" component={Picture} />
</Route>
</Route>

<Route path="/" component={App}>

<IndexRoute component={Home} />
<Route path="about" component={About} />
<Route path="inbox" component={Inbox}>
<Route path=“messages"” component={Messages} />
<Route path=“settings"” component={Settings} />
</Route>
<Route component={Profile}>
<Route path=“picture" component={Picture} />
</Route>

</Route>

<App>
<Inbox>
<Messages />
</Inbox>

</App>

<App>
<Inbox>
<Settings />
</Inbox>
</App>

Dynamic routing

- Starting with react-router v4
* Route evaluates during render phase (on the fly)

« when route matches, specified component is rendered
* when route does not match, null is rendered
 Declarativity supports versatility
* Responsive routing (in combination with media query)
« Conditional routing (based on user data — e.g. permission, time-bound, ...)
* Headings on page as sub-routes
* Recursive routing
 Allows inclusive routing where multiple (sub)routes get matched to single path

m router-05-basic-routing

Route component

* Props

« path — string that has to match with current location (URL)
might include paramters (e.g. ,/thread/:threadld/:selectedCommentid?”)
https://www.npmjs.com/package/path-to-regexp is used for matching

* exact — matches only if location is exactly same as path (stops inclusion)

* render* — invoked only when path matches (match routeProp is never null)

- component* —renders only when path matches (match routeProp is never null)

* children* — renders always (if path does not match, match routeProp is null)

* Rendering method (marked with *) are all provided with set of routeProps that include:

* match — if not null, contains details on matched path
(e.g. Route parameter or whether the match is exact)
* location&bhistory — https://reacttraining.com/react-router/web/api/history/history-is-mutable

https://www.npmjs.com/package/path-to-regexp
https://github.com/KenticoAcademy/PV247-2018/tree/router-05-basic-routing

‘mem Kentico router-06-inclusive-routing

<div>
<Route path="/" component={() => <hl>Home</h1l>} />
<Route path="/api" component={() => <h2>Api</h2>} />

<Route path="/api/call"” component={() => <h3>Call</h3>} />
<Route path="/api/call/:number" component={({match}) => <h4>{match.params.number}</h4>} />
</div>

Inclusive (by default) —> any match renders, including “subpaths”
Example: for “/api/call/maybe-not” renders:

<div>
<hl>Home</h1>
<h2>Api</h2>

<h3>Call</h3>
<h4>maybe-not</h4>
</div>

https://github.com/KenticoAcademy/PV247-2018/tree/router-06-inclusive-routing

router-07-exclusive-routing

Exclusive rendering

* Exclusive within Switch — only first match renders
« Example: for “/api/call/me-maybe” renders:

« Example: for “/api/call/me-maybe”, if all routes were exact, renders:

https://github.com/KenticoAcademy/PV247-2018/tree/router-07-exclusive-routing

Parameters

(short demo)

Tag: router-08-redirect-parameters-declarative-routing

https://github.com/KenticoAcademy/PV247-2018/tree/router-08-redirect-parameters-declarative-routing

Recursive routes

(short demo)

Tag: router-09-recusrive-routing

https://github.com/KenticoAcademy/PV247-2018/tree/router-09-recusrive-routing

m Tag: router-08-redirect-parameters-declarative-routing

Redirect component

* Props
 to — where should be location redirected (equivalent of Link's to)
* push —if true, redirect add new history entry (opposite of Link's replace)
- from - has to match with current location for redirect to trigger (equivalent of Route’s path)
* exact —equivalent of Route’s exact

* Can be used with e.g. access-controlled resources or responsive routing
« Can pass parameters from one route to another

https://github.com/KenticoAcademy/PV247-2018/tree/router-08-redirect-parameters-declarative-routing

m Tags: router-12-withRouter & router-13-with-redux

withRouter & redux

« withRouter is equivalent of using a component in a route:
<Route component={Component} />

* Every change in URL causes re-render of the component

« The connect result wrapped in withRouter effectively adds RouteComponentProps to
wrapped each container.

« But unless the history gets explicitly passed to a (thunk) action, actions cannot result in redirect
» Also, replaying actions does not take effect on routing thus is easily becomes useless
* https://github.com/supasate/connected-react-router to the rescue

https://github.com/supasate/connected-react-router
https://github.com/KenticoAcademy/PV247-2018/tree/router-12-withRouter
https://github.com/KenticoAcademy/PV247-2018/tree/router-13-with-redux

Excercise

* Open Lecture8 folder in IDE
* Install packages (npm install --no-optional) & Startapp (npm run start)

« Task 1
* Assignment tag: router-task-1
» Solution tag: router-solution-1
* Show the "NotFound" component anytime an unknown route is matched in Content component

« Task 2
* Assignment tag: router-task-2
» Solution tag: router-solution-2

+ Allow only authenticated users to access Profile component.

Anonymous users should be redirected to /Auth route.
Use authenticationStore.isAuthenticated to determine when user is authorized

* Use Docs: https://reacttraining.com/react-router/web/quides/quick-start
» Attend to all TODOs in the code (there are 4 places requiring your attention)

https://github.com/KenticoAcademy/PV247-2018/tree/router-task-1
https://github.com/KenticoAcademy/PV247-2018/tree/router-solution-2
https://github.com/KenticoAcademy/PV247-2018/tree/router-task-2
https://github.com/KenticoAcademy/PV247-2018/tree/router-solution-2
https://reacttraining.com/react-router/web/guides/quick-start

Other sources

* Demo notes

« Code examples
« Tag: router-10-breadcrumb
« Tag: router-14-without-unnecessary-rerenders
« Tag: router-15-all-examples-enabled

+ Read through official documentation:
* https://reacttraining.com/react-router/web/guides/philosophy
» https://reacttraining.com/react-router/web/guides/quick-start
* https://reacttraining.com/react-router/web/example/preventing-transitions
* https://reacttraining.com/react-router/web/example/auth-workflow

https://github.com/KenticoAcademy/PV247-2018/tree/router-10-breadcrumb
https://github.com/KenticoAcademy/PV247-2018/tree/router-14-without-unnecessary-rerenders
https://github.com/KenticoAcademy/PV247-2018/tree/router-15-all-examples-enabled
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/example/preventing-transitions
https://reacttraining.com/react-router/web/example/auth-workflow

