
IA���: Computational Logic
�. First-Order Logic

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Basic Concepts

First-Order Logic

Syntax
▸ Variables x, y, z, . . .
▸ Terms x, f (t0, . . . , tn)
▸ Relations R(t0, . . . , tn) and equality t0 = t1
▸ Operators ∧,∨,¬,→,↔
▸ Quantifiers ∃xφ,∀xφ

Semantics

A ⊧ φ(ā) A = ⟨A,R0,R1, . . . , f0, f1, . . . ⟩

Examples

φ ∶= ∀x∃y[f (y) = x] ,
ψ ∶= ∀x∀y∀z[x ≤ y ∧ y ≤ z → x ≤ z] .

Examples

Structures

• graphsG = ⟨V , E⟩
E ⊆ V ×V binary relation

• wordsW = ⟨W , ≤, (Pa)a⟩
≤ ⊆W ×W linear ordering
Pa ⊆W positions with letter a

• transition systemsS = ⟨S, (Ea)a, (Pi)i⟩
Ea ⊆ V ×V binary relation
Pi ⊆ V unary relation

Examples

Structures

• graphsG = ⟨V , E⟩
E ⊆ V ×V binary relation

• wordsW = ⟨W , ≤, (Pa)a⟩
≤ ⊆W ×W linear ordering
Pa ⊆W positions with letter a

• transition systemsS = ⟨S, (Ea)a, (Pi)i⟩
Ea ⊆ V ×V binary relation
Pi ⊆ V unary relation

Examples

Structures

• graphsG = ⟨V , E⟩
E ⊆ V ×V binary relation

• wordsW = ⟨W , ≤, (Pa)a⟩
≤ ⊆W ×W linear ordering
Pa ⊆W positions with letter a

• transition systemsS = ⟨S, (Ea)a, (Pi)i⟩
Ea ⊆ V ×V binary relation
Pi ⊆ V unary relation

Examples

Graphs G = ⟨V , E⟩, E ⊆ V ×V

• ‘The graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y)→ E(y, x)]

• ‘The graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z)→ z = y]]

Examples

Graphs G = ⟨V , E⟩, E ⊆ V ×V

• ‘The graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y)→ E(y, x)]

• ‘The graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z)→ z = y]]

Examples

Graphs G = ⟨V , E⟩, E ⊆ V ×V

• ‘The graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y)→ E(y, x)]

• ‘The graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z)→ z = y]]

Examples

Graphs G = ⟨V , E⟩, E ⊆ V ×V

• ‘The graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y)→ E(y, x)]

• ‘The graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z)→ z = y]]

Examples

Graphs G = ⟨V , E⟩, E ⊆ V ×V

• ‘The graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y)→ E(y, x)]

• ‘The graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z)→ z = y]]

Examples

Graphs G = ⟨V , E⟩, E ⊆ V ×V

• ‘The graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y)→ E(y, x)]

• ‘The graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z)→ z = y]]

Normal Forms

Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f (x̄)) (f new symbol).

Example

∀x∃y∃z[y > x ∧ z < x]

∀x[f (x) > x ∧ g(x) < x]
∃x∀y[y + 1 ≠ x] ∀y[y + 1 ≠ c]
∃x∀y∃z∀u∃v[R(x, y, z, u, v)] ∀y∀u[R(c, y, f (y), u, g(y, z))]

Theorem
Let φs be a Skolemisation of φ. Then φs is satisfiable iff φ is satisfiable.

Normal Forms

Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f (x̄)) (f new symbol).

Example

∀x∃y∃z[y > x ∧ z < x]

∀x[f (x) > x ∧ g(x) < x]
∃x∀y[y + 1 ≠ x] ∀y[y + 1 ≠ c]
∃x∀y∃z∀u∃v[R(x, y, z, u, v)] ∀y∀u[R(c, y, f (y), u, g(y, z))]

Theorem
Let φs be a Skolemisation of φ. Then φs is satisfiable iff φ is satisfiable.

Normal Forms

Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f (x̄)) (f new symbol).

Example

∀x∃y∃z[y > x ∧ z < x] ∀x[f (x) > x ∧ g(x) < x]

∃x∀y[y + 1 ≠ x] ∀y[y + 1 ≠ c]
∃x∀y∃z∀u∃v[R(x, y, z, u, v)] ∀y∀u[R(c, y, f (y), u, g(y, z))]

Theorem
Let φs be a Skolemisation of φ. Then φs is satisfiable iff φ is satisfiable.

Normal Forms

Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f (x̄)) (f new symbol).

Example

∀x∃y∃z[y > x ∧ z < x] ∀x[f (x) > x ∧ g(x) < x]
∃x∀y[y + 1 ≠ x]

∀y[y + 1 ≠ c]
∃x∀y∃z∀u∃v[R(x, y, z, u, v)] ∀y∀u[R(c, y, f (y), u, g(y, z))]

Theorem
Let φs be a Skolemisation of φ. Then φs is satisfiable iff φ is satisfiable.

Normal Forms

Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f (x̄)) (f new symbol).

Example

∀x∃y∃z[y > x ∧ z < x] ∀x[f (x) > x ∧ g(x) < x]
∃x∀y[y + 1 ≠ x] ∀y[y + 1 ≠ c]

∃x∀y∃z∀u∃v[R(x, y, z, u, v)] ∀y∀u[R(c, y, f (y), u, g(y, z))]

Theorem
Let φs be a Skolemisation of φ. Then φs is satisfiable iff φ is satisfiable.

Normal Forms

Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f (x̄)) (f new symbol).

Example

∀x∃y∃z[y > x ∧ z < x] ∀x[f (x) > x ∧ g(x) < x]
∃x∀y[y + 1 ≠ x] ∀y[y + 1 ≠ c]
∃x∀y∃z∀u∃v[R(x, y, z, u, v)]

∀y∀u[R(c, y, f (y), u, g(y, z))]

Theorem
Let φs be a Skolemisation of φ. Then φs is satisfiable iff φ is satisfiable.

Normal Forms

Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f (x̄)) (f new symbol).

Example

∀x∃y∃z[y > x ∧ z < x] ∀x[f (x) > x ∧ g(x) < x]
∃x∀y[y + 1 ≠ x] ∀y[y + 1 ≠ c]
∃x∀y∃z∀u∃v[R(x, y, z, u, v)] ∀y∀u[R(c, y, f (y), u, g(y, z))]

Theorem
Let φs be a Skolemisation of φ. Then φs is satisfiable iff φ is satisfiable.

Normal Forms

Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f (x̄)) (f new symbol).

Theorem
Let φs be a Skolemisation of φ. Then φs is satisfiable iff φ is satisfiable.

Theorem of Herbrand

Theorem of Herbrand
A formula ∃x̄φ(x̄) is valid if, and only if, there are terms t̄0, . . . , t̄n such
that the disjunction ⋁i≤n φ(t̄i) is valid.

Corollary
A formula ∀x̄φ(x̄) is unsatisfiable if, and only if, there are terms
t̄0, . . . , t̄n such that the conjunction ⋀i≤n φ(t̄i) is unsatisfiable.

Substitution

Definition
A substitution σ is a function that replaces in a formula every free
variable by a term (and renames bound variables if necessary).
Instead of σ(φ) we also write φ[x ↦ s, y ↦ t] if σ(x) = s and σ(y) = t.

Examples

(x = f (y))[x ↦ g(x), y ↦ c] = g(x) = f (c)
∃z(x = z + z)[x ↦ z] = ∃u(z = u + u)

Unification

Definition
A unifier of two terms s(x̄) and t(x̄) is a pair of substitution σ , τ such
that σ(s) = τ(t).
A unifier σ , τ ismost general if every other unifier σ ′, τ′ can be
written as σ ′ = ρ ○ σ and τ′ = υ ○ τ, for some ρ, υ.

Examples

s = f (x, g(x)) t = f (c, x) x ↦ c x ↦ g(c)
s = f (x, g(x)) t = f (x, y) x ↦ x x ↦ x

y ↦ g(x)
x ↦ g(x) x ↦ g(x)

y ↦ g(g(x))
s = f (x) t = g(x) unification not possible

UnificationAlgorithm

unify(s, t)
if s is a variable x then
set x to t

else if t is a variable x then
set x to s

else s = f (ū) and t = g(v̄)
if f = g then
forall i unify(ui , vi)

else
fail

Union-Find-Algorithm

 values

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

variables

find ∶ variable → value
▸ follows pointers to the root and creates shortcuts

union ∶ (variable × variable)→ unit
▸ links roots by a pointer

Resolution

Clauses

Definitions
▸ literal R(t̄) or ¬R(t̄)
▸ clause set of literals {P(s̄),R(t̄),¬S(ū)}

Example

CNF φ ∶= ∀x∀y[R(x, y) ∨ ¬R(x, f (x))] ∧ ∀y[¬R(f (y), y) ∨ P(y)]

(no existential quantifiers)

clauses {R(x, y)¬R(x, f (x))}, {¬R(f (y), y), P(y)}

Clauses

Definitions
▸ literal R(t̄) or ¬R(t̄)
▸ clause set of literals {P(s̄),R(t̄),¬S(ū)}

Example

CNF φ ∶= ∀x∀y[R(x, y) ∨ ¬R(x, f (x))] ∧ ∀y[¬R(f (y), y) ∨ P(y)]

(no existential quantifiers)

clauses {R(x, y)¬R(x, f (x))}, {¬R(f (y), y), P(y)}

Resolution

Resolution Step
Consider two clauses

C = {P(s̄),R0(t̄0), . . . ,Rm(t̄m)}
C′ = {¬P(s̄′), S0(ū0), . . . , Sn(ūn)}

where s̄ and s̄′ have no common variables, and let σ , τ be the most
general unifier of s̄ and s̄′. The resolvent of C and C′ is the clause

{R0(σ(t̄0)), . . . ,Rm(σ(t̄m)), S0(τ(ū0)), . . . , Sn(τ(ūn))} .

Lemma
Let C be the resolvent of two clauses in Φ. Then

Φ ⊧ Φ ∪ {C} .

Example

φ = ∀x∀y[P(x) ∧ x ≤ y → P(y)] ∧ ∀x[x ≤ f (x)] ∧ Pc ∧ ¬P(f (c))

{¬P(x), x ≰ y, P(y)} {x ≤ f (x)} {P(c)} {¬P(f (c))}

{¬P(z), P(f (z))}

{P(f (c))}

∅

x ↦ z
y ↦ f (z) x ↦ z

z ↦ c

The Resolution Method

Theorem
The resolution method for first-order logic (without equality) is sound
and complete.

Theorem
Satisfiability for first-order logic is undecidable.

Proof

Turing machineM = ⟨Q, Σ, ∆, q0, F+, F−⟩
Q set of states
Σ tape alphabet
∆ set of transitions ⟨p, a, b,m, q⟩ ∈ Q × Σ × Σ × {−1, 0, 1} ×Q
q0 initial state
F+ accepting states
F− rejecting states

Encoding in FO

Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t , k) letter a in field k at time t
s successor function s(n) = n + 1

φw ∶= ADM ∧ INIT ∧ TRANS ∧ACC

Proof

Turing machineM = ⟨Q, Σ, ∆, q0, F+, F−⟩
Q set of states
Σ tape alphabet
∆ set of transitions ⟨p, a, b,m, q⟩ ∈ Q × Σ × Σ × {−1, 0, 1} ×Q
q0 initial state
F+ accepting states
F− rejecting states

Encoding in FO

Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t , k) letter a in field k at time t
s successor function s(n) = n + 1

φw ∶= ADM ∧ INIT ∧ TRANS ∧ACC

Proof

Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t , k) letter a in field k at time t
s successor function s(n) = n + 1

Admissibility formula

ADM ∶= ∀t⋀
p≠q

¬[Sp(t) ∧ Sq(t)] unique state

∧ ∀t∀k⋀
a≠b

¬[Wa(t , k) ∧Wb(t , k)] unique letter

Proof

Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t , k) letter a in field k at time t
s successor function s(n) = n + 1

Initialisation formula for input: a0 . . . an−1

INIT ∶= Sq0(0) initial state
∧ h(0) = 0 initial head position
∧ ⋀

k<n
Wak(0, k) ∧ ∀k[k ≥ n→W◻(0, k)] initial tape content

(here k ∶= s(s(⋯s(0))))

Acceptance formula

ACC ∶= ∃t ⋁
q∈F+

Sq(t) accepting state

Proof

Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t , k) letter a in field k at time t
s successor function s(n) = n + 1

Transition formula

TRANS ∶= ∀t ⋁
⟨p,a,b,m,q⟩∈∆

[Sp(t) ∧Wa(t , h(t)) ∧ Sq(s(t)) ∧
h(s(t)) = h(t) +m ∧Wb(s(t), h(t))]

∧ ∀t∀k⋀
a∈Σ
[k ≠ h(t)→ [Wa(t , k)↔Wa(s(t), k)]]

where

h(s(t)) = h(t) +m ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(s(t)) = s(h(t)) if m = 1 ,
h(s(t)) = h(t) if m = 0 ,
s(h(s(t))) = h(t) if m = −1 .

Linear Resolution and Horn Formulae

Horn formulae
AHorn formulae is a formula in CNF where each clause contains at
most one positive literal.

Theorem
A set of Horn clauses is unsatisfiable if, and only if, one can use linear
resolution to derive the empty clause from it.

SLD Resolution
Linear resolution where the clauses are sequences instead of sets and
we always resolve the leftmost literal of the current clause.

