IAoo8: Computational Logic

6. Modal Logic

Achim Blumensath
 blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Basic Concepts

Transition Systems

directed graph $\mathfrak{S}=\left\langle S,\left(E_{a}\right)_{a \in A},\left(P_{i}\right)_{i \in I}, s_{0}\right\rangle$ with

- states S
- initial state $s_{0} \in S$
- edge relations E_{a} with edge colours $a \in A$ ('actions')
- unary predicates P_{i} with vertex colours $i \in I$ ('properties')

Modal logic

Propositional logic with modal operators

- $\langle a\rangle \varphi$ 'there exists an a-successor where φ holds'
- [a] φ ' φ holds in every a-successor'

Notation: $\diamond \varphi, \square \varphi$ if there are no edge labels
Formal semantics

$$
\begin{array}{lll}
\mathfrak{S}, s \vDash P & : \text { iff } & s \in P \\
\mathfrak{S}, s \vDash \varphi \wedge \psi & : \text { iff } & \mathfrak{S}, s \vDash \varphi \text { and } \mathfrak{S}, s \vDash \psi \\
\mathfrak{S}, s \vDash \varphi \vee \psi & : \text { iff } & \mathfrak{S}, s \vDash \varphi \text { or } \mathfrak{S}, s \vDash \psi \\
\mathfrak{S}, s \vDash \neg \varphi & : \text { iff } & \mathfrak{S}, s \vDash \varphi \\
\mathfrak{S}, s \vDash\langle a\rangle \varphi & : \text { iff } & \text { there is } s \rightarrow^{a} t \text { such that } \mathfrak{S}, t \vDash \varphi \\
\mathfrak{S}, s \vDash[a] \varphi & : \text { iff } & \text { for all } s \rightarrow^{a} t, \text { we have } \mathfrak{S}, t \vDash \varphi
\end{array}
$$

Examples

$P \wedge \diamond Q \quad$ 'The state is in P and there exists a transition to Q.'
$[a] \perp \quad$ 'The state has no outgoing a-transition.'

Interpretations

- Temporal Logic talks about time:
- states: points in time (discrete/continuous)
- $\diamond \varphi \quad$ 'sometime in the future φ holds'
- $\square \varphi$ 'always in the future φ holds'
- Epistemic Logic talks about knowledge:
- states: possible worlds
- $\diamond \varphi$ ‘ φ might be true’
- $\square \varphi$ ' φ is certainly true’

Examples: Temporal Logic

system $\mathfrak{S}=\langle S, \leq, \bar{P}\rangle$

- " P never holds."

Examples: Temporal Logic

system $\mathfrak{S}=\langle S, \leq, \bar{P}\rangle$

- " P never holds."
$\neg \diamond P$
- "After every P there is some Q."

Examples: Temporal Logic

system $\mathfrak{S}=\langle S, \leq, \bar{P}\rangle$

- " P never holds."

$$
\neg \diamond P
$$

- "After every P there is some Q."

$$
\square(P \rightarrow \diamond Q)
$$

- "Once P holds, it holds forever."

Examples: Temporal Logic

system $\mathfrak{S}=\langle S, \leq, \bar{P}\rangle$

- " P never holds."

$$
\neg \diamond P
$$

- "After every P there is some Q."

$$
\square(P \rightarrow \diamond Q)
$$

- "Once P holds, it holds forever."

$$
\square(P \rightarrow \square P)
$$

- "There are infinitely many P."

Examples: Temporal Logic

system $\mathfrak{S}=\langle S, \leq, \bar{P}\rangle$

- " P never holds."

$$
\neg \diamond P
$$

- "After every P there is some Q."

$$
\square(P \rightarrow \diamond Q)
$$

- "Once P holds, it holds forever."

$$
\square(P \rightarrow \square P)
$$

- "There are infinitely many P."
$\square \diamond P$

Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a formula $\varphi^{*}(x)$ of first-order logic such that

$$
\mathfrak{S}, s \vDash \varphi \quad \text { iff } \quad \mathfrak{S} \vDash \varphi^{*}(s) .
$$

Proof

Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a formula $\varphi^{*}(x)$ of first-order logic such that

$$
\mathfrak{S}, s \vDash \varphi \quad \text { iff } \quad \mathfrak{S} \vDash \varphi^{*}(s)
$$

Proof

$$
\begin{aligned}
P^{*} & :=P(x) \\
(\varphi \wedge \psi)^{*} & :=\varphi^{*}(x) \wedge \psi^{*}(x) \\
(\varphi \vee \psi)^{*} & :=\varphi^{*}(x) \vee \psi^{*}(x) \\
(\neg \varphi)^{*} & :=\neg \varphi^{*}(x) \\
(\langle a\rangle \varphi)^{*} & :=\exists y\left[E_{a}(x, y) \wedge \varphi^{*}(y)\right] \\
([a] \varphi)^{*} & :=\forall y\left[E_{a}(x, y) \rightarrow \varphi^{*}(y)\right]
\end{aligned}
$$

Bisimulation

\mathfrak{S} and \mathfrak{T} transition systems
$Z \subseteq S \times T$ is a bisimulation if, for all $\langle s, t\rangle \in Z$,
(local) $s \in P \Leftrightarrow t \in P$
(forth) for every $s \rightarrow^{a} s^{\prime}$, exists $t \rightarrow{ }^{a} t^{\prime}$ with $\left\langle s^{\prime}, t^{\prime}\right\rangle \in Z$, (back) for every $t \rightarrow^{a} t^{\prime}$, exists $s \rightarrow^{a} s^{\prime}$ with $\left\langle s^{\prime}, t^{\prime}\right\rangle \in Z$.
\mathfrak{S}, s and \mathfrak{T}, t are bisimilar if there is a bisimulation Z with $\langle s, t\rangle \in Z$.

Examples

Examples

Examples

Examples

Unravelling

\mathfrak{S}

Lemma
\mathfrak{S} and $\mathcal{U}(\mathfrak{S})$ are bisimilar.

Bisimulation invariance

Theorem

Two finite transition systems \mathfrak{S} and \mathfrak{T} are bisimilar if, and only if,

$$
\mathfrak{S} \vDash \varphi \quad \Leftrightarrow \quad \mathfrak{T} \vDash \varphi, \quad \text { for every modal formula } \varphi
$$

Definition

A formula $\varphi(x)$ is bisimulation invariant if

$$
\mathfrak{S}, s \sim \mathfrak{T}, t \quad \text { implies } \quad \mathfrak{S} \vDash \varphi(s) \Leftrightarrow \mathfrak{T} \vDash \varphi(t) .
$$

Theorem

A first-order formula φ is equivalent to a modal formula if, and only if, it is bisimulation invariant.

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a\rangle \varphi$ and $[a] \varphi$

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a\rangle \varphi$ and $[a] \varphi$

Models

transistion systems where each state s is labelled with a Σ-structure \mathfrak{A}_{s} such that

$$
s \rightarrow^{a} t \quad \text { implies } \quad A_{s} \subseteq A_{t}
$$

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a\rangle \varphi$ and $[a] \varphi$

Models

transistion systems where each state s is labelled with a Σ-structure \mathfrak{A}_{s} such that

$$
s \rightarrow^{a} t \quad \text { implies } \quad A_{s} \subseteq A_{t}
$$

Examples

- $\square \forall x \varphi(x) \rightarrow \forall x \square \varphi(x)$ is valid.
- $\forall x \square \varphi(x) \rightarrow \square \forall x \varphi(x)$ is not valid.

Tableaux

Tableau Proofs

Statements

$$
s \vDash \varphi \quad s \not \vDash \varphi \quad s \rightarrow^{a} t
$$

s, t state labels, φ a modal formula
Rules

Tableaux

Construction

A tableau for a formula φ is constructed as follows:

- start with $s_{0} \not \models \varphi$
- choose a branch of the tree
- choose a statement $s \vDash \psi / s \nLeftarrow \psi$ on the branch
- choose a rule with head $s \vDash \psi / s \nRightarrow \psi$
- add it at the bottom of the branch
- repeat until every branch contains both statements $s \vDash \psi$ and $s \not \vDash \psi$ for some formula ψ

Tableaux

Construction

A tableau for a formula φ is constructed as follows:

- start with $s_{0} \not \models \varphi$
- choose a branch of the tree
- choose a statement $s \vDash \psi / s \nLeftarrow \psi$ on the branch
- choose a rule with head $s \vDash \psi / s \nRightarrow \psi$
- add it at the bottom of the branch
- repeat until every branch contains both statements $s \vDash \psi$ and $s \nRightarrow \psi$ for some formula ψ

Tableaux with premises Γ

- choose a branch, a state s on the branch, a premise $\psi \in \Gamma$, and add $s \vDash \psi$ to the branch

Rules

Rules

t a new state, t^{\prime} every state with entry $s \rightarrow^{a} t^{\prime}$ on the branch, c a new constant symbol, u an arbitrary term

Example $\varphi \vDash \square \varphi$

Example $\vDash \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$

$$
\begin{aligned}
& s \not \vDash \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi) \\
& \begin{array}{c}
\mid \\
s \vDash \square(\varphi \rightarrow \psi) \\
s \neq \square \varphi \rightarrow \square \psi
\end{array} \\
& \stackrel{\mid}{s \vDash \square \varphi} \\
& s \neq \square \psi \\
& t \nrightarrow t
\end{aligned}
$$

Example $\vDash \square \forall x \varphi \rightarrow \forall x \square \varphi$

$$
\begin{gathered}
s \not \vDash \square \forall x \varphi \rightarrow \forall x \square \varphi \\
s \vDash \square \forall x \varphi \\
s \neq \forall x \square \varphi \\
s \nexists \square \varphi[x \mapsto c] \\
s \rightarrow t \\
t \neq \varphi[x \mapsto c] \\
t \vDash \forall x \varphi \\
t \vDash \varphi[x \mapsto c]
\end{gathered}
$$

Soundness and Completeness

Consequence
ψ is a consequence of $\Gamma \mathrm{if}$, and only if, for all transition systems \mathfrak{S},

$$
\mathfrak{S}, s \vDash \varphi, \quad \text { for all } s \in S \text { and } \varphi \in \Gamma \text {, }
$$

implies that

$$
\mathfrak{S}, s \vDash \psi, \quad \text { for all } s \in S
$$

Soundness and Completeness

Consequence
ψ is a consequence of $\Gamma \mathrm{if}$, and only if, for all transition systems \mathfrak{S},

$$
\mathfrak{S}, s \vDash \varphi, \quad \text { for all } s \in S \text { and } \varphi \in \Gamma,
$$

implies that

$$
\mathfrak{S}, s \vDash \psi, \quad \text { for all } s \in S
$$

Theorem

A modal formula φ is a consequence of Γ if, and only if, there exists a tableau T for φ with premises Γ where every branch is contradictory.

Complexity

Theorem
Satisfiability for propositional modal logic is in deterministic linear space.

Theorem
Satisfiability for first-order modal logic is undecidable.

Temporal Logics

Linear Temporal Logic (LTL)

Speaks about paths.

$$
P \longrightarrow \bullet \longrightarrow \bullet \longrightarrow P, Q \longrightarrow Q \longrightarrow \bullet \longrightarrow \cdots
$$

Syntax

- atomic predicates P, Q, \ldots
- boolean operations \wedge, \vee, \neg
- next $X \varphi$
- until $\varphi U \psi$
- finally $F \varphi:=T U \varphi$
- generally $G \varphi:=\neg F \neg \varphi$

Examples

FP
GFP
$(\neg P) U(P \wedge Q) \quad$ the first reachable state in P is also in Q

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- L can be defined by a star-free regular expression.

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- L can be defined by a star-free regular expression.

Translation LTL to FO

$$
\begin{aligned}
P^{*} & :=P(x) \\
(\varphi \wedge \psi)^{*} & :=\varphi^{*}(x) \wedge \psi^{*}(x) \\
(\varphi \vee \psi)^{*} & :=\varphi^{*}(x) \vee \psi^{*}(x) \\
(\neg \varphi)^{*} & :=\neg \varphi^{*}(x) \\
(X \varphi)^{*} & :=\exists y\left[x<y \wedge \neg \exists z(x<z \wedge z<y) \wedge \varphi^{*}(y)\right] \\
(\varphi U \psi)^{*} & :=\exists y\left[x \leq y \wedge \psi^{*}(y) \wedge \forall z\left[x \leq z \wedge z<y \rightarrow \varphi^{*}(z)\right]\right]
\end{aligned}
$$

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- L can be defined by a star-free regular expression.

Theorem

Satisfiablity of LTL formulae is PSPACE-complete.

Theorem

Model checking $\mathfrak{S}, s \vDash \varphi$ for LTL is PSPACE-complete. It can be done in

$$
\text { time } \mathcal{O}\left(|S| \cdot 2^{\mathcal{O}(|\varphi|)}\right) \quad \text { or } \quad \text { space } \mathcal{O}\left((|\varphi|+\log |S|)^{2}\right)
$$

(formula complexity: PSPACE-complete; data complexity: NLOGSPACE-complete)

Computation Tree Logic (CTL and CTL*)

Applies LTL-formulae to the branches of a tree.
Syntax (of CTL*)

- state formulae φ :

$$
\varphi::=P|\varphi \wedge \varphi| \varphi \vee \varphi|\neg \varphi| A \psi \mid E \psi
$$

- path formulae ψ :

$$
\psi::=\varphi|\psi \wedge \psi| \psi \vee \psi|\neg \psi| X \psi|\psi U \psi| F \psi \mid G \psi
$$

Examples
EFP a state in P is reachable
AFP every branch contains a state in P
EGFP there is a branch with infinitely many P
EGEFP there is a branch such that we can reach P from every of its states

Theorem

Satisfiability for CTL is EXPTIME-complete.
Model checking $\mathfrak{S}, s \vDash \varphi$ for CTL is P-complete. It can be done in

$$
\text { time } \mathcal{O}(|\varphi| \cdot|S|) \quad \text { or } \quad \text { space } \mathcal{O}\left(|\varphi| \cdot \log ^{2}(|\varphi| \cdot|S|)\right)
$$

(data complexity: NLOGSPACE-complete)

Theorem

Satisfiability for CTL is EXPTIME-complete.
Model checking $\mathfrak{S}, s \vDash \varphi$ for CTL is P-complete. It can be done in

$$
\text { time } \mathcal{O}(|\varphi| \cdot|S|) \quad \text { or } \quad \text { space } \mathcal{O}\left(|\varphi| \cdot \log ^{2}(|\varphi| \cdot|S|)\right) .
$$

(data complexity: NLOGSPACE-complete)
Theorem
Satisfiability for CTL* is 2EXPTIME-complete.
Model checking $\mathfrak{S}, s \vDash \varphi$ for CTL* is PSPACE-complete. It can be done in

$$
\text { time } \mathcal{O}\left(|S|^{2} \cdot 2^{\mathcal{O}(|\varphi|)}\right) \quad \text { or } \quad \text { space } \mathcal{O}\left(|\varphi|(|\varphi|+\log |S|)^{2}\right)
$$

(formula complexity: PSPACE-complete; data complexity: NLOGSPACE-complete)

The modal μ-calculus $\left(L_{\mu}\right)$

Adds recursion to modal logic.
Syntax

$$
\varphi::=P|\varphi \wedge \varphi| \varphi \vee \varphi|\neg \varphi|\langle a\rangle \varphi|[a] \varphi| \mu X . \varphi(X) \mid v X . \varphi(X)
$$

(X positive in $\mu X . \varphi(X)$ and $v X . \varphi(X)$)

The modal μ-calculus (L_{μ})

Adds recursion to modal logic.
Syntax

$$
\varphi::=P|\varphi \wedge \varphi| \varphi \vee \varphi|\neg \varphi|\langle a\rangle \varphi|[a] \varphi| \mu X . \varphi(X) \mid v X . \varphi(X)
$$

(X positive in $\mu X . \varphi(X)$ and $v X . \varphi(X)$)
Semantics

$$
\begin{aligned}
& F_{\varphi}(X):=\{s \in S \mid \mathfrak{S}, s \vDash \varphi(X)\} \\
& \mu X . \varphi(X): \quad X_{0}:=\varnothing, \quad X_{i+1}:=F_{\varphi}\left(X_{i}\right) \\
& v X . \varphi(X): \quad X_{0}:=S, \quad X_{i+1}:=F_{\varphi}\left(X_{i}\right)
\end{aligned}
$$

The modal μ-calculus $\left(L_{\mu}\right)$

Adds recursion to modal logic.
Syntax

$$
\varphi::=P|\varphi \wedge \varphi| \varphi \vee \varphi|\neg \varphi|\langle a\rangle \varphi|[a] \varphi| \mu X . \varphi(X) \mid v X . \varphi(X)
$$

(X positive in $\mu X . \varphi(X)$ and $v X . \varphi(X)$)
Semantics

$$
\begin{aligned}
& F_{\varphi}(X):=\{s \in S \mid \mathfrak{S}, s \vDash \varphi(X)\} \\
& \mu X . \varphi(X): \quad X_{0}:=\varnothing, \quad X_{i+1}:=F_{\varphi}\left(X_{i}\right) \\
& v X . \varphi(X): \quad X_{0}:=S, \quad X_{i+1}:=F_{\varphi}\left(X_{i}\right)
\end{aligned}
$$

Examples
$\mu X(P \vee \diamond X) \quad$ a state in P is reachable
$v X(P \wedge \diamond X) \quad$ there is a branch with all states in P

Expressive power

Theorem

For every CTL*-formula φ there exists an equivalent formula φ^{*} of the modal μ-calculus.

Expressive power

Theorem

For every CTL*-formula φ there exists an equivalent formula φ^{*} of the modal μ-calculus.

Proof (for CTL)

$$
\begin{aligned}
P^{*} & :=P \\
(\varphi \wedge \psi)^{*} & :=\varphi^{*} \wedge \psi^{*} \\
(\varphi \vee \psi)^{*} & :=\varphi^{*} \vee \psi^{*} \\
(\neg \varphi)^{*} & :=\neg \varphi^{*} \\
(E X \varphi)^{*} & :=\diamond \varphi^{*} \\
(A X \varphi)^{*} & :=\square \varphi^{*} \\
(E \varphi U \psi)^{*} & :=\mu X\left[\psi^{*} \vee\left(\varphi^{*} \wedge \diamond X\right)\right] \\
(A \varphi U \psi)^{*} & :=\mu X\left[\psi^{*} \vee\left(\varphi^{*} \wedge \square X\right)\right]
\end{aligned}
$$

The modal μ-calculus (L_{μ})

Theorem

A regular tree language can be defined in the modal μ-calculus if, and only if, it is bisimulation invariant.

Theorem

Satisfiability of μ-calculus formulae is decidable and complete for exponential time.

Model checking $\mathfrak{S}, s \vDash \varphi$ for the modal μ-calculus can be done in time $\mathcal{O}\left((|\varphi| \cdot|S|)^{|\varphi|}\right)$.
(The satisfiability algorithm uses tree automata and parity games.)

Fixed points

Theorem

Let $\langle A, \leq\rangle$ be a complete partial order and $f: A \rightarrow A$ monotone. Then f has a least and a greatest fixed point and

$$
\operatorname{lfp}(f)=\lim _{n \rightarrow \infty} f^{n}(\perp) \quad \text { and } \quad \operatorname{gfp}(f)=\lim _{n \rightarrow \infty} f^{n}(\top)
$$

Monotonicity
$\perp \leq f(\perp)$

Monotonicity

$\perp \leq f(\perp)$
$\Rightarrow f(\perp) \leq f(f(\perp))$

Monotonicity

$$
\begin{aligned}
& \perp \leq f(\perp) \\
& \Rightarrow f(\perp) \leq f(f(\perp)) \\
& \Rightarrow f(f(\perp)) \leq f(f(f(\perp)))
\end{aligned}
$$

Monotonicity

$$
\begin{aligned}
& \perp \leq f(\perp) \\
& \Rightarrow f(\perp) \leq f(f(\perp)) \\
& \Rightarrow f(f(\perp)) \leq f(f(f(\perp))) \\
& \Rightarrow \ldots \\
& \left.\Rightarrow f^{n}(\perp)\right) \leq f^{n+1}(\perp)
\end{aligned}
$$

Monotonicity

$$
\begin{aligned}
& \perp \leq f(\perp) \\
& \Rightarrow f(\perp) \leq f(f(\perp)) \\
& \Rightarrow f(f(\perp)) \leq f(f(f(\perp))) \\
& \Rightarrow \ldots \\
& \left.\Rightarrow f^{n}(\perp)\right) \leq f^{n+1}(\perp) \\
& \left.\Rightarrow \perp \leq f(\perp) \leq f^{2}(\perp)\right) \leq \cdots \leq f^{n}(\perp) \leq \cdots
\end{aligned}
$$

Monotonicity

$$
\begin{aligned}
& \perp \leq f(\perp) \\
& \Rightarrow f(\perp) \leq f(f(\perp)) \\
& \Rightarrow f(f(\perp)) \leq f(f(f(\perp))) \\
& \Rightarrow \ldots \\
& \left.\Rightarrow f^{n}(\perp)\right) \leq f^{n+1}(\perp) \\
& \left.\Rightarrow \perp \leq f(\perp) \leq f^{2}(\perp)\right) \leq \cdots \leq f^{n}(\perp) \leq \cdots
\end{aligned}
$$

$$
\text { exists } n \text { with } f^{n}(\perp)=f^{n+1}(\perp)
$$

Monotonicity

$$
\begin{aligned}
& \perp \leq f(\perp) \\
& \Rightarrow f(\perp) \leq f(f(\perp)) \\
& \Rightarrow f(f(\perp)) \leq f(f(f(\perp))) \\
& \Rightarrow \ldots \\
& \left.\Rightarrow f^{n}(\perp)\right) \leq f^{n+1}(\perp) \\
& \left.\Rightarrow \perp \leq f(\perp) \leq f^{2}(\perp)\right) \leq \cdots \leq f^{n}(\perp) \leq \cdots
\end{aligned}
$$

exists n with $f^{n}(\perp)=f^{n+1}(\perp)$
Least fixed point
$P=f(P)$ fixed point, $f^{n}(\perp)=f^{n+1}(\perp)$

Monotonicity

$$
\begin{aligned}
& \perp \leq f(\perp) \\
& \Rightarrow f(\perp) \leq f(f(\perp)) \\
& \Rightarrow f(f(\perp)) \leq f(f(f(\perp))) \\
& \Rightarrow \ldots \\
& \left.\Rightarrow f^{n}(\perp)\right) \leq f^{n+1}(\perp) \\
& \left.\Rightarrow \perp \leq f(\perp) \leq f^{2}(\perp)\right) \leq \cdots \leq f^{n}(\perp) \leq \cdots
\end{aligned}
$$

exists n with $f^{n}(\perp)=f^{n+1}(\perp)$
Least fixed point
$P=f(P)$ fixed point, $f^{n}(\perp)=f^{n+1}(\perp)$
$1 \leq P$

Monotonicity

$$
\begin{aligned}
& \perp \leq f(\perp) \\
& \Rightarrow f(\perp) \leq f(f(\perp)) \\
& \Rightarrow f(f(\perp)) \leq f(f(f(\perp))) \\
& \Rightarrow \ldots \\
& \left.\Rightarrow f^{n}(\perp)\right) \leq f^{n+1}(\perp) \\
& \left.\Rightarrow \perp \leq f(\perp) \leq f^{2}(\perp)\right) \leq \cdots \leq f^{n}(\perp) \leq \cdots
\end{aligned}
$$

exists n with $f^{n}(\perp)=f^{n+1}(\perp)$

Least fixed point

$P=f(P)$ fixed point, $f^{n}(\perp)=f^{n+1}(\perp)$
$1 \leq P$
$\Rightarrow f^{n}(\perp) \leq f^{n}(P)=P$

Monadic Second-Order Logic

Syntax

- element variables: x, y, z, \ldots
- set variables: X, Y, Z, \ldots
- atomic formulae: $R(\bar{x}), x=y, X(x)$
- boolean operations: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$
- quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example

- "The set X is empty."

Monadic Second-Order Logic

Syntax

- element variables: x, y, z, \ldots
- set variables: X, Y, Z, \ldots
- atomic formulae: $R(\bar{x}), x=y, X(x)$
- boolean operations: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$
- quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example

- "The set X is empty."
$\neg \exists x X(x)$
- " $X \subseteq Y$ "

Monadic Second-Order Logic

Syntax

- element variables: x, y, z, \ldots
- set variables: X, Y, Z, \ldots
- atomic formulae: $R(\bar{x}), x=y, X(x)$
- boolean operations: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$
- quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example

- "The set X is empty."
$\neg \exists x X(x)$
- " $X \subseteq Y$ "

$$
\forall z[X(z) \rightarrow Y(z)]
$$

- "There exists a path from x to y."

Monadic Second-Order Logic

Syntax

- element variables: x, y, z, \ldots
- set variables: X, Y, Z, \ldots
- atomic formulae: $R(\bar{x}), x=y, X(x)$
- boolean operations: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$
- quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example

- "The set X is empty."

$$
\neg \exists x X(x)
$$

- " $X \subseteq Y$ "

$$
\forall z[X(z) \rightarrow Y(z)]
$$

- "There exists a path from x to y."

$$
\forall Z[Z(x) \wedge \forall u \forall v[Z(u) \wedge E(u, v) \rightarrow Z(v)] \rightarrow Z(y)]
$$

Equivalence

Quantifier rank

nesting depth of quantifiers in φ

Equivalence

Quantifier rank

nesting depth of quantifiers in φ
Equivalence

$$
\mathfrak{A}, \bar{P}, \bar{a} \equiv_{m} \mathfrak{B}, \bar{Q}, \bar{b} \quad \text { iff } \quad \mathfrak{A} \vDash \varphi(\bar{P}, \bar{a}) \Leftrightarrow \mathfrak{B} \vDash \varphi(\bar{Q}, \bar{b})
$$

for all $\varphi(\bar{X}, \bar{x})$ of quantifier rank $\leq m$

Equivalence

Quantifier rank

nesting depth of quantifiers in φ
Equivalence

$$
\begin{array}{lll}
\mathfrak{A}, \bar{P}, \bar{a} \equiv_{m} \mathfrak{B}, \bar{Q}, \bar{b} \quad \text { :iff } & \mathfrak{A} \vDash \varphi(\bar{P}, \bar{a}) \Leftrightarrow \mathfrak{B} \vDash \varphi(\bar{Q}, \bar{b}) \\
& \text { for all } \varphi(\bar{X}, \bar{x}) \text { of quantifier rank } \leq m
\end{array}
$$

word structures: $\mathfrak{W J}=\left\langle[n], \leq,\left(P_{a}\right)_{a \in \Sigma}\right\rangle$

Equivalence

Quantifier rank

nesting depth of quantifiers in φ
Equivalence

$$
\begin{array}{lll}
\mathfrak{A}, \bar{P}, \bar{a} \equiv_{m} \mathfrak{B}, \bar{Q}, \bar{b} \quad \text { :iff } & \mathfrak{A} \vDash \varphi(\bar{P}, \bar{a}) \Leftrightarrow \mathfrak{B} \vDash \varphi(\bar{Q}, \bar{b}) \\
& \text { for all } \varphi(\bar{X}, \bar{x}) \text { of quantifier rank } \leq m
\end{array}
$$

word structures: $\mathfrak{W J}=\left\langle[n], \leq,\left(P_{a}\right)_{a \in \Sigma}\right\rangle$
Lemma
$u \equiv_{m} u^{\prime}$ and $v \equiv_{m} v^{\prime} \quad$ implies $\quad u v \equiv_{m} u^{\prime} v^{\prime}$
Proof induction on m

Automata

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$

Automata

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$

- $Q:=\Sigma^{*} / \equiv_{m}$

Automata

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$

- $Q:=\Sigma^{*} / \equiv_{m}$
- $q_{0}:=[\varepsilon]_{m}$

Automata

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$

- $Q:=\Sigma^{*} / \equiv_{m}$
- $q_{0}:=[\varepsilon]_{m}$
- $\delta\left([w]_{m}, c\right):=[w c]_{m}$

Automata

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$

- $Q:=\Sigma^{*} / \equiv_{m}$
- $q_{0}:=[\varepsilon]_{m}$
- $\delta\left([w]_{m}, c\right):=[w c]_{m}$
- $F:=\left\{[w]_{m} \mid w \vDash \varphi\right\}$

Automata

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$

- $Q:=\Sigma^{*} / \equiv_{m}$
- $q_{0}:=[\varepsilon]_{m}$
- $\delta\left([w]_{m}, c\right):=[w c]_{m}$
- $F:=\left\{[w]_{m} \mid w \vDash \varphi\right\}$

Theorem

\mathcal{A}_{φ} accepts a word $w \in \Sigma^{*}$ if, and only if, $w \vDash \varphi$.

Automata

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$

- $Q:=\Sigma^{*} / \equiv_{m}$
- $q_{0}:=[\varepsilon]_{m}$
- $\delta\left([w]_{m}, c\right):=[w c]_{m}$
- $F:=\left\{[w]_{m} \mid w \vDash \varphi\right\}$

Theorem

\mathcal{A}_{φ} accepts a word $w \in \Sigma^{*}$ if, and only if, $w \vDash \varphi$.
Corollary
φ is satisfiable if, and only if, \mathcal{A}_{φ} accepts some word.

Description Logics

Description Logic

General Idea
Extend modal logic with operations that are not bisimulation-invariant.

Applications
Knowledge representation, deductive databases, system modelling, semantic web

Ingredients

- individuals: elements (Anna, John, Paul, Marry,...)
- concepts: unary predicates (person, male, female,...)
- roles: binary relations (has_child, is_married_to,...)
- TBox: terminology definitions
- ABox: assertions about the world

Example

TBox

$$
\begin{aligned}
\text { man } & :=\text { person } \wedge \text { male } \\
\text { woman } & :=\text { person } \wedge \text { female } \\
\text { father } & :=\operatorname{man} \wedge \exists \text { has_child.person } \\
\text { mother } & :=\text { woman } \wedge \exists \text { has_child.person }
\end{aligned}
$$

ABox

```
man(John)
man(Paul)
woman(Anna)
woman(Marry)
has_child(Anna, Paul)
is_married_to(Anna, John)
```


Syntax

Concepts

$$
\varphi::=P|\top| \perp|\neg \varphi| \varphi \wedge \varphi|\varphi \vee \varphi| \forall R \varphi|\exists R \varphi|(\geq n R) \mid(\leq n R)
$$

Terminology axioms

$$
\varphi \sqsubseteq \psi \quad \varphi \equiv \psi
$$

TBox Axioms of the form $P \equiv \varphi$.
Assertions

$$
\varphi(a) \quad R(a, b)
$$

Extensions

- operations on roles: $R \cap S, R \cup S, R \circ S, \neg R, R^{+}, R^{*}, R^{-}$
- extended number restrictions: $(\geq n R) \varphi,(\leq n R) \varphi$

Algorithmic Problems

- Satisfiability: Is φ satisfiable?
- Subsumption: $\varphi \vDash \psi$?
- Equivalence: $\varphi \equiv \psi$?
- Disjointness: $\varphi \wedge \psi$ unsatisfiable?

All problems can be solved with standard methods like tableaux or tree automata.

Semantic Web: OWL (functional syntax)

```
Ontology(
    Class(pp:man complete
    intersectionOf(pp:person pp:male))
    Class(pp:woman complete
    intersectionOf(pp:person pp:female))
    Class(pp:father complete
    intersection0f(pp:man
        restriction(pp:has_child pp:person)))
    Class(pp:mother complete
    intersectionOf(pp:woman
        restriction(pp:has_child pp:person)))
    Individual(pp:John type(pp:man))
    Individual(pp:Paul type(pp:man))
    Individual(pp:Anna type(pp:woman)
        value(pp:has_child pp:Paul)
        value(pp:is_married_to pp:John))
    Individual(pp:Marry type(pp:woman))
)
```

