IA168 — Problem set 3

For an extensive-form game G, let SPE(G) denote the set of subgame-perfect equilibria of G and NE(G) denote the set of Nash equilibria of G.

Problem 1 [6 points]

Consider the following two-player strategic-form game G:

a) Calculate the number of strategies of Player 1 and Player 2 in G_{2-rep} ;

b) calculate the number of strategy profiles in G_{2-rep} ;

c) calculate the number of Nash equilibria in G_{2-rep} .

Moreover, in dependence on parameter $t \in \mathbb{Z}^+$

d) calculate the number of strategies of Player 1 and Player 2 in G_{t-rep} .

e) calculate the number of strategy profiles in G_{t-rep} .

f) find all subgame perfect equilibria in G_{t-rep} .

Use the definition, not the example from the lecture. Justify your reasoning.

Problem 2 [5 points] Consider the following two-player strategic-form game G

- a) In G_{irep}^{avg} , find a subgame-perfect equilibrium whose outcome is (3.2, 3.5).
- b) Calculate $\inf_{s \in \text{SPE}(G_{irep}^{avg})} u_1(s)$.
- c) Calculate $\sup_{s \in \text{SPE}(G_{irep}^{avg})} u_1(s)$.

Justify your reasoning.

Problem 3 [4 points] Give an example of a two-player strategic-form game $G = (\{1, 2\}, (S_1, S_2), (u_1, u_2))$ such that all of the following conditions are satisfied

- a) $|S_1| + |S_2| = 5;$
- b) $\max_{s \in \text{SPE}(G_{irep}^{avg})} u_1(s) = 0;$
- c) $\max_{s \in \operatorname{NE}(G_{irep}^{avg})} u_1(s) = 5.$

Find the SPE s such that $u_1(s) = 0$ and NE s' such that $u_1(s') = 5$. Explain your reasoning.

Problem 4 [5 points] Consider the following strategic-form game G

Consider also strategy profile $s = (s_1, s_2)$

$$s_i(h) = \begin{cases} B_i & \text{if } h \in (B_1, B_2)^* \\ A_i & \text{otherwise} \end{cases}$$

Find all pairs $(x, y) \in \mathbb{R}^2$ for which the minimal discount required for s to be an SPE is equal to $\frac{3}{5}$. Formally: find all the pairs $(x, y) \in \mathbb{R}^2$ such that $\inf\{\delta \in (0, 1) \mid s \text{ is SPE in } G_{irep}^{\delta}\} = \frac{3}{5}$. Justify your reasoning.