
Recommender Systems
@

Seznam.cz

Ondřej Javornický
Product manager

Matěj Jakimov
Researcher/ML Engineer



What?

● Who?

● Product side

● Engineering and research side

● Questions (after each section)



Why product and engineering side?
● RecSys

○ context is important

○ implementation and infrastructure is important

● bad infrastructure → expensive/impossible experiments 

and analysis

● good engineering→ good research

● engineering + research → ability to do things right

● good product management → ability to do right things



Who?

● Ondřej Javornický
○ In Seznam.cz from 2011
○ 2013 - 2016 responsible for advertising system and ad targeting
○ In 2014 he set up the Recommender Systems Department 

● Matěj Jakimov
○ Completed this course at 2014
○ Research and engineering on recommender systems at 

GaussAlgo → Seznam



Product side















About Seznam.cz
The most visited web on Czech internet
• 35 milions PV / day
• 3,2 milions RU / day
In November 2017, 6.2 million real users visited 
Seznam.cz. That same month, the entire Czech 
internet population was 7.22 RUs.

Eminent Publisher
Daily publish over
• 300 own articles / videos
• 400 external articles







Pre-recommender era
Based on real-time statistic of each article and 
manuali positioning articles on homepage.

• teams of editors
• real-time statistic
• operation 24/7
• manually selecting each article
• manually positioning each article











editor's choice 1st recommender



Our start with recommendation
Performance

• global popularity

Personalization

• hiding of the read content

• field of interest - based on advertisements targeting

editor's choice 1st recommender



Our start with recommendation
Performance

• global popularity

Personalization

• hiding of the read content

• field of interest - based on advertisements targeting

editor's choice 1st recommender

20 % CTR



editor's choice 1st recommender

20 % CTR
Collaborative 

Filtering



editor's choice 1st recommender

20 % CTR
Collaborative 

Filtering

20 % CTR 



editor's choice 1st recommender

20 % CTR
Collaborative 

Filtering

20 % CTR 

20 % CTR 







editor's choice 1st recommender

20 % CTR
Collaborative 

Filtering

20 % CTR 

UX

20 % CTR 



editor's choice 1st recommender

20 % CTR
Collaborative 

Filtering

20 % CTR 

UX

20 % CTR 

Vowpal Wabbit



editor's choice 1st recommender

20 % CTR
Collaborative 

Filtering

20 % CTR 

UX

20 % CTR 

Vowpal Wabbit

8 % CTR 



Evaluation



Evaluation



Evaluation

AB testing



Evaluation

AB testing
● no offline evaluation will tell you what one AB test can



Evaluation

AB testing
● no offline evaluation will tell you what one AB test can
● you have to know what exactly you want to test and 

how you can measure it



Evaluation

AB testing
● no offline evaluation will tell you what one AB test can
● you have to know what exactly you want to test and 

how you can measure it
● at Seznam we run about 10 AB tests on RecSys in 

same moment and 2-3 test of UI



Evaluation

User experience



Evaluation

User experience
● ask users

○ use forms and user testing



Current goals

● cookie → registered user
○ for user identification
○ GDPR

● more interactive elements in UI
○ like / dislike, comment, following…

● new metrics
○ oriented on user satisfaction



Time for questions



Engineering and research



Technical point of view

● Primary problem is not an algorithm, but:
○ System must respond
○ ~1000 req/sec/box
○ ~50ms avg latency (100ms max latency)
○ All components - tens of physical machines - High Availability
○ Data are noisy and big



Our stack

● Python, Docker, Kubernetes, Git, CI/CD, Spark, Scala
○ Ability to quickly develop something is the most important

● MariaDB Galler, Couchbase, Kafka, Elasticsearch, 
Memcache, Swift Object Store

● Monitoring and alerting
○ Prometheus, Grafana, Influxdb

● → Lot of engineering :) 8 developers + 2 researchers + 
admins + many other teams

● Scrum … Constantly under construction



Architecture

● very simplified, ignoring some important subsystems
● forked for each content service (e.g. Novinky, Stream)
● no precomputed recommendations

Item-source 
RSS feed Feedserver Index Contentserver Web

Kafka

Event storage

Model 
trainers

Features 
storage



Time for questions



Architecture

● (almost) everything quickly reconfigurable (AB testable)
● Controlserver - key ingredient

Item-source 
RSS feed Feedserver Index Contentserver Web

Kafka

Event storage

Model 
trainers

Features 
storage



Data collection

● Clean data, get to know your data
○ unittests, integration tests
○ post deployment analysis - do not trust (your) code
○ beware of JavaScripts
○ beware of bots (good, harmless, evil)
○ garbage in-garbage out, misleading measurements



Deployed algorithms

● Matrix Factorization
○ Alternating Least Squares

■ faster than SGD
■ parallelize better

○ Each 10-50 minutes - one run of ALS from scratch -> Couchbase
○ Now - single machine computation

■ 10 min instead of 50 min
■ ~30-100GB RAM, 32 CPU
■ online, more flexible for experiments, need some additional infrastructure



Deployed algorithms

● Not every user have vector
● New items do not have vector

● Cold start
○ Beta distribution - CTR
○ Thompson sampling
○ Explore-exploit dillema
○ Clustering on CF vectors (demo)

● Cold start - logistic regression
○ next slide



● Logistic regression - Vowpal Wabbit

Deployed algorithms



● Logistic regression - Vowpal Wabbit
○ Reranking of top few hundreds of candidates from CF/CTR-clu
○ many signals/features (ML terminology)
○ user ID, item ID, content tags, vector of interests from targeting 

department (~hundreds of categories), estimation of age/sex, item 
IDs user clicked in past … + combinations of those

○ score(u, i) ~ user CTR + item CTR + user-tags CTR + item-age 
CTR + itemH-item CTR + …

○ not enough time to explain in detail
○ intro: Wide & Deep Learning for Recommender Systems
○ for those who know ML:

log features in time of request - add labels later

Deployed algorithms

https://arxiv.org/pdf/1606.07792.pdf


Time for questions



Diversity / callibration

● Intra List Similarity
○ LDA vectors
○ similar articles have similar vector
○ titles + perex from RSS feed
○ content - from fulltext robot department
○ curse of dimensionality

● Most papers
○ for each position p:

■ arg max {relevancy(u, i) - λ*avg(similarity(i, j) for j on position < p)}
○ O(num_positions^2 * num_candidates)
○ infinite feed - no research



Diversity / callibration

● Product view
○ feed is supposed to substitute

missing boxes on HP (originally)
○ → some degree of low diversity

is intended
○ → diversify just in cases if diversity

becomes an issue → ILS treshold
○ simple formula:

score(pos) = 1 / topics_seen(pos) / articles_topic_seen(topic, pos)

○ topics - LDA vectors clusters



Offline evaluation

● always use time-based train-test split
● for regression problems (price prediction)

○ RMSE
● for logistic regression problems (CTR prediction)

○ use LogLoss or RMSE
● for ranking problems

○ use ranking metrics, nDCG, MRR
○ clicks should be high in recommendation list
○ use of RMSE for ranking problem is wrong

■ just multiply score by some constant
■ creators of MovieLens are saying it too



Offline evaluation

● offline results - weak results
● infinite feed and ranking metrics
● strong position bias
● many other biases
● Inverse Propensity Score (multi-armed bandits)

○ promising solution
○ many assumptions, limited usability so far

● Offline evaluation of diversity
○ alpha-nDCG = nonsense in practice
○ nDCG-ILS curve?



Online evaluation
● Long-term effects are hard to measure

○ Too good recommender example
○ Complex feedback loops - research needed (simulations)

● Isolation of variants
○ AB variants are affecting each other through training data
○ FB, Netflix, … - ignoring this issue
○ preparing infrastructure to make experiments possible

(log AB variant for each interaction)
○ evaluation of explore strategies will be possible

■ some portion of randomness is beneficial for algorithms
■ how big portion?

○ simulations - promising area of research



Time for questions



Research aspects in industry
● “To make great products: do machine learning like the 

great engineer you are, not like the great machine 
learning expert you aren’t.” Rules of ML, Google



Research aspects in industry
● Performance vs. simplicity vs. explainability

● Common scenario:
○ researcher suggest new algorithm
○ 3 days of work = 100 lines of code + 1000 lines of code for proof of 

concept (offline evaluation)
○ 6 months of work for 4 developers
○ many thousands of lines of production code, 10 components that 

requires care (monitoring, maintenance)
○ black box for others

● Every nonstationary hyperparameter is problematic
○ never ending story



RecSys research
● RecSys research is not easily portable

○ different use case - different results for same solution
○ many use cases:

■ Spotify/Netflix - millions of songs, week
■ Seznam.cz - 2000 articles, 50ms
■ Booking.com - lot of domain constraints



RecSys research
● Almost no academic work is useful in practice:

○ RMSE do not count, still lot of research based on it
○ item-based CF - Amazon
○ Matrix factorization - Netflix prize (Simon Funk’s blog!)
○ ALS - people from Yahoo
○ Factorization Machines - Kaggle competitions winners

■ Criteo
■ Avazu
■ Outbrain

○ Neural nets, Deep and Wide - Google, Gravity, YouTube
○ Facebook ... - logistic regression
○ Where is academia? … practical field indeed



Last questions



Thanks


