IA168 — Problem set 4

Problem 1 [4 points]

Consider incomplete-information game $G = (\{1, 2\}, (\{A, B, C\}, \{D, E, F\}), (\{P, Q\}, \{R, S\}), (u_1, u_2)\})$, where u_1, u_2 are given by the following matrices:

$u_1(-,-,P)$	D	E	F	$u_1(-,-,Q)$	D	E	F
A	6	5	4	A	6	5	4
B	1	2	5	B	1	2	3
C	1	2	3	C	1	5	3
$u_2(-,-,R)$	D	E	F	$u_2(-,-,S)$	D	E	F
$\frac{u_2(-,-,R)}{A}$	D 6	$\frac{E}{1}$	$\frac{F}{1}$	$\frac{u_2(-,-,S)}{A}$	D 1	$\frac{E}{5}$	$\frac{F}{1}$
$\frac{u_2(-,-,R)}{A}$	$\begin{array}{c} D \\ 6 \\ 5 \end{array}$	<i>E</i> 1 1	<i>F</i> 1 1	$\frac{u_2(-,-,S)}{A}$	D 1 2	$E \over 5 \\ 4$	$\frac{F}{1}$

For each $X \in \{A, B, C, D, E, F\}$, find all strictly, weakly, and very weakly dominant strategies in game G_{-X} , where G_{-X} is created from G by deleting action X.

Problem 2 [8 points]

Consider " 3^{rd} price auction" as a game of incomplete information. The payoff of every player is 0 if their bid was not (strictly) highest, and it is their type minus the 3^{rd} highest bid if they were the highest bidder. The bid is a non-negative real number.

Formally, consider the following game of incomplete information

$$G = (N, (A_i)_{i \in N}, (T_i)_{i \in N}, (u_i)_{i \in N}),$$

where $N = \{1, 2, 3, \dots, n\}, n \ge 3$, $(\forall i \in N) A_i = T_i = \mathbb{R}_0^+ = \{r \in \mathbb{R} \mid r \ge 0\}$, and

$$u_i(a_1,\ldots,a_n;t_i) = \begin{cases} 0 & (\exists j \in N) \ a_j \ge a_i, \\ t_i - a_{i_3} & a_{i_1} > a_{i_2} \ge a_{i_3} \ge \cdots \ge a_{i_n}, i_1 = i, \{i_1,\ldots,i_n\} = \{1,\ldots,n\}. \end{cases}$$

- a) Prove that there is no ex-post Nash equilibrium.
- b) Prove or disprove the existence of an ex-post Nash equilibrium if the bids of each player are bounded by a common bound, i.e.,

$$(\exists v_{max} \in \mathbb{R}_0^+) \ (\forall i \in N) \ A_i = [0, v_{max}].$$

c) Prove or disprove the existence of an ex-post Nash equilibrium if the types of each player are bounded by a common bound, i.e.,

$$(\exists v_{max} \in \mathbb{R}_0^+) \ (\forall i \in N) \ T_i = [0, v_{max}].$$

d) Prove or disprove the existence of an ex-post Nash equilibrium if the bids of each player are bounded by possibly different bounds, i.e.,

$$(\exists v_1, \ldots, v_n \in \mathbb{R}^+_0) \ (\forall i \in N) \ A_i = [0, v_i].$$

Problem 3 [8 points]

Consider the following Bayesian game: There are two players, they have two actions A, B, and they have two types S, R. Type S means the player wants to play the same action as the other player, R means he wants to play the other action. Specifically, the gain is +3 if this goal is achieved, plus there is bonus +1 for playing action A.

Formally: $G_P = (\{1, 2\}, (\{A, B\}, \{A, B\}), (\{S, R\}, \{S, R\}), (u_1, u_2), P)$, where u_1, u_2 are given by the following matrices:

$u_1(-,-,S)$	A	B	$u_1(-,-,R)$	A	В
A	4	1	A	1	4
B	0	3	B	3	0
			·		
$u_2(-,-,S)$	A	B	$u_2(-,-,R)$	A	B
A	4	0	A	1	3
B	1	3	В	4	0

Let BNE(G_P) denote the set of Bayesian Nash equilibria in game G_P . Moreover, let UV|XY denote the strategy profile ({(S, U), (R, V)}, {(S, X), (R, Y)}) (i.e., player 1 plays U if he is S and he plays V if he is R; similarly for player 2). Find a distribution P such that:

- a) BNE $(G_P) = \emptyset;$
- b) BNE $(G_P) = \{AA|AB, AB|AA\};$
- c) BNE(G_P) = {AB|AB};
- d) BNE $(G_P) = \{AB|AB, BA|BA\};$
- e) BNE $(G_P) = \{AA|AB\};$
- f) $|BNE(G_P)| = 5.$

We further require that P satisfies that for every player $i \in \{1, 2\}$ and every type $t \in \{S, R\}$, the probability that i is of type t is positive.