IAoo8: Computational Logic
 2. First-Order Logic

Achim Blumensath
 blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Basic Concepts

First-Order Logic

Syntax

- Variables x, y, z, \ldots
- Terms $x, f\left(t_{0}, \ldots, t_{n}\right)$
- Relations $R\left(t_{0}, \ldots, t_{n}\right)$ and equality $t_{0}=t_{1}$
- Operators $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$
- Quantifiers $\exists x \varphi, \forall x \varphi$

Semantics

$$
\mathfrak{A} \vDash \varphi(\bar{a}) \quad \mathfrak{A}=\left\langle A, R_{0}, R_{1}, \ldots, f_{0}, f_{1}, \ldots\right\rangle
$$

Examples

$$
\begin{aligned}
& \varphi:=\forall x \exists y[f(y)=x], \\
& \psi:=\forall x \forall y \forall z[x \leq y \wedge y \leq z \rightarrow x \leq z] .
\end{aligned}
$$

Examples

Structures

- graphs $\mathfrak{G}=\langle V, E\rangle$
$E \subseteq V \times V$ binary relation

Examples

Structures

- graphs $\mathfrak{G}=\langle V, E\rangle$
$E \subseteq V \times V$ binary relation
- words $\mathfrak{W}=\left\langle W, \leq,\left(P_{a}\right)_{a}\right\rangle$
$\leq \subseteq W \times W$ linear ordering
$P_{a} \subseteq W$ positions with letter a

Examples

Structures

- graphs $\mathfrak{G}=\langle V, E\rangle$
$E \subseteq V \times V$ binary relation
- words $\mathfrak{W}=\left\langle W, \leq,\left(P_{a}\right)_{a}\right\rangle$
$\leq \subseteq W \times W$ linear ordering
$P_{a} \subseteq W$ positions with letter a
- transition systems $\mathfrak{S}=\left\langle S,\left(E_{a}\right)_{a},\left(P_{i}\right)_{i}\right\rangle$
$E_{a} \subseteq V \times V$ binary relation
$P_{i} \subseteq V$ unary relation

Examples

Graphs $\quad \mathfrak{G}=\langle V, E\rangle, E \subseteq V \times V$

- 'The graph is undirected.' (i.e., E is symmetric)

Examples

Graphs $\quad \mathfrak{G}=\langle V, E\rangle, E \subseteq V \times V$

- 'The graph is undirected.' (i.e., E is symmetric)

$$
\forall x \forall y[E(x, y) \rightarrow E(y, x)]
$$

Examples

Graphs $\quad \mathfrak{G}=\langle V, E\rangle, E \subseteq V \times V$

- 'The graph is undirected.' (i.e., E is symmetric)

$$
\forall x \forall y[E(x, y) \rightarrow E(y, x)]
$$

- 'The graph has no isolated vertices.'

Examples

Graphs $\quad \mathfrak{G}=\langle V, E\rangle, E \subseteq V \times V$

- 'The graph is undirected.' (i.e., E is symmetric)

$$
\forall x \forall y[E(x, y) \rightarrow E(y, x)]
$$

- 'The graph has no isolated vertices.'

$$
\forall x \exists y[E(x, y) \vee E(y, x)]
$$

Examples

Graphs $\quad \mathfrak{G}=\langle V, E\rangle, E \subseteq V \times V$

- 'The graph is undirected.' (i.e., E is symmetric)

$$
\forall x \forall y[E(x, y) \rightarrow E(y, x)]
$$

- 'The graph has no isolated vertices.'

$$
\forall x \exists y[E(x, y) \vee E(y, x)]
$$

- 'Every vertex has outdegree 1.'

Examples

Graphs $\quad \mathfrak{G}=\langle V, E\rangle, E \subseteq V \times V$

- 'The graph is undirected.' (i.e., E is symmetric)

$$
\forall x \forall y[E(x, y) \rightarrow E(y, x)]
$$

- 'The graph has no isolated vertices.'

$$
\forall x \exists y[E(x, y) \vee E(y, x)]
$$

- 'Every vertex has outdegree 1.'

$$
\forall x \exists y[E(x, y) \wedge \forall z[E(x, z) \rightarrow z=y]]
$$

Normal Forms

Prenex normal form

$$
Q_{0} x_{0} \cdots Q_{n} x_{n} \psi(\bar{x}), \quad \psi \text { quantifier-free }
$$

Normal Forms

Prenex normal form

$$
Q_{0} x_{0} \cdots Q_{n} x_{n} \psi(\bar{x}), \quad \psi \text { quantifier-free }
$$

Skolem normal form
Eliminate existential quantifiers:
replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x})) \quad(f$ new symbol).
Example

$$
\forall x \exists y \exists z[y>x \wedge z<x]
$$

Normal Forms

Prenex normal form

$$
Q_{0} x_{0} \cdots Q_{n} x_{n} \psi(\bar{x}), \quad \psi \text { quantifier-free }
$$

Skolem normal form
Eliminate existential quantifiers:
replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x})) \quad$ (f new symbol).
Example

$$
\forall x \exists y \exists z[y>x \wedge z<x] \quad \forall x[f(x)>x \wedge g(x)<x]
$$

Normal Forms

Prenex normal form

$$
Q_{0} x_{0} \cdots Q_{n} x_{n} \psi(\bar{x}), \quad \psi \text { quantifier-free }
$$

Skolem normal form
Eliminate existential quantifiers:
replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x})) \quad$ (f new symbol).
Example

$$
\begin{aligned}
& \forall x \exists y \exists z[y>x \wedge z<x] \quad \forall x[f(x)>x \wedge g(x)<x] \\
& \exists x \forall y[y+1 \neq x]
\end{aligned}
$$

Normal Forms

Prenex normal form

$$
Q_{0} x_{0} \cdots Q_{n} x_{n} \psi(\bar{x}), \quad \psi \text { quantifier-free }
$$

Skolem normal form
Eliminate existential quantifiers:
replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x})) \quad$ (f new symbol).
Example

$$
\begin{array}{ll}
\forall x \exists y \exists z[y>x \wedge z<x] & \forall x[f(x)>x \wedge g(x)<x] \\
\exists x \forall y[y+1 \neq x] & \forall y[y+1 \neq c]
\end{array}
$$

Normal Forms

Prenex normal form

$$
Q_{0} x_{0} \cdots Q_{n} x_{n} \psi(\bar{x}), \quad \psi \text { quantifier-free }
$$

Skolem normal form
Eliminate existential quantifiers:
replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x})) \quad$ (f new symbol).
Example

$$
\begin{array}{ll}
\forall x \exists y \exists z[y>x \wedge z<x] & \forall x[f(x)>x \wedge g(x)<x] \\
\exists x \forall y[y+1 \neq x] & \forall y[y+1 \neq c] \\
\exists x \forall y \exists z \forall u \exists v[R(x, y, z, u, v)] &
\end{array}
$$

Normal Forms

Prenex normal form

$$
Q_{0} x_{0} \cdots Q_{n} x_{n} \psi(\bar{x}), \quad \psi \text { quantifier-free }
$$

Skolem normal form
Eliminate existential quantifiers:
replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x})) \quad$ (f new symbol).
Example

$$
\begin{array}{ll}
\forall x \exists y \exists z[y>x \wedge z<x] & \forall x[f(x)>x \wedge g(x)<x] \\
\exists x \forall y[y+1 \neq x] & \forall y[y+1 \neq c] \\
\exists x \forall y \exists z \forall u \exists v[R(x, y, z, u, v)] & \forall y \forall u[R(c, y, f(y), u, g(y, z))]
\end{array}
$$

Normal Forms

Prenex normal form

$$
Q_{0} x_{0} \cdots Q_{n} x_{n} \psi(\bar{x}), \quad \psi \text { quantifier-free }
$$

Skolem normal form
Eliminate existential quantifiers:
replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x})) \quad(f$ new symbol).
Theorem
Let φ_{s} be a Skolemisation of φ. Then φ_{s} is satisfiable iff φ is satisfiable.

Theorem of Herbrand

Theorem of Herbrand

A formula $\exists \bar{x} \varphi(\bar{x})$ is valid if, and only if, there are terms $\bar{t}_{0}, \ldots, \bar{t}_{n}$ such that the disjunction $\bigvee_{i \leq n} \varphi\left(\bar{t}_{i}\right)$ is valid.

Corollary
A formula $\forall \bar{x} \varphi(\bar{x})$ is unsatisfiable if, and only if, there are terms $\bar{t}_{0}, \ldots, \bar{t}_{n}$ such that the conjunction $\bigwedge_{i \leq n} \varphi\left(\bar{t}_{i}\right)$ is unsatisfiable.

Substitution

Definition

A substitution σ is a function that replaces in a formula every free variable by a term (and renames bound variables if necessary). Instead of $\sigma(\varphi)$ we also write $\varphi[x \mapsto s, y \mapsto t]$ if $\sigma(x)=s$ and $\sigma(y)=t$.

Examples

$$
\begin{array}{lll}
(x=f(y))[x \mapsto g(x), y \mapsto c] & = & g(x)=f(c) \\
\exists z(x=z+z)[x \mapsto z] & = & \exists u(z=u+u)
\end{array}
$$

Unification

Definition

A unifier of two terms $s(\bar{x})$ and $t(\bar{x})$ is a pair of substitution σ, τ such that $\sigma(s)=\tau(t)$.
A unifier σ, τ is most general if every other unifier $\sigma^{\prime}, \tau^{\prime}$ can be written as $\sigma^{\prime}=\rho \circ \sigma$ and $\tau^{\prime}=v \circ \tau$, for some ρ, v.

Examples

$$
\begin{array}{llll}
s=f(x, g(x)) & t=f(c, x) & x \mapsto c & x \mapsto g(c) \\
s=f(x, g(x)) & t=f(x, y) & x \mapsto x & x \mapsto x \\
& & & y
\end{array}
$$

Unification Algorithm

```
unify \((s, t)\)
    if \(s\) is a variable \(x\) then
        set \(x\) to \(t\)
    else if \(t\) is a variable \(x\) then
    set \(x\) to \(s\)
    else \(s=f(\bar{u})\) and \(t=g(\bar{v})\)
    if \(f=g\) then
        forall \(i\) unify \(\left(u_{i}, v_{i}\right)\)
    else
        fail
```


Union-Find-Algorithm

values
variables
find: variable \rightarrow value

- follows pointers to the root and creates shortcuts

union : $($ variable \times variable $) \rightarrow$ unit
- links roots by a pointer

Resolution

Clauses

Definitions

- literal $R(\bar{t})$ or $\neg R(\bar{t})$
- clause set of literals $\{P(\bar{s}), R(\bar{t}), \neg S(\bar{u})\}$

Clauses

Definitions

- literal $R(\bar{t})$ or $\neg R(\bar{t})$
- clause set of literals $\{P(\bar{s}), R(\bar{t}), \neg S(\bar{u})\}$

Example

$\mathrm{CNF} \quad \varphi:=\forall x \forall y[R(x, y) \vee \neg R(x, f(x))] \wedge \forall y[\neg R(f(y), y) \vee P(y)]$
(no existential quantifiers)
clauses $\quad\{R(x, y) \neg R(x, f(x))\},\{\neg R(f(y), y), P(y)\}$

Resolution

Resolution Step
Consider two clauses

$$
\begin{aligned}
C & =\left\{P(\bar{s}), R_{0}\left(\bar{t}_{0}\right), \ldots, R_{m}\left(\bar{t}_{m}\right)\right\} \\
C^{\prime} & =\left\{\neg P\left(\bar{s}^{\prime}\right), S_{0}\left(\bar{u}_{0}\right), \ldots, S_{n}\left(\bar{u}_{n}\right)\right\}
\end{aligned}
$$

where \bar{s} and \bar{s}^{\prime} have no common variables, and let σ, τ be the most general unifier of \bar{s} and \bar{s}^{\prime}. The resolvent of C and C^{\prime} is the clause

$$
\left\{R_{0}\left(\sigma\left(\bar{t}_{0}\right)\right), \ldots, R_{m}\left(\sigma\left(\bar{t}_{m}\right)\right), S_{0}\left(\tau\left(\bar{u}_{0}\right)\right), \ldots, S_{n}\left(\tau\left(\bar{u}_{n}\right)\right)\right\} .
$$

Lemma

Let C be the resolvent of two clauses in Φ. Then

$$
\Phi \vDash \Phi \cup\{C\} .
$$

Example

$$
\begin{aligned}
\varphi=\forall x \forall y[P(x) \wedge x \leq y \rightarrow P(y)] \wedge \forall x[x \leq f(x)] \wedge P c \wedge \neg P(f(c)) \\
\{\neg P(x), x \notin y, P(y)\}
\end{aligned}
$$

The Resolution Method

Theorem
The resolution method for first-order logic (without equality) is sound and complete.

Theorem
Satisfiability for first-order logic is undecidable.

Proof

Turing machine $\mathcal{M}=\left\langle Q, \Sigma, \Delta, q_{0}, F_{+}, F_{-}\right\rangle$
Q set of states
Σ tape alphabet
Δ set of transitions $\langle p, a, b, m, q\rangle \in Q \times \Sigma \times \Sigma \times\{-1,0,1\} \times Q$
$q_{0} \quad$ initial state
$F_{+} \quad$ accepting states
$F_{-} \quad$ rejecting states

Proof

Turing machine $\mathcal{M}=\left\langle Q, \Sigma, \Delta, q_{0}, F_{+}, F_{-}\right\rangle$
Q set of states
Σ tape alphabet
Δ set of transitions $\langle p, a, b, m, q\rangle \in Q \times \Sigma \times \Sigma \times\{-1,0,1\} \times Q$
$q_{0} \quad$ initial state
$F_{+} \quad$ accepting states
$F_{-} \quad$ rejecting states
Encoding in FO
$S_{q}(t) \quad$ state q at time t
$h(t) \quad$ head in field $h(t)$ at time t
$W_{a}(t, k) \quad$ letter a in field k at time t
$s \quad$ successor function $s(n)=n+1$

$$
\varphi_{w}:=\mathrm{ADM} \wedge \mathrm{INIT} \wedge \mathrm{TRANS} \wedge \mathrm{ACC}
$$

Proof

$$
\begin{array}{ll}
S_{q}(t) & \text { state } q \text { at time } t \\
h(t) & \text { head in field } h(t) \text { at time } t \\
W_{a}(t, k) & \text { letter } a \text { in field } k \text { at time } t \\
s & \text { successor function } s(n)=n+1
\end{array}
$$

Admissibility formula

$$
\begin{aligned}
\mathrm{ADM} & :=\forall t \bigwedge_{p \neq q} \neg\left[S_{p}(t) \wedge S_{q}(t)\right] & & \text { unique state } \\
& \wedge \forall t \forall k \bigwedge_{a \neq b} \neg\left[W_{a}(t, k) \wedge W_{b}(t, k)\right] & & \text { unique letter }
\end{aligned}
$$

Proof

$S_{q}(t)$	state q at time t
$h(t)$	head in field $h(t)$ at time t
$W_{a}(t, k)$	letter a in field k at time t
s	successor function $s(n)=n+1$

Initialisation formula for input: $a_{0} \ldots a_{n-1}$

$$
\begin{aligned}
\text { INIT } & = \\
& S_{q_{0}}(0) \\
& \wedge \\
& \wedge \bigwedge_{k<n} W_{a_{k}}(0, \underline{k}) \wedge \forall k\left[k \geq \underline{n} \rightarrow W_{\square}(0, k)\right]
\end{aligned}
$$

initial state
initial head position
initial tape content
(here $\underline{k}:=s(s(\cdots s(0))))$
Acceptance formula

$$
\text { ACC := } \exists t \bigvee_{q \in F_{+}} S_{q}(t) \quad \text { accepting state }
$$

Proof

$S_{q}(t)$	state q at time t
$h(t)$	head in field $h(t)$ at time t
$W_{a}(t, k)$	letter a in field k at time t
s	successor function $s(n)=n+1$

Transition formula

$$
\begin{aligned}
\text { TRANS }:= & \forall t \bigvee_{\langle p, a, b, m, q\rangle \in \Delta}\left[\begin{array}{r}
S_{p}(t) \wedge W_{a}(t, h(t)) \wedge S_{q}(s(t)) \wedge \\
\left.h(s(t))=h(t)+m \wedge W_{b}(s(t), h(t))\right]
\end{array}\right. \\
& \wedge \forall t \forall k \bigwedge_{a \in \Sigma}\left[k \neq h(t) \rightarrow\left[W_{a}(t, k) \leftrightarrow W_{a}(s(t), k)\right]\right]
\end{aligned}
$$

where

$$
h(s(t))=h(t)+m:= \begin{cases}h(s(t))=s(h(t)) & \text { if } m=1 \\ h(s(t))=h(t) & \text { if } m=0 \\ s(h(s(t)))=h(t) & \text { if } m=-1\end{cases}
$$

Linear Resolution and Horn Formulae

Horn formulae
A Horn formulae is a formula in CNF where each clause contains at most one positive literal.

Theorem

A set of Horn clauses is unsatisfiable if, and only if, one can use linear resolution to derive the empty clause from it.

SLD Resolution

Linear resolution where the clauses are sequences instead of sets and we always resolve the leftmost literal of the current clause.

