IAoo8: Computational Logic 6. Modal Logic

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Basic Concepts

Transition Systems

directed graph $\mathfrak{S} = \langle S, (E_a)_{a \in A}, (P_i)_{i \in I}, s_0 \rangle$ with

- ▶ states S
- ▶ initial state $s_0 \in S$
- edge relations E_a with edge colours $a \in A$ ('actions')
- ▶ unary predicates P_i with vertex colours $i \in I$ ('properties')

Modal logic

Propositional logic with modal operators

- $\langle a \rangle \varphi$ 'there exists an *a*-successor where φ holds'
- $[a]\varphi$ ' φ holds in every a-successor'

Notation: $\Diamond \varphi$, $\Box \varphi$ if there are no edge labels

Formal semantics

```
\mathfrak{S}, s \vDash P : iff s \in P

\mathfrak{S}, s \vDash \varphi \land \psi : iff \mathfrak{S}, s \vDash \varphi and \mathfrak{S}, s \vDash \psi

\mathfrak{S}, s \vDash \varphi \lor \psi : iff \mathfrak{S}, s \vDash \varphi or \mathfrak{S}, s \vDash \psi

\mathfrak{S}, s \vDash \neg \varphi : iff \mathfrak{S}, s \nvDash \varphi

\mathfrak{S}, s \vDash \langle a \rangle \varphi : iff there is s \to^a t such that \mathfrak{S}, t \vDash \varphi

\mathfrak{S}, s \vDash [a] \varphi : iff for all s \to^a t, we have \mathfrak{S}, t \vDash \varphi
```

 $P \land \diamondsuit Q$ 'The state is in P and there exists a transition to Q.' [a] \bot 'The state has no outgoing a-transition.'

Interpretations

- Temporal Logic talks about time:
 - states: points in time (discrete/continuous)
 - $\Diamond \varphi$ 'sometime in the future φ holds'
 - $\Box \varphi$ 'always in the future φ holds'
- Epistemic Logic talks about knowledge:
 - states: possible worlds
 - $\Diamond \varphi$ ' φ might be true'
 - ▶ $\Box \varphi$ ' φ is certainly true'

system
$$\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$$

▶ "P never holds."

system
$$\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$$

▶ "P never holds."

$$\neg \diamondsuit P$$

▶ "After every *P* there is some *Q*."

system
$$\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$$

▶ "P never holds."

$$\neg \diamondsuit P$$

► "After every *P* there is some *Q*."

$$\Box(P\to\diamondsuit Q)$$

"Once P holds, it holds forever."

system
$$\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$$

▶ "P never holds."

$$\neg \diamondsuit P$$

► "After every *P* there is some *Q*."

$$\Box(P\to\diamondsuit Q)$$

- ► "Once *P* holds, it holds forever." $\Box(P \rightarrow \Box P)$
- ▶ "There are infinitely many *P*."

system
$$\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$$

▶ "P never holds."

$$\neg \diamondsuit P$$

► "After every *P* there is some *Q*."

$$\Box (P \to \diamondsuit Q)$$

• "Once *P* holds, it holds forever."

$$\Box(P \to \Box P)$$

► "There are infinitely many *P*."

$$\Box \Diamond P$$

Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a formula $\varphi^*(x)$ of first-order logic such that

$$\mathfrak{S}, s \vDash \varphi$$
 iff $\mathfrak{S} \vDash \varphi^*(s)$.

Proof

Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a formula $\varphi^*(x)$ of first-order logic such that

$$\mathfrak{S}, s \vDash \varphi$$
 iff $\mathfrak{S} \vDash \varphi^*(s)$.

Proof

$$P^* := P(x)$$

$$(\varphi \wedge \psi)^* := \varphi^*(x) \wedge \psi^*(x)$$

$$(\varphi \vee \psi)^* := \varphi^*(x) \vee \psi^*(x)$$

$$(\neg \varphi)^* := \neg \varphi^*(x)$$

$$(\langle a \rangle \varphi)^* := \exists y [E_a(x, y) \wedge \varphi^*(y)]$$

$$([a]\varphi)^* := \forall y [E_a(x, y) \rightarrow \varphi^*(y)]$$

Bisimulation

S and T transition systems

$$Z \subseteq S \times T$$
 is a **bisimulation** if, for all $\langle s, t \rangle \in Z$,

(local)
$$s \in P \iff t \in P$$

(forth) for every
$$s \to a s'$$
, exists $t \to a t'$ with $\langle s', t' \rangle \in Z$,

(back) for every
$$t \to a t'$$
, exists $s \to a s'$ with $\langle s', t' \rangle \in Z$.

 \mathfrak{S} , s and \mathfrak{T} , t are bisimilar if there is a bisimulation Z with $\langle s, t \rangle \in Z$.

Unravelling

Lemma

 \mathfrak{S} and $\mathcal{U}(\mathfrak{S})$ are bisimilar.

Bisimulation invariance

Theorem

Two finite transition systems \mathfrak{S} and \mathfrak{T} are bisimilar if, and only if,

$$\mathfrak{S} \vDash \varphi \quad \Leftrightarrow \quad \mathfrak{T} \vDash \varphi$$
, for every modal formula φ .

Definition

A formula $\varphi(x)$ is **bisimulation invariant** if

$$\mathfrak{S}, s \sim \mathfrak{T}, t$$
 implies $\mathfrak{S} \vDash \varphi(s) \Leftrightarrow \mathfrak{T} \vDash \varphi(t)$.

Theorem

A first-order formula φ is equivalent to a **modal formula** if, and only if, it is **bisimulation invariant**.

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

Models

transistion systems where each state s is labelled with a Σ -structure \mathfrak{A}_s such that

$$s \to^a t$$
 implies $A_s \subseteq A_t$

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

Models

transistion systems where each state s is labelled with a $\Sigma\text{-structure}\,\mathfrak{A}_s$ such that

$$s \to^a t$$
 implies $A_s \subseteq A_t$

- ▶ $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$ is valid.
- ▶ $\forall x \Box \varphi(x) \rightarrow \Box \forall x \varphi(x)$ is not valid.

Tableau Proofs

Statements

$$s \vDash \varphi$$
 $s \not\vDash \varphi$ $s \rightarrow^a t$

s, t state labels, φ a modal formula

Rules

Tableaux

Construction

A **tableau** for a formula φ is constructed as follows:

- start with $s_0 \neq \varphi$
- choose a branch of the tree
- choose a statement $s = \psi/s \neq \psi$ on the branch
- choose a rule with head $s = \psi/s \neq \psi$
- add it at the bottom of the branch
- repeat until every branch contains both statements $s \models \psi$ and $s \not\models \psi$ for some formula ψ

Tableaux

Construction

A **tableau** for a formula φ is constructed as follows:

- start with $s_0 \not\models \varphi$
- choose a branch of the tree
- choose a statement $s = \psi/s \neq \psi$ on the branch
- choose a rule with head $s = \psi/s \neq \psi$
- add it at the bottom of the branch
- repeat until every branch contains both statements $s \models \psi$ and $s \not\models \psi$ for some formula ψ

Tableaux with premises Γ

▶ choose a branch, a state *s* on the branch, a premise $\psi \in \Gamma$, and add $s \models \psi$ to the branch

Rules

Rules

t a new state, t' every state with entry $s \rightarrow^a t'$ on the branch, c a new constant symbol, u an arbitrary term

Example $\varphi \vDash \Box \varphi$

Example $\models \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$

$$s \vDash \Box(\varphi \to \psi) \to (\Box\varphi \to \Box\psi)$$

$$s \vDash \Box(\varphi \to \psi)$$

$$s \vDash \Box\varphi$$

$$s \vDash \Box\varphi$$

$$s \vDash \Box\psi$$

$$t \vDash \psi$$

$$t \vDash \varphi$$

$$t \vDash \varphi \to \psi$$

Example $\models \Box \forall x \varphi \rightarrow \forall x \Box \varphi$

$$\begin{array}{c|c}
s \not\models \Box \forall x \varphi \to \forall x \Box \varphi \\
& \downarrow \\
s \models \Box \forall x \varphi \\
& \downarrow \\
s \not\models \forall x \Box \varphi \\
& \downarrow \\
s \mapsto t \\
& \downarrow \\
t \not\models \varphi[x \mapsto c] \\
& \downarrow \\
t \models \forall x \varphi \\
& \downarrow \\
t \models \varphi[x \mapsto c]
\end{array}$$

Soundness and Completeness

Consequence

 ψ is a **consequence** of Γ if, and only if, for all transition systems \mathfrak{S} ,

$$\mathfrak{S}, s \models \varphi$$
, for all $s \in S$ and $\varphi \in \Gamma$,

implies that

$$\mathfrak{S}, s \models \psi$$
, for all $s \in S$.

Soundness and Completeness

Consequence

 ψ is a **consequence** of Γ if, and only if, for all transition systems \mathfrak{S} ,

$$\mathfrak{S}, s \models \varphi$$
, for all $s \in S$ and $\varphi \in \Gamma$,

implies that

$$\mathfrak{S}, s \models \psi$$
, for all $s \in S$.

Theorem

A modal formula φ is a consequence of Γ if, and only if, there exists a tableau T for φ with premises Γ where every branch is contradictory.

Complexity

Theorem

Satisfiability for propositional modal logic is in **deterministic linear** space.

Theorem

Satisfiability for first-order modal logic is undecidable.

Temporal Logics

Linear Temporal Logic (LTL)

Speaks about **paths**. $P \longrightarrow \bullet \longrightarrow P, Q \longrightarrow Q \longrightarrow \bullet \longrightarrow \cdots$

Syntax

- atomic predicates P, Q, \ldots
- ▶ boolean operations ∧, ∨, ¬
- next $X\varphi$
- until $\varphi U \psi$
- finally $F\varphi := \top U\varphi$
- generally $G\varphi := \neg F \neg \varphi$

Examples

FP a state in P is reachable

GFP we can reach infinitely many states in P $(\neg P)U(P \land Q)$ the first reachable state in P is also in Q

Linear Temporal Logic (LTL)

Theorem

Let *L* be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- L can be defined by a star-free regular expression.

Linear Temporal Logic (LTL)

Theorem

Let *L* be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- L can be defined by a star-free regular expression.

Translation LTL to FO

$$P^* := P(x)$$

$$(\varphi \wedge \psi)^* := \varphi^*(x) \wedge \psi^*(x)$$

$$(\varphi \vee \psi)^* := \varphi^*(x) \vee \psi^*(x)$$

$$(\neg \varphi)^* := \neg \varphi^*(x)$$

$$(X\varphi)^* := \exists y[x < y \wedge \neg \exists z(x < z \wedge z < y) \wedge \varphi^*(y)]$$

$$(\varphi U\psi)^* := \exists y[x \le y \wedge \psi^*(y) \wedge \forall z[x \le z \wedge z < y \to \varphi^*(z)]]$$

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- ▶ *L* can be defined by a star-free regular expression.

Theorem

Satisfiablity of LTL formulae is PSPACE-complete.

Theorem

Model checking \mathfrak{S} , $s \models \varphi$ for LTL is PSPACE-complete. It can be done in

time
$$\mathcal{O}(|S| \cdot 2^{\mathcal{O}(|\varphi|)})$$
 or space $\mathcal{O}((|\varphi| + \log |S|)^2)$.

(formula complexity: PSPACE-complete; data complexity:

NLOGSPACE-complete)

Computation Tree Logic (CTL and CTL*)

Applies LTL-formulae to the branches of a tree.

Syntax (of CTL*)

• state formulae φ :

$$\varphi := P \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid A\psi \mid E\psi$$

• path formulae ψ :

$$\psi ::= \varphi \mid \psi \land \psi \mid \psi \lor \psi \mid \neg \psi \mid X\psi \mid \psi U\psi \mid F\psi \mid G\psi$$

Examples

EFP a state in *P* is reachable

AFP every branch contains a state in *P*

EGFP there is a branch with infinitely many *P*

EGEFP there is a branch such that we can reach P from every

of its states

Theorem

Satisfiability for CTL is EXPTIME-complete.

Model checking \mathfrak{S} , $s \models \varphi$ for CTL is **P-complete**. It can be done in

$$\mathbf{time} \ \mathcal{O} \big(|\varphi| \cdot |S| \big) \quad \text{or} \quad \mathbf{space} \ \mathcal{O} \big(|\varphi| \cdot \log^2 \left(|\varphi| \cdot |S| \right) \big) \,.$$

(data complexity: NLOGSPACE-complete)

Theorem

Satisfiability for CTL is EXPTIME-complete.

Model checking \mathfrak{S} , $s \models \varphi$ for CTL is **P-complete.** It can be done in

time
$$\mathcal{O}(|\varphi| \cdot |S|)$$
 or space $\mathcal{O}(|\varphi| \cdot \log^2(|\varphi| \cdot |S|))$.

(data complexity: NLOGSPACE-complete)

Theorem

Satisfiability for CTL* is 2EXPTIME-complete.

Model checking $\mathfrak{S}, s \models \varphi$ for CTL* is PSPACE-complete. It can be done in

time
$$\mathcal{O}(|S|^2 \cdot 2^{\mathcal{O}(|\varphi|)})$$
 or space $\mathcal{O}(|\varphi|(|\varphi| + \log|S|)^2)$.

(formula complexity: PSPACE-complete; data complexity: NLOGSPACE-complete)

Adds recursion to modal logic.

Syntax

$$\varphi ::= P \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu X. \varphi(X) \mid \nu X. \varphi(X)$$
 (*X* positive in $\mu X. \varphi(X)$ and $\nu X. \varphi(X)$)

Adds recursion to modal logic.

Syntax

$$\varphi \coloneqq P \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu X. \varphi(X) \mid \nu X. \varphi(X)$$

(*X* positive in $\mu X. \varphi(X)$ and $\nu X. \varphi(X)$)

Semantics

$$F_{\varphi}(X) := \{ s \in S \mid \mathfrak{S}, s \models \varphi(X) \}$$

$$\mu X. \varphi(X) : X_0 := \emptyset, \quad X_{i+1} := F_{\varphi}(X_i)$$

$$\nu X. \varphi(X) : X_0 := S, \quad X_{i+1} := F_{\varphi}(X_i)$$

Adds recursion to modal logic.

Syntax

$$\varphi \coloneqq P \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu X. \varphi(X) \mid \nu X. \varphi(X)$$

(*X* positive in $\mu X. \varphi(X)$ and $\nu X. \varphi(X)$)

Semantics

$$F_{\varphi}(X) := \{ s \in S \mid \mathfrak{S}, s \models \varphi(X) \}$$

$$\mu X. \varphi(X) : X_0 := \emptyset, \quad X_{i+1} := F_{\varphi}(X_i)$$

$$\nu X. \varphi(X) : X_0 := S, \quad X_{i+1} := F_{\varphi}(X_i)$$

Examples

$$\mu X(P \lor \diamondsuit X)$$
 a state in *P* is reachable $\nu X(P \land \diamondsuit X)$ there is a branch with all states in *P*

Expressive power

Theorem

For every CTL*-formula φ there exists an equivalent formula φ^* of the modal μ -calculus.

Expressive power

Theorem

For every CTL*-formula φ there exists an equivalent formula φ^* of the modal μ -calculus.

Proof (for CTL)

$$P^* := P$$

$$(\varphi \wedge \psi)^* := \varphi^* \wedge \psi^*$$

$$(\varphi \vee \psi)^* := \varphi^* \vee \psi^*$$

$$(\neg \varphi)^* := \neg \varphi^*$$

$$(EX\varphi)^* := \Diamond \varphi^*$$

$$(AX\varphi)^* := \Box \varphi^*$$

$$(E\varphi U\psi)^* := \mu X[\psi^* \vee (\varphi^* \wedge \Diamond X)]$$

$$(A\varphi U\psi)^* := \mu X[\psi^* \vee (\varphi^* \wedge \Box X)]$$

Theorem

A regular tree language can be defined in the modal μ -calculus if, and only if, it is bisimulation invariant.

Theorem

Satisfiability of μ -calculus formulae is decidable and complete for exponential time.

Model checking \mathfrak{S} , $s \models \varphi$ for the modal μ -calculus can be done in time $\mathcal{O}((|\varphi| \cdot |S|)^{|\varphi|})$.

(The satisfiability algorithm uses tree automata and parity games.)

Fixed points

Theorem

Let $\langle A, \leq \rangle$ be a complete partial order and $f: A \to A$ monotone. Then f has a least and a greatest fixed point and

$$lfp(f) = \lim_{n \to \infty} f^n(\bot)$$
 and $gfp(f) = \lim_{n \to \infty} f^n(\top)$

$$\perp \leq f(\perp)$$

$$\perp \leq f(\perp)$$

$$\Rightarrow f(\perp) \leq f(f(\perp))$$

$$\begin{array}{l}
\bot \le f(\bot) \\
\Rightarrow f(\bot) \le f(f(\bot)) \\
\Rightarrow f(f(\bot)) \le f(f(f(\bot)))
\end{array}$$

$$\perp \leq f(\perp)$$

$$\Rightarrow f(\perp) \leq f(f(\perp))$$

$$\Rightarrow f(f(\bot)) \leq f(f(f(\bot)))$$

$$\Rightarrow \dots$$

 $\Rightarrow f^n(+) > f^{n+1}(+)$

$$\Rightarrow f^n(\bot)) \le f^{n+1}(\bot)$$

$$\bot \le f(\bot)$$

$$\Rightarrow f(\bot) \le f(f(\bot))$$

$$\Rightarrow f(f(\bot)) \le f(f(f(\bot)))$$

\Rightarrow \ldots

$$\Rightarrow \dots$$
$$\Rightarrow f^{n}(\bot)) \le f^{n+1}(\bot)$$

$$f^{n+1}(\bot)$$

$$\Rightarrow \bot \le f(\bot) \le f^2(\bot) \le \cdots \le f^n(\bot) \le \cdots$$

$$\perp \leq f(\perp)$$

$$\Rightarrow f(\bot) \le f(f(\bot))$$

$$\Rightarrow f(f(\bot)) \le f(f(f(\bot)))$$

$$\Rightarrow \dots$$

$$\Rightarrow \dots$$
$$\Rightarrow f^{n}(\bot)) \le f^{n+1}(\bot)$$

$$f^{n+1}(\bot)$$

$$\Rightarrow \bot \le f(\bot) \le f^2(\bot) \le \cdots \le f^n(\bot) \le \cdots$$

exists
$$n$$
 with $f^n(\bot) = f^{n+1}(\bot)$

$$\perp \leq f(\perp)$$

 $\Rightarrow \dots$

$$\Rightarrow f(\bot) \le f(f(\bot))$$

$$\Rightarrow f(f(\bot)) \le f(f(f(\bot)))$$

$$\Rightarrow f^n(\bot)) \le f^{n+1}(\bot)$$

$$^{n+1}(\perp)$$

$$\Rightarrow \bot \le f(\bot) \le f^2(\bot)) \le \dots \le f^n(\bot) \le \dots$$

exists *n* with $f^n(\bot) = f^{n+1}(\bot)$

Least fixed point

$$P = f(P)$$
 fixed point, $f^n(\bot) = f^{n+1}(\bot)$

$$\perp \leq f(\perp)$$

$$\Rightarrow f(\bot) \le f(f(\bot))$$

$$\Rightarrow f(f(\bot)) \le f(f(f(\bot)))$$

\Rightarrow \ldots

$$\Rightarrow f^n(\bot)) \le f^{n+1}(\bot)$$

$$f^2(\bot)$$

$$\Rightarrow \bot \le f(\bot) \le f^2(\bot)) \le \cdots \le f^n(\bot) \le \cdots$$

exists
$$n$$
 with $f^n(\bot) = f^{n+1}(\bot)$

Least fixed point

$$P = f(P)$$
 fixed point, $f^n(\bot) = f^{n+1}(\bot)$

$$\perp \leq P$$

$$\perp \leq f(\perp)$$

Least fixed point

 $\Rightarrow f^n(\bot) \leq f^n(P) = P$

$$\begin{array}{l}
\bot \le f(\bot) \\
\Rightarrow f(\bot) \le f(f(\bot)) \\
\Rightarrow f(f(\bot)) \le f(f(f(\bot)))
\end{array}$$

$$\Rightarrow \dots$$
$$\Rightarrow f^{n}(\bot)) \le f^{n+1}(\bot)$$

exists *n* with $f^n(\bot) = f^{n+1}(\bot)$

$$^{1}(\perp)$$

$$(\pm)$$

$$\Rightarrow \bot \le f(\bot) \le f^2(\bot) \le \cdots \le f^n(\bot) \le \cdots$$

P = f(P) fixed point, $f^{n}(\bot) = f^{n+1}(\bot)$

$$f^2(\bot)$$

$$(\pm)$$

$$(\perp)$$

$$(\pm)$$

$$f(\perp)$$

 $\Rightarrow \dots$

 $\perp < P$

Syntax

- element variables: x, y, z, \dots
- set variables: X, Y, Z, \dots
- atomic formulae: $R(\bar{x})$, x = y, X(x)
- boolean operations: \land , \lor , \neg , \rightarrow , \leftrightarrow
- quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example

• "The set *X* is empty."

Syntax

- element variables: x, y, z, \dots
- set variables: X, Y, Z, \dots
- atomic formulae: $R(\bar{x})$, x = y, X(x)
- boolean operations: \land , \lor , \neg , \rightarrow , \leftrightarrow
- quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example

- "The set *X* is empty."
 - $\neg \exists x X(x)$
- " $X \subseteq Y$ "

Syntax

- element variables: x, y, z, \dots
- set variables: X, Y, Z, \dots
- atomic formulae: $R(\bar{x})$, x = y, X(x)
- boolean operations: \land , \lor , \neg , \rightarrow , \leftrightarrow
- quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example

• "The set *X* is empty."

$$\neg \exists x X(x)$$

• "*X* ⊆ *Y*"

$$\forall z[X(z)\to Y(z)]$$

• "There exists a path from *x* to *y*."

Syntax

- element variables: x, y, z, \dots
- set variables: X, Y, Z, \dots
- atomic formulae: $R(\bar{x})$, x = y, X(x)
- boolean operations: \land , \lor , \neg , \rightarrow , \leftrightarrow
- quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example

• "The set *X* is empty."

$$\neg \exists x X(x)$$

$$\forall z[X(z) \rightarrow Y(z)]$$

• "There exists a path from *x* to *y*."

$$\forall Z [Z(x) \land \forall u \forall v [Z(u) \land E(u,v) \rightarrow Z(v)] \rightarrow Z(y)]$$

Quantifier rank

nesting depth of quantifiers in φ

Quantifier rank

nesting depth of quantifiers in φ

Equivalence

$$\mathfrak{A}, \bar{P}, \bar{a} \equiv_m \mathfrak{B}, \bar{Q}, \bar{b}$$
 :iff $\mathfrak{A} \models \varphi(\bar{P}, \bar{a}) \Leftrightarrow \mathfrak{B} \models \varphi(\bar{Q}, \bar{b})$ for all $\varphi(\bar{X}, \bar{x})$ of quantifier rank $\leq m$

Quantifier rank

nesting depth of quantifiers in φ

Equivalence

$$\mathfrak{A}, \bar{P}, \bar{a} \equiv_m \mathfrak{B}, \bar{Q}, \bar{b}$$
 :iff $\mathfrak{A} \models \varphi(\bar{P}, \bar{a}) \Leftrightarrow \mathfrak{B} \models \varphi(\bar{Q}, \bar{b})$ for all $\varphi(\bar{X}, \bar{x})$ of quantifier rank $\leq m$

word structures: $\mathfrak{W} = \langle [n], \leq, (P_a)_{a \in \Sigma} \rangle$

Quantifier rank

nesting depth of quantifiers in φ

Equivalence

$$\mathfrak{A}, \bar{P}, \bar{a} \equiv_m \mathfrak{B}, \bar{Q}, \bar{b}$$
 :iff $\mathfrak{A} \models \varphi(\bar{P}, \bar{a}) \Leftrightarrow \mathfrak{B} \models \varphi(\bar{Q}, \bar{b})$ for all $\varphi(\bar{X}, \bar{x})$ of quantifier rank $\leq m$

word structures: $\mathfrak{W} = \langle [n], \leq, (P_a)_{a \in \Sigma} \rangle$

Lemma

$$u \equiv_m u'$$
 and $v \equiv_m v'$ implies $uv \equiv_m u'v'$

Proof induction on *m*

•
$$Q := \Sigma^*/\equiv_m$$

- $Q := \Sigma^*/\equiv_m$
- $\bullet \; q_0 \coloneqq [\varepsilon]_m$

- $Q := \Sigma^*/\equiv_m$
- $\bullet \; q_0 \coloneqq [\varepsilon]_m$
- $\bullet \; \delta([w]_m,c) \coloneqq [wc]_m$

- $Q := \Sigma^*/\equiv_m$
- $\bullet \; q_0 \coloneqq [\varepsilon]_m$
- $\bullet \; \delta([w]_m,c) \coloneqq [wc]_m$
- $\bullet\; F \coloneqq \left\{\, [w]_m \mid w \vDash \varphi\,\right\}$

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi} = \langle Q, \Sigma, \delta, q_0, F \rangle$

- $Q := \Sigma^*/\equiv_m$
- $\bullet \; q_0 \coloneqq [\varepsilon]_m$
- $\delta([w]_m,c) \coloneqq [wc]_m$
- $F := \{ [w]_m \mid w \vDash \varphi \}$

Theorem

 \mathcal{A}_{φ} accepts a word $w \in \Sigma^*$ if, and only if, $w \models \varphi$.

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi} = \langle Q, \Sigma, \delta, q_0, F \rangle$

- $Q := \Sigma^*/\equiv_m$
- $\bullet \; q_0 \coloneqq [\varepsilon]_m$
- $\delta([w]_m,c) \coloneqq [wc]_m$
- $F := \{ [w]_m \mid w \vDash \varphi \}$

Theorem

 \mathcal{A}_{φ} accepts a word $w \in \Sigma^*$ if, and only if, $w \models \varphi$.

Corollary

 φ is satisfiable if, and only if, \mathcal{A}_{φ} accepts some word.

Description Logics

Description Logic

General Idea

Extend modal logic with operations that are not bisimulation-invariant.

Applications

Knowledge representation, deductive databases, system modelling, semantic web

Ingredients

- ▶ individuals: elements (Anna, John, Paul, Marry,...)
- concepts: unary predicates (person, male, female,...)
- roles: binary relations (has_child, is_married_to,...)
- ► TBox: terminology definitions
- ► ABox: assertions about the world

Example

TBox

```
man := person ∧ male
woman := person ∧ female
father := man ∧ ∃has_child.person
mother := woman ∧ ∃has_child.person
```

ABox

```
man(John)
man(Paul)
woman(Anna)
woman(Marry)
has_child(Anna, Paul)
is_married_to(Anna, John)
```

Syntax

Concepts

$$\varphi ::= P \mid \top \mid \bot \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \forall R\varphi \mid \exists R\varphi \mid (\geq nR) \mid (\leq nR)$$

Terminology axioms

$$\varphi \sqsubseteq \psi$$
 $\varphi \equiv \psi$

TBox Axioms of the form $P \equiv \varphi$.

Assertions

$$\varphi(a)$$
 $R(a,b)$

Extensions

- operations on roles: $R \cap S$, $R \cup S$, $R \circ S$, $\neg R$, R^+ , R^* , R^-
- extended number restrictions: $(\ge nR)\varphi$, $(\le nR)\varphi$

Algorithmic Problems

- Satisfiability: Is φ satisfiable?
- Subsumption: $\varphi \models \psi$?
- Equivalence: $\varphi \equiv \psi$?
- **Disjointness:** $\varphi \wedge \psi$ unsatisfiable?

All problems can be solved with standard methods like **tableaux** or **tree automata**.

Semantic Web: OWL (functional syntax)

```
Ontology(
  Class(pp:man complete
          intersectionOf(pp:person pp:male))
  Class(pp:woman complete
          intersectionOf(pp:person pp:female))
  Class(pp:father complete
          intersectionOf(pp:man
            restriction(pp:has_child pp:person)))
  Class(pp:mother complete
          intersectionOf(pp:woman
            restriction(pp:has_child pp:person)))
  Individual(pp:John type(pp:man))
  Individual(pp:Paul type(pp:man))
  Individual(pp:Anna type(pp:woman)
              value(pp:has_child pp:Paul)
              value(pp:is_married_to pp:John))
  Individual(pp:Marry type(pp:woman))
```