Exercise 1 Suppose we are given a predicate flight(*From*, *To*, *Time*, *Price*) containing information about direct flights including the starting airport, the destination, the flight time, and the price of a ticket. Write a Prolog program computing a predicate travel(*From*, *To*, *Stops*, *Time*, *Price*) indicating all possibilities to travel from one city to another using one or several flights.

Exercise 2 Write a Prolog predicate fib(N, X) computing the Fibonacci sequence. Evaluate fib(3, X) and fib(N, 5).

Exercise 3 Write Prolog definitions of the following predicates.

length(List, N)	N is the length of <i>List</i> .
append (X, Y, Z)	Z is the concatenation of the lists X and Y .
reverse (X, Y)	Y is the reverse of the list X .
map(X, Y)	maps a list $X = [X_1,, X_n]$ to $Y = [f(X_1),, f(X_n)]$.
$fold_left(X, Y, Z)$	maps $Y = [Y_1,, Y_n]$ to $Z = f(\dots f(f(X, Y_1), Y_2) \dots, Y_n)$.
$fold_right(X, Y, Z)$	maps $Y = [Y_1,, Y_n]$ to $Z = f(Y_1, f(Y_2,, f(Y_n, X))))$.

The Prolog notation for lists is as follows:

[] [X, Y, Z] [X|Y] [X, Y|Z].

Exercise 4 Write a naive sort function

```
naive_sort(X,Y) :- permute(X,Y), sorted(Y).
```

by implementing the relations

sorted(X)	checks that the list <i>X</i> is sorted.
insert(X, Y, Z)	if the list Z is obtained from Y by inserting X at an arbitrary position.
permute(X, Y)	if the list Y is a permutation of X .

Implement merge sort using a relation

merge(X, Y, Z)	merges two sorted lists X and Y into Z .
$\operatorname{split}(X, Y, Z)$	splits the list X into two lists Y and Z .

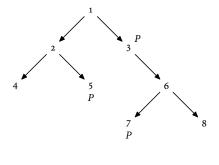
Exercise 5 We consider directed graphs of the form $\langle V, E \rangle$. Express the following relation in relational algebra.

- (a) *x* and *y* are not connected by an edge.
- (b) The edge $\langle x, y \rangle$ is part of a triangle.
- (c) x has at least two neighbours.
- (d) Every neighbour of x is also a neighbour of y.

Exercise 6 Evaluate the following Datalog program on the tree $\langle V, E, P \rangle$ to the right.

$$U \leftarrow S(x, y) \land W(x) \land W(y)$$

$$W(x) \leftarrow P(x)$$


$$W(x) \leftarrow E(x, y) \land W(y)$$

$$S(x, y) \leftarrow E(z, x) \land E(z, y) \land x \neq y$$

$$R(x, y) \leftarrow P(x) \land x = y$$

$$R(x, y) \leftarrow E(x, z) \land R(z, y)$$

$$R(x, y) \leftarrow R(x, z) \land E(z, y)$$

