IA008: Computational Logic 2. First-Order Logic

Achim Blumensath

blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

First-Order Logic

Syntax

- Variables x, y, z, \ldots
- Terms $x, f(t_0, \ldots, t_n)$
- Relations $R(t_0, \ldots, t_n)$ and equality $t_0 = t_1$
- Operators $\land, \lor, \neg, \rightarrow, \leftrightarrow$
- Quantifiers $\exists x \varphi, \forall x \varphi$

Semantics

$$\mathfrak{A} \vDash \varphi(\bar{a}) \qquad \mathfrak{A} = \langle A, R_0, R_1, \dots, f_0, f_1, \dots \rangle$$

Examples

$$\begin{split} \varphi &\coloneqq \forall x \exists y [f(y) = x], \\ \psi &\coloneqq \forall x \forall y \forall z [x \leq y \land y \leq z \rightarrow x \leq z]. \end{split}$$

Structures

• graphs $\mathfrak{G} = \langle V, E \rangle$ $E \subseteq V \times V$ binary relation

Structures

- graphs $\mathfrak{G} = \langle V, E \rangle$ $E \subseteq V \times V$ binary relation
- words $\mathfrak{W} = \langle W, \leq, (P_a)_a \rangle$ $\leq \subseteq W \times W$ linear ordering $P_a \subseteq W$ positions with letter a

Structures

• graphs $\mathfrak{G} = \langle V, E \rangle$

 $E \subseteq V \times V$ binary relation

- words $\mathfrak{W} = \langle W, \leq, (P_a)_a \rangle$ $\leq \subseteq W \times W$ linear ordering $P_a \subseteq W$ positions with letter a
- transition systems $\mathfrak{S} = \langle S, (E_a)_a, (P_i)_i \rangle$
 - $E_a \subseteq V \times V$ binary relation
 - $P_i \subseteq V$ unary relation

Graphs $\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$

• 'The graph is undirected.' (i.e., *E* is symmetric)

Graphs $\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$

• 'The graph is undirected.' (i.e., *E* is symmetric)

 $\forall x \forall y [E(x,y) \to E(y,x)]$

Graphs $\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$

• 'The graph is undirected.' (i.e., *E* is symmetric)

 $\forall x \forall y [E(x,y) \to E(y,x)]$

• 'The graph has no isolated vertices.'

Graphs $\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$

• 'The graph is undirected.' (i.e., *E* is symmetric)

 $\forall x \forall y [E(x,y) \to E(y,x)]$

• 'The graph has no isolated vertices.'

 $\forall x \exists y [E(x,y) \lor E(y,x)]$

Graphs $\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$

• 'The graph is undirected.' (i.e., *E* is symmetric)

 $\forall x \forall y [E(x,y) \to E(y,x)]$

• 'The graph has no isolated vertices.'

 $\forall x \exists y [E(x,y) \lor E(y,x)]$

• 'Every vertex has outdegree 1.'

Graphs $\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$

• 'The graph is undirected.' (i.e., *E* is symmetric)

 $\forall x \forall y [E(x,y) \to E(y,x)]$

• 'The graph has no isolated vertices.'

 $\forall x \exists y [E(x, y) \lor E(y, x)]$

• 'Every vertex has outdegree 1.'

 $\forall x \exists y [E(x,y) \land \forall z [E(x,z) \rightarrow z = y]]$

Prenex normal form

 $Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$, ψ quantifier-free

Prenex normal form

 $Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x}))$ (*f* new symbol).

Example

 $\forall x \exists y \exists z [y > x \land z < x]$

Prenex normal form

 $Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x}))$ (*f* new symbol).

Example

 $\forall x \exists y \exists z [y > x \land z < x] \qquad \forall x [f(x) > x \land g(x) < x]$

Prenex normal form

 $Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x}))$ (*f* new symbol).

Example

 $\begin{aligned} \forall x \exists y \exists z [y > x \land z < x] & \forall x [f(x) > x \land g(x) < x] \\ \exists x \forall y [y + 1 \neq x] \end{aligned}$

Prenex normal form

 $Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x}))$ (*f* new symbol).

Example

 $\begin{aligned} \forall x \exists y \exists z [y > x \land z < x] & \forall x [f(x) > x \land g(x) < x] \\ \exists x \forall y [y + 1 \neq x] & \forall y [y + 1 \neq c] \end{aligned}$

Prenex normal form

 $Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x}))$ (*f* new symbol).

Example

 $\begin{aligned} \forall x \exists y \exists z [y > x \land z < x] & \forall x [f(x) > x \land g(x) < x] \\ \exists x \forall y [y + 1 \neq x] & \forall y [y + 1 \neq c] \\ \exists x \forall y \exists z \forall u \exists v [R(x, y, z, u, v)] \end{aligned}$

Prenex normal form

 $Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x}))$ (*f* new symbol).

Example

 $\begin{aligned} \forall x \exists y \exists z [y > x \land z < x] & \forall x [f(x) > x \land g(x) < x] \\ \exists x \forall y [y + 1 \neq x] & \forall y [y + 1 \neq c] \\ \exists x \forall y \exists z \forall u \exists v [R(x, y, z, u, v)] & \forall y \forall u [R(c, y, f(y), u, g(y, z))] \end{aligned}$

Prenex normal form

 $Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace $\forall \bar{x} \exists y \varphi(\bar{x}, y)$ by $\forall \bar{x} \varphi(\bar{x}, f(\bar{x}))$ (*f* new symbol).

Theorem

Let φ_s be a Skolemisation of φ . Then φ_s is satisfiable iff φ is satisfiable.

Theorem of Herbrand

Theorem of Herbrand

A formula $\exists \bar{x}\varphi(\bar{x})$ is valid if, and only if, there are terms $\bar{t}_0, \ldots, \bar{t}_n$ such that the disjunction $\bigvee_{i \le n} \varphi(\bar{t}_i)$ is valid.

Corollary

A formula $\forall \bar{x} \varphi(\bar{x})$ is unsatisfiable if, and only if, there are terms $\bar{t}_0, \ldots, \bar{t}_n$ such that the conjunction $\wedge_{i \leq n} \varphi(\bar{t}_i)$ is unsatisfiable.

Substitution

Definition

A substitution σ is a function that replaces in a formula every free variable by a term (and renames bound variables if necessary). Instead of $\sigma(\varphi)$ we also write $\varphi[x \mapsto s, y \mapsto t]$ if $\sigma(x) = s$ and $\sigma(y) = t$.

Examples

$$\begin{aligned} (x = f(y))[x \mapsto g(x), \ y \mapsto c] &= g(x) = f(c) \\ \exists z(x = z + z)[x \mapsto z] &= \exists u(z = u + u) \end{aligned}$$

Unification

Definition

A unifier of two terms $s(\bar{x})$ and $t(\bar{x})$ is a pair of substitution σ , τ such that $\sigma(s) = \tau(t)$.

A unifier σ , τ is **most general** if every other unifier σ' , τ' can be written as $\sigma' = \rho \circ \sigma$ and $\tau' = v \circ \tau$, for some ρ , v.

Examples

$$s = f(x, g(x)) \qquad t = f(c, x) \qquad x \mapsto c \qquad x \mapsto g(c)$$

$$s = f(x, g(x)) \qquad t = f(x, y) \qquad x \mapsto x \qquad x \mapsto x$$

$$y \mapsto g(x)$$

$$x \mapsto g(x) \qquad x \mapsto g(x)$$

$$y \mapsto g(g(x))$$

$$s = f(x) \qquad t = g(x) \qquad \text{unification not possible}$$

Unification Algorithm

```
unify(s, t)

if s is a variable x then

set x to t

else if t is a variable x then

set x to s

else s = f(\bar{u}) and t = g(\bar{v})

if f = g then

forall i unify(u_i, v_i)

else

fail
```

Union-Find-Algorithm

find : *variable* \rightarrow *value*

follows pointers to the root and creates shortcuts

union : (*variable* × *variable*) \rightarrow *unit*

links roots by a pointer

Resolution

Clauses

Definitions

- literal $R(\bar{t})$ or $\neg R(\bar{t})$
- clause set of literals $\{P(\bar{s}), R(\bar{t}), \neg S(\bar{u})\}$

Clauses

Definitions

- literal $R(\bar{t})$ or $\neg R(\bar{t})$
- clause set of literals $\{P(\bar{s}), R(\bar{t}), \neg S(\bar{u})\}$

Example

CNF $\varphi := \forall x \forall y [R(x, y) \lor \neg R(x, f(x))] \land \forall y [\neg R(f(y), y) \lor P(y)]$ (no existential quantifiers) clauses $\{R(x, y) \neg R(x, f(x))\}, \{\neg R(f(y), y), P(y)\}$

Resolution

Resolution Step

Consider two clauses

$$C = \left\{ P(\bar{s}), R_0(\bar{t}_0), \dots, R_m(\bar{t}_m) \right\}$$
$$C' = \left\{ \neg P(\bar{s}'), S_0(\bar{u}_0), \dots, S_n(\bar{u}_n) \right\}$$

where \bar{s} and \bar{s}' have no common variables, and let σ , τ be the most general unifier of \bar{s} and \bar{s}' . The resolvent of *C* and *C'* is the clause

$$\left\{R_0(\sigma(t_0)),\ldots,R_m(\sigma(t_m)),S_0(\tau(u_0)),\ldots,S_n(\tau(u_n))\right\}.$$

Lemma

Let *C* be the resolvent of two clauses in Φ . Then

 $\Phi \vDash \Phi \cup \{C\}.$

The Resolution Method

Theorem

The resolution method for first-order logic (without equality) is **sound** and **complete**.

Theorem

Satisfiability for first-order logic is undecidable.

Turing machine $\mathcal{M} = \langle Q, \Sigma, \Delta, q_0, F_+, F_- \rangle$

- Q set of states
- Σ tape alphabet
- $\Delta \quad \text{set of transitions } \langle p, a, b, m, q \rangle \in Q \times \Sigma \times \Sigma \times \{-1, 0, 1\} \times Q$
- q_0 initial state
- F_+ accepting states
- F_- rejecting states

Turing machine $\mathcal{M} = \langle Q, \Sigma, \Delta, q_0, F_+, F_- \rangle$

- *Q* set of states
- Σ tape alphabet
- $\Delta \quad \text{set of transitions } \langle p, a, b, m, q \rangle \in Q \times \Sigma \times \Sigma \times \{-1, 0, 1\} \times Q$
- q_0 initial state
- F_+ accepting states
- F_- rejecting states

Encoding in FO

 $S_q(t)$ state q at time th(t)head in field h(t) at time t $W_a(t,k)$ letter a in field k at time tssuccessor function s(n) = n + 1

 $\varphi_{w} := \text{ADM} \land \text{INIT} \land \text{TRANS} \land \text{ACC}$

 $S_q(t)$ state q at time th(t)head in field h(t) at time t $W_a(t,k)$ letter a in field k at time tssuccessor function s(n) = n + 1

Admissibility formula

$$ADM \coloneqq \forall t \bigwedge_{p \neq q} \neg [S_p(t) \land S_q(t)] \qquad \text{unique state}$$
$$\land \forall t \forall k \bigwedge_{a \neq b} \neg [W_a(t,k) \land W_b(t,k)] \qquad \text{unique letter}$$

 $S_q(t)$ state q at time th(t)head in field h(t) at time t $W_a(t,k)$ letter a in field k at time tssuccessor function s(n) = n + 1

Initialisation formula for input: $a_0 \dots a_{n-1}$

INIT :=
$$S_{q_0}(0)$$

 $\wedge h(0) = 0$
 $\wedge \bigwedge_{k < n} W_{a_k}(0, \underline{k}) \wedge \forall k [k \ge \underline{n} \to W_{\Box}(0, k)]$

initial state initial head position initial tape content

(here $\underline{k} \coloneqq s(s(\cdots s(0))))$

Acceptance formula

ACC := $\exists t \bigvee_{q \in F_+} S_q(t)$ accepting state

 $S_q(t)$ state q at time th(t)head in field h(t) at time t $W_a(t,k)$ letter a in field k at time tssuccessor function s(n) = n + 1

Transition formula

$$TRANS := \forall t \bigvee_{\substack{(p,a,b,m,q) \in \Delta \\ k \in \Sigma}} \left[S_p(t) \wedge W_a(t,h(t)) \wedge S_q(s(t)) \wedge h(s(t)) = h(t) + m \wedge W_b(s(t),h(t)) \right]$$
$$\wedge \forall t \forall k \bigwedge_{a \in \Sigma} \left[k \neq h(t) \rightarrow \left[W_a(t,k) \leftrightarrow W_a(s(t),k) \right] \right]$$

where

$$h(s(t)) = h(t) + m := \begin{cases} h(s(t)) = s(h(t)) & \text{if } m = 1, \\ h(s(t)) = h(t) & \text{if } m = 0, \\ s(h(s(t))) = h(t) & \text{if } m = -1. \end{cases}$$

Linear Resolution and Horn Formulae

Horn formulae

A Horn formulae is a formula in CNF where each clause contains at most one positive literal.

Theorem

A set of Horn clauses is unsatisfiable if, and only if, one can use linear resolution to derive the empty clause from it.

SLD Resolution

Linear resolution where the clauses are **sequences** instead of sets and we always resolve the **leftmost literal** of the current clause.