IA168 — Problem set 1

Throughout this problem set, we consider pure strategies only.

Problem 1 [2 points]

Consider the following table

	Y_1	Y_2
X_1	1, 0	2, 1
X_2	2, 1	4, 0
X_3	3, 2	6, 1

and a game defined as follows. Player 1 picks a row and Player 2 picks a column of the table independently of each other. The payoff of Player 1 (Player 2) is the first (second) value in the corresponding cell.

Give a formal description of this game as a game in *strategic form*.

Problem 2 [4 points]

Consider a game G given by the following table

	B_1	B_2	B_3	B_4
A_1	5,9	7,7	1, 6	3, 4
A_2	6,3	8,5	3,4	5, 2
A_3	7,5	6, 4	6, 6	4, 6
A_4	6,2	3, 1	7, 3	1, 8

- a) Find the games G_{DS}^k for k = 0, 1, ... and determine the number of *IESDS* equilibria. Is the game IESDS-solvable?
- b) Find the games G_{Rat}^k for k = 0, 1, ... and determine the number of *rationalizable* equilibria. Is the game solvable by rationalizability?

Problem 3 [4 points]

Prove that rationalizability creates no new Nash equilibria in any finite two-player strategic-form game.

Definition. A strategy profile $s \in S$ **Pareto dominates** a strategy profile $s' \in S$ if $u_i(s) \ge u_i(s')$ for all $i \in N$, and $u_i(s) > u_i(s')$ for at least one $i \in N$.

A strategy profile $s \in S$ is **Pareto-optimal** if it is not Pareto dominated by any other strategy profile.

Problem 4 [4 points]

Find a game with exactly 2 Pareto-optimal strategy profiles and exactly 2 Nash equilibria such that:

- a) both of the Nash equilibria are Pareto-optimal;
- b) exactly one Nash equilibrium is Pareto-optimal;
- c) neither of the Nash equilibria is Pareto-optimal.

Problem 5 [6 points]

Consider the following zero-sum game, defined by the payoff table for Player 1:

$$\begin{array}{c|cc} & A_2 & B_2 \\ \hline A_1 & 1 & x \\ B_1 & 0 & y \end{array}$$

where $x, y \in \mathbb{R}$ and the payoffs of Player 2 are the opposite values of those of Player 1 in the table above (e.g. $u_2(A_1, A_2) = -u_1(A_1, A_2) = -1$).

Player 1 and Player 2 will play this game infinitely many times. For $i \in \{1, 2\}$ and $j \in \mathbb{N}$, we denote by $s_{i,j} \in \{A_i, B_i\}$ the strategy chosen by Player *i* in the *j*-th iteration, and by s_j we denote the strategy profile $(s_{1,j}, s_{2,j})$.

For both $i \in \{1, 2\}$, let $s_{i,1} = A_i$ and for $j \ge 2$ we have $s_{i,j} = A_i$ iff A_i is a best response to $s_{3-i,j-1}$ (i.e. a best response to the strategy of the other player in the iteration before), $s_{i,j} = B_i$ otherwise.

In dependence on the parameters x and y, determine the sequence of strategy profiles played by Player 1 and Player 2. Explain your reasoning.