IAoo8: Computational Logic
 1. Propositional Logic

Achim Blumensath
 blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Basic Concepts

Propositional Logic

Syntax

- Variables $A, B, C, \ldots, X, Y, Z, \ldots$
- Operators $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$

Semantics

$$
\mathfrak{J} \vDash \varphi \quad \mathfrak{J}: \text { Variables } \rightarrow\{\text { true }, \text { false }\}
$$

Examples

$$
\begin{aligned}
& \varphi:=A \wedge(A \rightarrow B) \rightarrow B, \\
& \psi:=\neg(A \wedge B) \leftrightarrow(\neg A \vee \neg B) .
\end{aligned}
$$

Terminology

- entailment $\varphi \vDash \psi$
- equivalence $\varphi \equiv \psi$
(do not confuse with $\mathfrak{J} \vDash \varphi!$)
(do not confuse with $\varphi=\psi!$)
- $\varphi \equiv \psi$ iff $\varphi \vDash \psi \quad$ and $\quad \psi \vDash \varphi$

Terminology

- entailment $\varphi \vDash \psi$
- equivalence $\varphi \equiv \psi$
(do not confuse with $\mathfrak{J} \vDash \varphi!$)
(do not confuse with $\varphi=\psi!$)
- $\varphi \equiv \psi \quad$ iff $\quad \varphi \vDash \psi \quad$ and $\quad \psi \vDash \varphi$
- satisfiability $\varphi \not \equiv$ false
- validity $\varphi \equiv$ true
- Every valid formula is satisfiable.
- φ is valid iff $\neg \varphi$ is not satisfiable.
- $\varphi \vDash \psi$ iff $\varphi \rightarrow \psi$ is valid.

Examples

- $A \wedge(A \rightarrow B) \rightarrow B$ is

Terminology

- entailment $\varphi \vDash \psi$
- equivalence $\varphi \equiv \psi$
(do not confuse with $\mathfrak{J} \vDash \varphi!$)
(do not confuse with $\varphi=\psi!$)
- $\varphi \equiv \psi \quad$ iff $\quad \varphi \vDash \psi \quad$ and $\quad \psi \vDash \varphi$
- satisfiability $\varphi \not \equiv$ false
- validity $\varphi \equiv$ true
- Every valid formula is satisfiable.
- φ is valid iff $\neg \varphi$ is not satisfiable.
- $\varphi \vDash \psi$ iff $\varphi \rightarrow \psi$ is valid.

Examples

- $A \wedge(A \rightarrow B) \rightarrow B$ is valid.
- $A \vee B$ is

Terminology

- entailment $\varphi \vDash \psi$
- equivalence $\varphi \equiv \psi$
(do not confuse with $\mathfrak{J} \vDash \varphi!$)
(do not confuse with $\varphi=\psi!$)
- $\varphi \equiv \psi \quad$ iff $\quad \varphi \vDash \psi \quad$ and $\quad \psi \vDash \varphi$
- satisfiability $\varphi \not \equiv$ false
- validity $\varphi \equiv$ true
- Every valid formula is satisfiable.
- φ is valid iff $\neg \varphi$ is not satisfiable.
- $\varphi \vDash \psi$ iff $\varphi \rightarrow \psi$ is valid.

Examples

- $A \wedge(A \rightarrow B) \rightarrow B$ is valid.
- $A \vee B$ is satisfiable but not valid.
- $\neg A \wedge A$ is

Terminology

- entailment $\varphi \vDash \psi$
- equivalence $\varphi \equiv \psi$
(do not confuse with $\mathfrak{J} \vDash \varphi!$)
(do not confuse with $\varphi=\psi!$)
- $\varphi \equiv \psi$ iff $\varphi \vDash \psi$ and $\psi \vDash \varphi$
- satisfiability $\varphi \neq$ false
- validity $\varphi \equiv$ true
- Every valid formula is satisfiable.
- φ is valid iff $\neg \varphi$ is not satisfiable.
- $\varphi \vDash \psi$ iff $\varphi \rightarrow \psi$ is valid.

Examples

- $A \wedge(A \rightarrow B) \rightarrow B$ is valid.
- $A \vee B$ is satisfiable but not valid.
- $\neg A \wedge A$ is not satisfiable.

Equivalence Transformations

De Morgan's laws

$$
\begin{aligned}
& \neg(\varphi \wedge \psi) \equiv \neg \varphi \vee \neg \psi \\
& \neg(\varphi \vee \psi) \equiv \neg \varphi \wedge \neg \psi
\end{aligned}
$$

Equivalence Transformations

De Morgan's laws

$$
\begin{aligned}
& \neg(\varphi \wedge \psi) \equiv \neg \varphi \vee \neg \psi \\
& \neg(\varphi \vee \psi) \equiv \neg \varphi \wedge \neg \psi
\end{aligned}
$$

Distributive laws

$$
\begin{aligned}
& \varphi \wedge(\psi \vee \vartheta) \equiv(\varphi \wedge \psi) \vee(\varphi \wedge \vartheta) \\
& \varphi \vee(\psi \wedge \vartheta) \equiv(\varphi \vee \psi) \wedge(\varphi \vee \vartheta)
\end{aligned}
$$

Normal Forms

Conjunctive Normal Form (CNF)

$$
(A \vee \neg B) \wedge(\neg A \vee C) \wedge(A \vee \neg B \vee \neg C)
$$

Disjunctive Normal Form (DNF)

$$
(A \wedge C) \vee(\neg A \wedge \neg B) \vee(A \wedge \neg B \wedge \neg C)
$$

Clauses

Definitions

- literal A or $\neg A$
- clause set of literals $\{A, B, \neg C\}$ short-hand for disjunction $\quad A \vee B \vee \neg C$

Clauses

Definitions

- literal A or $\neg A$
- clause set of literals $\{A, B, \neg C\}$ short-hand for disjunction $\quad A \vee B \vee \neg C$

Example

CNF $\quad \varphi:=(A \vee \neg B \vee C) \wedge(\neg A \vee C) \wedge B$
clauses $\{A, \neg B, C\},\{\neg A, C\},\{B\}$

Clauses

Definitions

- literal A or $\neg A$
- clause set of literals $\{A, B, \neg C\}$ short-hand for disjunction $\quad A \vee B \vee \neg C$

Example

$$
\begin{array}{cl}
\text { CNF } & \varphi:=(A \vee \neg B \vee C) \wedge(\neg A \vee C) \wedge B \\
\text { clauses } & \{A, \neg B, C\},\{\neg A, C\},\{B\}
\end{array}
$$

Notation

$$
\Phi[L:=\operatorname{true}]:=\{C \backslash\{\neg L\} \mid C \in \Phi, L \notin C\} .
$$

The Satisfiability Problem

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Input: a set of clauses Φ
Output: true if Φ is satisfiable, false otherwise.
DPLL(Φ)
for every singleton $\{L\}$ in $\Phi \quad$ (* simplify Φ^{*})

$$
\Phi:=\Phi[L:=\text { true }]
$$

for every literal L whose negation does not occur in Φ $\Phi:=\Phi[L:=$ true $]$
if Φ contains the empty clause then (* are we done? ${ }^{*}$) return false
if Φ is empty then return true
choose some literal L in Φ
(* try $L:=$ true and $L:=$ false *)
if $\operatorname{DPLL}(\Phi[L:=$ true $])$ then
return true
else
return $\operatorname{DPLL}(\Phi[L:=$ false $])$

Example

$$
\begin{aligned}
\Phi:=\{ & \{A, B, \neg C\},\{\neg B, C, D\},\{\neg A, \neg B, \neg D\},\{B, C, D\}, \\
& \{\neg A, \neg B, \neg C\},\{\neg A, \neg C, \neg D\}\}
\end{aligned}
$$

Step 1: A := true

Example

$$
\begin{aligned}
\Phi:=\{ & \{A, B, \neg C\},\{\neg B, C, D\},\{\neg A, \neg B, \neg D\},\{B, C, D\}, \\
& \{\neg A, \neg B, \neg C\},\{\neg A, \neg C, \neg D\}\}
\end{aligned}
$$

Step 1: A:= true

$$
\{\neg B, C, D\},\{\neg B, \neg D\},\{B, C, D\},\{\neg B, \neg C\},\{\neg C, \neg D\}
$$

Step 2: $B:=$ true

Example

$$
\begin{aligned}
\Phi:=\{ & \{A, B, \neg C\},\{\neg B, C, D\},\{\neg A, \neg B, \neg D\},\{B, C, D\}, \\
& \{\neg A, \neg B, \neg C\},\{\neg A, \neg C, \neg D\}\}
\end{aligned}
$$

Step 1: A:= true

$$
\{\neg B, C, D\},\{\neg B, \neg D\},\{B, C, D\},\{\neg B, \neg C\},\{\neg C, \neg D\}
$$

Step 2: $B:=$ true

$$
\{C, D\},\{\neg D\},\{\neg C\},\{\neg C, \neg D\}
$$

Step 3: $C:=$ false and $D:=$ false

Example

$$
\begin{aligned}
\Phi:=\{ & \{A, B, \neg C\},\{\neg B, C, D\},\{\neg A, \neg B, \neg D\},\{B, C, D\}, \\
& \{\neg A, \neg B, \neg C\},\{\neg A, \neg C, \neg D\}\}
\end{aligned}
$$

Step 1: A:= true

$$
\{\neg B, C, D\},\{\neg B, \neg D\},\{B, C, D\},\{\neg B, \neg C\},\{\neg C, \neg D\}
$$

Step 2: $B:=$ true

$$
\{C, D\},\{\neg D\},\{\neg C\},\{\neg C, \neg D\}
$$

Step 3: $C:=$ false and $D:=$ false

$$
\{D\},\{\neg D\}
$$

Example

$$
\begin{aligned}
\Phi:=\{ & \{A, B, \neg C\},\{\neg B, C, D\},\{\neg A, \neg B, \neg D\},\{B, C, D\}, \\
& \{\neg A, \neg B, \neg C\},\{\neg A, \neg C, \neg D\}\}
\end{aligned}
$$

Step 1: A:= true

$$
\{\neg B, C, D\},\{\neg B, \neg D\},\{B, C, D\},\{\neg B, \neg C\},\{\neg C, \neg D\}
$$

Step 2: $B:=$ true

$$
\{C, D\},\{\neg D\},\{\neg C\},\{\neg C, \neg D\}
$$

Step 3: $C:=$ false and $D:=$ false

$$
\{D\},\{\neg D\}
$$

$\varnothing \quad$ failure

Example

$$
\begin{aligned}
\Phi:=\{ & \{A, B, \neg C\},\{\neg B, C, D\},\{\neg A, \neg B, \neg D\},\{B, C, D\}, \\
& \{\neg A, \neg B, \neg C\},\{\neg A, \neg C, \neg D\}\}
\end{aligned}
$$

Step 1: A := true

$$
\{\neg B, C, D\},\{\neg B, \neg D\},\{B, C, D\},\{\neg B, \neg C\},\{\neg C, \neg D\}
$$

Backtrack to step 2: $B:=$ false

Example

$$
\begin{aligned}
\Phi:=\{ & \{A, B, \neg C\},\{\neg B, C, D\},\{\neg A, \neg B, \neg D\},\{B, C, D\}, \\
& \{\neg A, \neg B, \neg C\},\{\neg A, \neg C, \neg D\}\}
\end{aligned}
$$

Step 1: A := true

$$
\{\neg B, C, D\},\{\neg B, \neg D\},\{B, C, D\},\{\neg B, \neg C\},\{\neg C, \neg D\}
$$

Backtrack to step 2: $B:=$ false

$$
\{C, D\},\{\neg C, \neg D\}
$$

Step 3: C := true

Example

$$
\begin{aligned}
\Phi:=\{ & \{A, B, \neg C\},\{\neg B, C, D\},\{\neg A, \neg B, \neg D\},\{B, C, D\}, \\
& \{\neg A, \neg B, \neg C\},\{\neg A, \neg C, \neg D\}\}
\end{aligned}
$$

Step 1: $A:=$ true

$$
\{\neg B, C, D\},\{\neg B, \neg D\},\{B, C, D\},\{\neg B, \neg C\},\{\neg C, \neg D\}
$$

Backtrack to step 2: $B:=$ false

$$
\{C, D\},\{\neg C, \neg D\}
$$

Step 3: $C:=$ true

$$
\{\neg D\} \quad \text { satisfiable }
$$

Solution: $A=$ true, $B=$ false, $C=$ true, $D=$ false

Expressing graph problems

Vertex cover
Variables:
$C_{v} \quad$ vertex v belongs to the cover

Expressing graph problems

Vertex cover
Variables:
C_{v}
vertex v belongs to the cover

Formulae:
$C_{u} \vee C_{v} \quad$ for every edge $\langle u, v\rangle \in E$
Size $_{k}^{\leq} \quad$ "At most k of the C_{v} are true."

Expressing graph problems

Vertex cover
Variables:
$C_{v} \quad$ vertex v belongs to the cover
Formulae:
$C_{u} \vee C_{v} \quad$ for every edge $\langle u, v\rangle \in E$
$\operatorname{Size}_{k}^{\leq} \quad$ "At most k of the C_{v} are true."
Clique
Variables:
$C_{v} \quad$ vertex v belongs to the clique

Expressing graph problems

Vertex cover
Variables:
$C_{v} \quad$ vertex v belongs to the cover
Formulae:
$C_{u} \vee C_{v} \quad$ for every edge $\langle u, v\rangle \in E$
$\operatorname{Size}_{k}^{\leq} \quad$ "At most k of the C_{v} are true."
Clique
Variables:
$C_{v} \quad$ vertex v belongs to the clique
Formulae:
$\neg C_{u} \vee \neg C_{v} \quad$ for every non-edge $\langle u, v\rangle \notin E$
$\operatorname{Size}_{k}^{\geq} \quad$ "At least k of the C_{v} are true."

Expressing graph problems

The Size $\frac{\geq}{k}$ formulae
Fix a linear ordering \leq on V and an enumeration $v_{0}<\cdots<v_{n}$.
Variables:

$$
\begin{array}{cl}
S_{v}^{k} & \text { at least } k \text { variables } C_{u} \text { with } u \leq v \text { are true } \\
\operatorname{Size}_{k}^{\geq}:=S_{v_{n}}^{k}
\end{array}
$$

Expressing graph problems

The Size ${ }_{k}^{\geq}$formulae
Fix a linear ordering \leq on V and an enumeration $v_{0}<\cdots<v_{n}$.
Variables:

$$
\begin{array}{cl}
S_{v}^{k} & \text { at least } k \text { variables } C_{u} \text { with } u \leq v \text { are true } \\
\operatorname{Size}_{k}^{\geq}:=S_{v_{n}}^{k}
\end{array}
$$

Formulae:

$$
\begin{array}{lr}
S_{v}^{k} \rightarrow S_{v}^{m} & \text { for } m \leq k \\
S_{v_{0}}^{1} \leftrightarrow C_{v_{0}} & \text { for } k>1 \\
\neg S_{v_{0}}^{k} & \\
C_{v_{i+1}}^{k} \rightarrow\left[S_{v_{i}}^{k} \leftrightarrow S_{v_{i+1}}^{k+1}\right] & \\
\neg C_{v_{i+1}} \rightarrow\left[S_{v_{i}}^{k} \leftrightarrow S_{v_{i+1}}^{k}\right] &
\end{array}
$$

Expressing graph problems

The Size ${ }_{k}^{\geq}$formulae
Fix a linear ordering \leq on V and an enumeration $v_{0}<\cdots<v_{n}$.
Variables:

$$
\begin{array}{cl}
S_{v}^{k} & \text { at least } k \text { variables } C_{u} \text { with } u \leq v \text { are true } \\
\operatorname{Size}_{k}^{\geq}:=S_{v_{n}}^{k}
\end{array}
$$

Formulae:

$$
\begin{array}{lr}
S_{v}^{k} \rightarrow S_{v}^{m} & \text { for } m \leq k \\
S_{v_{0}}^{1} \leftrightarrow C_{v_{0}} & \text { for } k>1 \\
\neg S_{v_{0}}^{k} & \\
C_{v_{i+1}}^{k} \rightarrow\left[S_{v_{i}}^{k} \leftrightarrow S_{v_{i+1}}^{k+1}\right] & \\
\neg C_{v_{i+1}} \rightarrow\left[S_{v_{i}}^{k} \leftrightarrow S_{v_{i+1}}^{k}\right] &
\end{array}
$$

A similar construction works for $\operatorname{Size}_{k}^{\leq}$.

The Satisfiability Problem

Theorem
3-SAT (satisfiability for formulae in 3-CNF) is NP-complete.

The Satisfiability Problem

Theorem
3-SAT (satisfiability for formulae in 3-CNF) is NP-complete.
Proof
Given Turing machine \mathcal{M} and input w, construct formula φ such that \mathcal{M} accepts w iff φ is satisfiable.

Proof

Turing machine $\mathcal{M}=\left\langle Q, \Sigma, \Delta, q_{0}, F_{+}, F_{-}\right\rangle$
Q set of states
Σ tape alphabet
Δ set of transitions $\langle p, a, b, m, q\rangle \in Q \times \Sigma \times \Sigma \times\{-1,0,1\} \times Q$
q_{0} initial state
$F_{+} \quad$ accepting states
$F_{-} \quad$ rejecting states
nondeterministic, runtime bounded by the polynomial $r(n)$

Proof

Turing machine $\mathcal{M}=\left\langle Q, \Sigma, \Delta, q_{0}, F_{+}, F_{-}\right\rangle$
Q set of states
Σ tape alphabet
Δ set of transitions $\langle p, a, b, m, q\rangle \in Q \times \Sigma \times \Sigma \times\{-1,0,1\} \times Q$
$q_{0} \quad$ initial state
$F_{+} \quad$ accepting states
$F_{-} \quad$ rejecting states
nondeterministic, runtime bounded by the polynomial $r(n)$
Encoding in PL
$S_{t, q} \quad$ state q at time t
$H_{t, k} \quad$ head in field k at time t
$W_{t, k, a} \quad$ letter a in field k at time t

$$
\varphi_{w}:=\bigwedge_{t<r(n)}\left[\mathrm{ADM}_{t} \wedge \mathrm{INIT} \wedge \mathrm{TRANS}_{t} \wedge \mathrm{ACC}\right]
$$

Proof

$S_{t, q} \quad$ state q at time t
$H_{t, k} \quad$ head in field k at time t
$W_{t, k, a} \quad$ letter a in field k at time t
Admissibility formula

$$
\begin{array}{rlrl}
\mathrm{ADM}_{t} & := & & \bigwedge_{p \neq q}\left[\neg S_{t, p} \vee \neg S_{t, q}\right] \\
& \wedge & \text { unique state } \\
& \wedge \bigwedge_{k \neq l}\left[\neg H_{t, k} \vee \neg H_{t, l}\right] & & \text { unique head } \\
& \wedge \bigwedge_{k} \bigwedge_{a \neq b}\left[\neg W_{t, k, a} \vee \neg W_{t, k, b}\right] & & \text { unique letter }
\end{array}
$$

Proof

$S_{t, q} \quad$ state q at time t
$H_{t, k} \quad$ head in field k at time t
$W_{t, k, a} \quad$ letter a in field k at time t
Initialisation formula for input: $a_{0} \ldots a_{n-1}$

$$
\begin{aligned}
\text { INIT } & :=S_{0, q_{0}} & & \text { initial state } \\
& \wedge H_{0,0} & & \text { initial head position } \\
& \wedge \bigwedge_{k<n} W_{0, k, a_{k}} \wedge \bigwedge_{n \leq k \leq r(n)} W_{0, k, \square} & & \text { initial tape content }
\end{aligned}
$$

Acceptance formula

$$
\text { ACC }:=\bigvee_{q \in F_{+}} \bigvee_{t \leq r(n)} S_{t, q} \quad \text { accepting state }
$$

Proof

$S_{t, q} \quad$ state q at time t
$H_{t, k} \quad$ head in field k at time t
$W_{t, k, a} \quad$ letter a in field k at time t
Transition formula

$$
\begin{gathered}
\operatorname{TRANS}_{t}:=\bigvee_{\langle p, a, b, m, q) \in \Delta} \bigvee_{k \leq r(n)}\left[S_{t, p} \wedge H_{t, k} \wedge W_{t, k, a} \wedge\right. \\
\left.S_{t+1, q} \wedge H_{t+1, k+m} \wedge W_{t+1, k, b}\right] \\
\text { effect of transition }
\end{gathered}
$$

$$
\wedge \bigwedge_{k \leq r(n)} \bigwedge_{a \in \Sigma}\left[\neg H_{t, k} \wedge W_{t, k, a} \rightarrow W_{t+1, k, a}\right]
$$ rest of tape remains unchanged

Proof

$$
\begin{aligned}
\text { TRANS }_{t}:= & \bigvee_{\langle p, a, b, m, q) \in \Delta} \bigvee_{k \leq r(n)}\left[S_{t, p} \wedge H_{t, k} \wedge W_{t, k, a} \wedge\right. \\
& \left.S_{t+1, q} \wedge H_{t+1, k+m} \wedge W_{t+1, k, b}\right] \wedge \ldots
\end{aligned}
$$

Proof

equivalently:

$$
\bigwedge_{k \leq r(n)} \bigwedge_{p \in Q} \bigwedge_{a \in \Sigma}\left[S_{t, p} \wedge H_{t, k} \wedge W_{t, k, a} \rightarrow \bigvee_{q \in T S(p, a)} S_{t+1, q}\right]
$$

$$
T S(p, a):=\{q \in Q \mid\langle p, a, b, m, q\rangle \in \Delta\}
$$

$$
\begin{aligned}
& \operatorname{TRANS}_{t}:=\quad \bigvee \quad \bigvee\left[S_{t, p} \wedge H_{t, k} \wedge W_{t, k, a} \wedge\right. \\
& \langle p, a, b, m, q\rangle \in \Delta k \leq r(n) \\
& \left.S_{t+1, q} \wedge H_{t+1, k+m} \wedge W_{t+1, k, b}\right] \wedge \ldots
\end{aligned}
$$

Proof

equivalently:

$$
\begin{aligned}
& \bigwedge_{k \leq r(n)} \bigwedge_{p \in Q} \bigwedge_{a \in \Sigma}\left[S_{t, p} \wedge H_{t, k} \wedge W_{t, k, a} \rightarrow\right. \\
\wedge & \left.\bigwedge_{q \in T S(p, a)} S_{t+1, q}\right] \\
& \bigwedge_{k \leq r(n)} \bigwedge_{p, q \in Q} \bigwedge_{a \in \Sigma}[S_{t, p} \wedge H_{t, k} \wedge W_{t, k, a} \wedge S_{t+1, q} \rightarrow \underbrace{}_{m \in T H(p, a, q)} H_{t+1, k+m}]
\end{aligned}
$$

$$
\operatorname{TH}(p, a, q):=\{m \mid\langle p, a, b, m, q\rangle \in \Delta\}
$$

$$
\begin{aligned}
& \operatorname{TRANS}_{t}:=\quad \bigvee \quad \bigvee\left[S_{t, p} \wedge H_{t, k} \wedge W_{t, k, a} \wedge\right. \\
& \langle p, a, b, m, q\rangle \in \Delta \quad k \leq r(n) \\
& \left.S_{t+1, q} \wedge H_{t+1, k+m} \wedge W_{t+1, k, b}\right] \wedge \ldots
\end{aligned}
$$

Proof

$$
\begin{aligned}
& \operatorname{TRANS}_{t}:=\quad \bigvee \quad \bigvee\left[S_{t, p} \wedge H_{t, k} \wedge W_{t, k, a} \wedge\right. \\
& \langle p, a, b, m, q\rangle \in \Delta k \leq r(n) \\
& \left.S_{t+1, q} \wedge H_{t+1, k+m} \wedge W_{t+1, k, b}\right] \wedge \ldots
\end{aligned}
$$

equivalently:

$$
\begin{gathered}
\bigwedge_{k \leq r(n)} \bigwedge_{p \in Q} \bigwedge_{a \in \Sigma}\left[S_{t, p} \wedge H_{t, k} \wedge W_{t, k, a} \rightarrow \bigvee_{q \in T S(p, a)}^{\vee} S_{t+1, q}\right] \\
\wedge \bigwedge_{k \leq r(n)} \bigwedge_{p, q \in Q} \bigwedge_{a \in \Sigma}\left[S_{t, p} \wedge H_{t, k} \wedge W_{t, k, a} \wedge S_{t+1, q} \rightarrow \bigwedge_{m \in T H(p, a, q)}^{\vee} H_{t+1, k+m}\right] \\
\wedge \\
\bigwedge_{k \leq r(n)} \bigwedge_{p, q \in Q} \bigwedge_{a \in \Sigma} \bigwedge_{m \in\{-1,0,1\}}\left[S_{t, p} \wedge H_{t, k} \wedge W_{t, k, a} \wedge S_{t+1, q} \wedge H_{t+1, k+m} \rightarrow\right. \\
\left.T W(p, a, m, q):=\{b \in Q \mid\langle p, a, b, m, q\rangle \in \Delta\} \quad \bigvee_{b \in T W(p, a, m, q)} W_{t+1, k, b}\right]
\end{gathered}
$$

Proof

Properties of φ_{w}

- It is in CNF.
- It has length $\sim r(n)^{3}$.
- It is satisfiable if, and only if, the Turing machine accepts w.

Consequently, the satisfiability problem for PL-formulae in CNF is NP-complete.

Proof

Properties of φ_{w}

- It is in CNF.
- It has length $\sim r(n)^{3}$.
- It is satisfiable if, and only if, the Turing machine accepts w.

Consequently, the satisfiability problem for PL-formulae in CNF is NP-complete.

Reduction to 3-CNF

$$
\begin{aligned}
\left\{L_{0}, L_{1}, L_{2}, \ldots, L_{n}\right\} \mapsto & \left\{L_{0}, L_{1}, X\right\},\left\{\neg X, L_{2}, \ldots, L_{n}\right\} \\
& (X \text { new variable })
\end{aligned}
$$

Resolution

Resolution

Resolution Step

The resolvent of two clauses

$$
C=\left\{L, A_{0}, \ldots, A_{m}\right\} \quad \text { and } \quad C^{\prime}=\left\{\neg L, B_{0}, \ldots, B_{n}\right\}
$$

is the clause

$$
\left\{A_{0}, \ldots, A_{m}, B_{0}, \ldots, B_{n}\right\} .
$$

Lemma

Let C be the resolvent of two clauses in Φ. Then

$$
\Phi \vDash \Phi \cup\{C\} .
$$

Resolution

Resolution Step
The resolvent of two clauses

$$
C=\left\{L, A_{0}, \ldots, A_{m}\right\} \quad \text { and } \quad C^{\prime}=\left\{\neg L, B_{0}, \ldots, B_{n}\right\}
$$

is the clause

$$
\left\{A_{0}, \ldots, A_{m}, B_{0}, \ldots, B_{n}\right\} .
$$

(This is the inverse of the splitting trick from the last slide.)
Lemma
Let C be the resolvent of two clauses in Φ. Then

$$
\Phi \vDash \Phi \cup\{C\} .
$$

The Resolution Method

Observation

If Φ contains the empty clause \varnothing, then Φ is not satisfiable.
Resolution Method
Input: a set of clauses Φ
Output: true if Φ is satisfiable, false otherwise.
RM(Φ)
add to Φ all possible resolvents
repeat until no new clauses are generated
if $\varnothing \in \Phi$ then
return false
else
return true

Theorem

The resolution method for propositional logic is sound and complete.

Example

Davis-Putnam Algorithm

Input: a set of clauses Φ
Output: true if Φ is satisfiable, false otherwise.
DP(Φ)
remove all tautological clauses from Φ
if $\Phi=\varnothing$ then
return true
if $\Phi=\{\varnothing\}$ then
return false
select a variable X
add to Φ all resolvents over X
remove all clauses containing X or $\neg X$ from Φ
repeat

Example

$\{A, C\}\{B, \neg C\}\{\neg A, B, C\}\{A, \neg B\}\{\neg A, \neg B, \neg C\}\{\neg B, C\}$

Example

$$
\begin{aligned}
& \{A, C\}\{B, \neg C\}\{\neg A, B, C\}\{A, \neg B\}\{\neg A, \neg B, \neg C\}\{\neg B, C\} \\
& \text { select } A:\{B, C\}\{\neg B, C, \neg C\}\{B, \neg B, C\}\{\neg B, \neg C\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \{A, C\}\{B, \neg C\}\{\neg A, B, C\}\{A, \neg B\}\{\neg A, \neg B, \neg C\}\{\neg B, C\} \\
& \text { select } A:\{B, C\}\{\neg B, C, \neg C\}\{B, \neg B, C\}\{\neg B, \neg C\} \\
& \text { removals: }\{B, \neg C\}\{\neg B, C\}\{B, C\}\{\neg B, \neg C\}
\end{aligned}
$$

Example

$\{A, C\}\{B, \neg C\}\{\neg A, B, C\}\{A, \neg B\}\{\neg A, \neg B, \neg C\}\{\neg B, C\}$
select $A:\{B, C\}\{\neg B, C, \neg C\}\{B, \neg B, C\}\{\neg B, \neg C\}$
removals: $\{B, \neg C\}\{\neg B, C\}\{B, C\}\{\neg B, \neg C\}$
select $B:\{C, \neg C\}\{\neg C\}\{C\}\{C, \neg C\}$

Example

$\{A, C\}\{B, \neg C\}\{\neg A, B, C\}\{A, \neg B\}\{\neg A, \neg B, \neg C\}\{\neg B, C\}$
select $A:\{B, C\}\{\neg B, C, \neg C\}\{B, \neg B, C\}\{\neg B, \neg C\}$
removals: $\{B, \neg C\}\{\neg B, C\}\{B, C\}\{\neg B, \neg C\}$
select $B:\{C, \neg C\}\{\neg C\}\{C\}\{C, \neg C\}$
removals: $\{\neg C\}\{C\}$

Example

$$
\begin{aligned}
& \{A, C\}\{B, \neg C\}\{\neg A, B, C\}\{A, \neg B\}\{\neg A, \neg B, \neg C\}\{\neg B, C\} \\
& \text { select } A:\{B, C\}\{\neg B, C, \neg C\}\{B, \neg B, C\}\{\neg B, \neg C\} \\
& \text { removals: }\{B, \neg C\}\{\neg B, C\}\{B, C\}\{\neg B, \neg C\} \\
& \text { select } B:\{C, \neg C\}\{\neg C\}\{C\}\{C, \neg C\} \\
& \text { removals: }\{\neg C\}\{C\} \\
& \text { select } C: \varnothing
\end{aligned}
$$

Horn formulae

Linear Resolution

A linear resolution is a sequence of resolution steps where in each step the resolvent of the previous step is used.

Horn formulae and linear resolution

Horn formulae
A Horn clause is a clause C that contains at most one positive literal.
Example

$$
A_{0} \wedge \cdots \wedge A_{n} \rightarrow B \quad \equiv \quad\left\{\neg A_{0}, \ldots, \neg A_{n}, B\right\}
$$

Horn formulae and linear resolution

Horn formulae
A Horn clause is a clause C that contains at most one positive literal.
Example

$$
A_{0} \wedge \cdots \wedge A_{n} \rightarrow B \quad \equiv \quad\left\{\neg A_{0}, \ldots, \neg A_{n}, B\right\}
$$

Theorem
A set of Horn clauses is unsatisfiable if, and only if, one can use linear resolution to derive the empty clause from it.

SLD Resolution

Linear resolution where the clauses are sequences instead of sets and we always resolve the leftmost literal of the current clause.

Minimal models

Lemma

Every satisfiable set of Horn-formulae has a minimal model.

Minimal models

Lemma

Every satisfiable set of Horn-formulae has a minimal model.
Algorithm to compute it:
Input: Φ set of Horn-formulae
$T:=\varnothing$
repeat
for all $A_{0} \wedge \cdots \wedge A_{n-1} \rightarrow B \in \Phi$ do
if $A_{0}, \ldots, A_{n-1} \in T$ then
$T:=T \cup\{B\}$
until T does not change anymore

Minimal models

Lemma

Every satisfiable set of Horn-formulae has a minimal model.
Algorithm to compute it:
Input: Φ set of Horn-formulae
$T:=\varnothing$
repeat
for all $A_{0} \wedge \cdots \wedge A_{n-1} \rightarrow B \in \Phi$ do
if $A_{0}, \ldots, A_{n-1} \in T$ then $T:=T \cup\{B\}$
until T does not change anymore
Theorem
Satisfiability for sets of Horn-formulae can be checked in linear time.

Example

$$
\begin{array}{lrrr}
B \wedge C \rightarrow A & A \wedge D \rightarrow B & F \rightarrow C & E \rightarrow D \\
D \wedge E \rightarrow A & C \wedge F \rightarrow B & 1 \rightarrow F &
\end{array}
$$

Example

$$
\begin{array}{cccc}
B \wedge C \rightarrow A & A \wedge D \rightarrow B & F \rightarrow C & E \rightarrow D \\
D \wedge E \rightarrow A & C \wedge F \rightarrow B & 1 \rightarrow F &
\end{array}
$$

Example

$$
\begin{array}{lrrr}
B \wedge C \rightarrow A & A \wedge D \rightarrow B & F \rightarrow C & E \rightarrow D \\
D \wedge E \rightarrow A & C \wedge F \rightarrow B & 1 \rightarrow F &
\end{array}
$$

Example

$$
\begin{array}{llll}
B \wedge C \rightarrow A & A \wedge D \rightarrow B & F \rightarrow C & E \rightarrow D \\
D \wedge E \rightarrow A & C \wedge F \rightarrow B & 1 \rightarrow F &
\end{array}
$$

Example

$$
\begin{array}{llll}
B \wedge C \rightarrow A & A \wedge D \rightarrow B & F \rightarrow C & E \rightarrow D \\
D \wedge E \rightarrow A & C \wedge F \rightarrow B & 1 \rightarrow F &
\end{array}
$$

Finite Games $\mathcal{G}=\left\langle V_{\diamond}, V_{\square}, E\right\rangle$

Players \diamond and \square

Winning regions: $W_{\diamond}, W_{\square}$

Finite Games $\mathcal{G}=\left\langle V_{\diamond}, V_{\square}, E\right\rangle$

Players \diamond and \square

Winning regions: $W_{\diamond}, W_{\square}$

Reduction

positions

$$
V_{\diamond}=\text { variables }\langle A\rangle \quad \text { and } \quad V_{\square}=\text { formulae }\left[A_{0} \wedge \cdots \wedge A_{n-1} \rightarrow B\right]
$$

edges

$$
\begin{aligned}
\langle B\rangle & \rightarrow \quad\left[A_{0} \wedge \cdots \wedge A_{n-1} \rightarrow B\right] \\
{\left[A_{0} \wedge \cdots \wedge A_{n-1} \rightarrow B\right] } & \rightarrow\left\langle A_{i}\right\rangle
\end{aligned}
$$

Lemma
A variable A belongs to W_{\diamond} iff it is true in the minimal model.

$$
\begin{array}{lll}
B \wedge C \rightarrow A & A \wedge D \rightarrow B & F \rightarrow C \\
D \wedge E \rightarrow A & C \wedge F \rightarrow B & 1 \rightarrow F
\end{array}
$$

Simple Algorithm

$\operatorname{Win}(v, \sigma)$
if $v \in V_{\sigma}$ then
if there is an edge $v \rightarrow u$ with $\operatorname{Win}(u, \sigma)$ then
return true
else
return false
if $v \in V_{\bar{\sigma}}$ then

$$
(* \bar{\diamond}:=\square \quad \bar{\square}:=\diamond *)
$$

if for every edge $v \rightarrow u$ we have $\operatorname{Win}(u, \sigma)$ then
return true
else
return false

Linear Algorithm

Input: game $\left\langle V_{\diamond}, V_{\square}, E\right\rangle$
forall $v \in V$ do

$$
\begin{array}{ll}
\operatorname{win}[v]:=\perp & \left({ }^{*} \text { winner of the position }{ }^{*}\right) \\
P[v]:=\varnothing & \left({ }^{*} \text { set of predecessors of } v^{*}\right) \\
n[v]:=0 & \left({ }^{*} \text { number of successors of } v^{*}\right) \\
\text { end } &
\end{array}
$$

forall $\langle u, v\rangle \in E$ do

$$
P[v]:=P[v] \cup\{u\}
$$

$$
n[u]:=n[u]+1
$$

end
forall $v \in V_{\diamond}$ do
if $n[v]=0$ then Propagate (v, \square)
forall $v \in V_{\square}$ do
if $n[v]=0$ then Propagate (v, \diamond)
return win
procedure $\operatorname{Propagate}(\nu, \sigma)=$
if $\operatorname{win}[v] \neq \perp$ then return
$\operatorname{win}[v]:=\sigma$
forall $u \in P[v]$ do
$n[u]:=n[u]-1$
if $u \in V_{\sigma}$ or $n[u]=0$ then Propagate (u, σ)
end
end

