|A169 System Verification and Assurance

Bounded Model Checking

Jiri Barnat

Reminder — SAT and SMT

Satisfiability — SAT
e Finding a valuation of Boolean variables that makes a
given formula of propositional logic true.

Satisfiability Modulo Theory — SMT

e Deciding satisfiability of a first-order formula with
equality, predicates and function symbols that encode one
or more theories.

Typical SMT Theories
e Unbounded integer and real arithmetic.
e Bounded integer arithmetic (bit-vectors).
e Theory of data structures (lists, arrays, ...).

IA169 System Verification and Assurance — 08 str. 2/31

Reminder — SAT and SMT Solvers

277 aka Z3

e Tool developed by Microsoft Research.
o WWW interface — http://www.rise4fun.com/Z3
e Binary API for use in other tools and applications.

SMT-LIB
e Standardised language for SMT queries.
e Freely available library with a SMT implementation.

IA169 System Verification and Assurance — 08 str. 3/31

http://www.rise4fun.com/Z3

Reminder — Satisfiability and Validity

Observation
e Formula is valid if and only if its negation is not satisfiable.

Consequence

e SAT and SMT solvers can be used as tools for proving
validity of formulated statements.

Model Synthesis

e SAT solvers not only decide satisfiability of formulas, but
for satisfiable formulas also give the valuation which
makes the formula true.

@ Unlike theorem provers, they give a "counterexample" in
case the statement to be proven is false.

IA169 System Verification and Assurance — 08 str. 4/31

Checking Safety Properties via SAT Reduction

IA169 System Verification and Assurance — 08 str. 5/31

Bounded Model Checking (BMC)

Hypothesis

e If the system contains an error, it can be reproduced with
only a small number of controlled steps.

Method ldea

o If we use model checking for error detection, it is sensible
to check whether an error (a violation of specification)
appears within first k steps of execution.

Literature

@ Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan Zhu:
Symbolic Model Checking without BDDs. TACAS 1999: 193-207, LNCS
1579.

@ Henry A. Kautz, Bart Selman: Planning as Satisfiability.Proceedings of
the 10th European conference on Atrtificial intelligence (ECAI'92):
359-363, 1992, Kluwer.

IA169 System Verification and Assurance — 08 str. 6/31

Reduction of BMC to SAT

Prerequisites

o The set of prefixes of length k of all runs of a Kripke
structure M can be encoded by a Boolean formula [M].

e Violation of a safety property which can be observed
within k steps of the system can be encoded as [—¢]*.

Reduction to SAT
o We check the satisfiability of [M]* A [—¢]”.

e Satisfiability indicates the existence of a counterexample
of length k.

e Unsatisfiability shows non-existence of a counterexample
of length k.

IA169 System Verification and Assurance — 08 str. 7/31

Kripkeho structure as a Boolean formula

Prerequisites
o Let M = (S, T,I) be a Kripke structure with initial state
So € S.
o Arbitrary state s € S can be represented by a bit vector of
size n, that is state s = (ag, a1, ..., an-1)-

Encoding M with Boolean Formulae

e Init(s) — formula which is satisfiable for the valuation of
variables ay, ay, ..., a, that describe the state sg.

e Trans(s,s’) — a formula which is satisfiable for a pair of
state vectors s, s, iff the valuations
ai, ay, ..., an, ay, a, ..., a, describe states between which a

transition (s,s’) € T exists.

IA169 System Verification and Assurance — 08 str. 8/31

Encoding Finite Runs of M

Description of System Runs of Length k
@ Run of length k consists of k + 1 states sy, 51, ..., Sk.

o The set of all runs of size k of the structure M is
designated [M]* and described by the following formula:

P
[M)* = Init(so) A\ Trans(si_1,s;)
i=1

Example[M]® A [—¢]?
o Init(sp)A Trans(sp, s1)A Trans(sy, s2)A Trans(sy, s3)A—p(s3)

IA169 System Verification and Assurance — 08 str. 9/31

Completeness of BMC

IA169 System Verification and Assurance — 08 str. 10/31

Completeness of BMC for Detecting Safety Violations

Problem — Undetected Violation of a Safety Property
e The violation is not reachable using a path of length k.
o Paths shorter than k are not encoded in [M].

Upper Bound on k

o If k > d where d is the graph diameter, all possible error
locations are covered.

o The diameter of the graph is bounded by 27, where n is
the number of bits of the state vector.

Solution
e Executing BMC iteratively for each k € [0, d|.

IA169 System Verification and Assurance — 08 str. 11/31

Automated Detection of Graph Diameter

Facts
e Asking the user is unrealistic.
e Safe upper bounds are extremely overstated.

o We would like the verification procedure itself to detect
whether k should be increased further.

Skeleton of an Algorithm for Complete BMC
k=0
while (true) do
if (counterexample of length k exists)
then return "Invalid"
if (all states are reachable within k steps)
then return "Valid"
k=k+1
od

IA169 System Verification and Assurance — 08 str. 12/31

Notation |

Prerequisites
o Kripke structure M = (S, T,).
e States are described by bit vectors of fixed length.
e Trans is a SAT representation of a binary relation T.

Path of Length n

path(so.;) = /\ Trans(s;, si+1)

0<i<n

Validity of Statement Q Along the Entire Path

a//.Q(S[QHn])

IA169 System Verification and Assurance — 08 str. 13/31

Notation |l

A Loop-Free Path

loopFree(spp.j)) = path(sp.n) A\ si#s
0<i<j<n

Existence of a Path of Length n From s to s,

pathn(so,s,) = 3si...s,1.path(sp..n))

Shortest Path

shortest(sp.,)) = path(sp.n)) /\ﬂ(\/ path,-(so,sn)>

0<i<n

IA169 System Verification and Assurance — 08 str. 14/31

Equivalent Problem Formulation

Verification

o We would like to show that no state that would violate
the specification ¢ is reachable from the initial
configuration, i.e. we want to show that

ViVsy...s;. (/nit(so) A path(sp.]) = go(s,-))

Alternatively

o We want to show that from an error state, the initial state
is not reachable when going backwards

ViVsp .. .s,-.(lnit(so) <= path(sp..1) A mp(s,-))
Equivalently
ViVsy...s;. ﬁ(lnit(so) A path(sp..i) A —wp(s,-))

IA169 System Verification and Assurance — 08 str. 15/31

Termination of BMC — Acyclic Paths

Termination Condition in the BMC Algorithm Skeleton

e No longer acyclic path from the initial state exists, that is,
the following formula is unsatisfiable:

Init(sp) N loopFree(sp. it1])

e Holds symmetrically for backwards reachability from
error states.

Solution 1

e not SAT(loopFree(sp..i+11) A Init(sp))
vV
not SAT(loopFree(sp. i11]) A _\g0(5i+1))

IA169 System Verification and Assurance — 08 str. 16/31

Termination of BMC — Acyclic paths Il

Higher Efficiency Termination Criterion

e When using backward reachability from —¢ states, paths
that visit other —¢ states do not need to be considered.

e Symmetrically holds also for forward reachability with
multiple initial states: for completeness detection, paths
that visit other initial states do not need to be considered.

Solution 2

e not SAT(loopFree(spo. i+11) A Init(sp) A all. = Init(sp..i11]))
V
not SAT(loopFree(sjo.ix1]) A —@(Sit1) A a//.gp(s[on,-]))

IA169 System Verification and Assurance — 08 str. 17/31

BMC not starting with k =0

Observation

e For small values of k, SAT queries give neither a
counterexample nor enable termination.

o We want to start BMC with k > 0.

Reformulating the Counterexample Test

e The original test for counterexample existence for a given
k

SAT (Init(so) A path(sio.ig) A —p(s))

needs to be changed so that we do not miss
counterexamples shorter than the initial value of k.

o New test for the existence of a counterexample:
SAT(lnit(so) A path(sjo.) A ﬂal/.go(s[o_,k]))

IA169 System Verification and Assurance — 08 str. 18/31

k-induction in BMC

Observation

@ The tests can be re-formulated so that they resemble the
structure of mathematical induction.

e TAUT is a tautology test (unsatisfiability of negation).

Base Case
o Test for counterexample existence.

SAT (—.(/nit(so) N path(s[ou,-]) — a//.ap(s[o”,-])))

Inductive Step
@ Test for completeness.
TAUT(—\Init(so) S a//.—|/nit(s[1”(,-+1)]) A /oopFree(s[o.,,-H]))
V
TAUT(loopFree(sy_i+17) A all.p(sp.1) = @(si+1))

IA169 System Verification and Assurance — 08 str. 19/31

Acyclic vs Shortest Paths in BMC

Observation

e Graph diameter (d) is the length of the longest of the
shortest paths between each pair of vertices in the graph.

@ An acyclic path can be substantially longer than the graph
diameter.

BMC with Shortest Paths
e BMC is correct if loopFree is replaced with shortest.

e The shortest predicate, however, needs quantifiers and is
as such not a purely SAT application.

For more details, see ...

@ Mary Sheeran, Satnam Singh, and Gunnar Stalmarck: Checking Safety
Properties Using Induction and a SAT-Solver, FMCAD 2000, 108-125,
LNCS 1954, Springer.

IA169 System Verification and Assurance — 08 str. 20/31

LTL and BMC

IA169 System Verification and Assurance — 08 str. 21/31

LTL Verification with BMC

Observation 1
e LTL is only well-defined for infinite runs.

e For evaluating LTL on finite paths, we use three-value
logic (true, false, cannot say).

e Validity of some LTL formulas cannot be decided on any
finite path (eg. GF a).

Observation 2

e Cycles that consist of only a few states are unrolled by
BMC to acyclic paths of length k.

e We allow encoding lasso-shaped paths.
e That is, (k, /)-cyclic paths.

IA169 System Verification and Assurance — 08 str. 22/31

(k,1)-cyclic paths

(k,1)-cyclic runs
o Arun m = 5515, ... of a Kripke structure
M= (S, T, s)is (k,I)-cyclic if

T = (505152 . S/,l)(S/ Ce Sk)w,

where 0 < [< k a 51 = s¢.

Observation
o If mis (k,I)-cyclic, wis also (k + 1,1+ 1)-cyclic.
e Treating finite paths as (k, k)-cyclic is incorrect (could
create a non-existent run in M).

e Every path of length k is either acyclic or (k, /)-cyclic.

IA169 System Verification and Assurance — 08 str. 23/31

Semantics of LTL on Finite Prefixes of Runs

Semantics of LTL for Finite Prefixes
e Let 7 be a run of a Kripke structure M.
e k is given.

0’/T:7T0

i eEn Xe iff i<kATT =@
w e U iff 30 <j <k, f=n o and
Vm.i<m<j,m e

Semantics of =, for LTL in BMC
e For (k,/)-cyclic paths, 7 =k ¢ <= 7 = ¢ holds.
o For acyclic paths, 7 =4 ¢ <= 7° =, ¢ holds.
® Fx=Fk+1, Fk approximates =

IA169 System Verification and Assurance — 08 str. 24/31

BMC for LTL

Goal

e We construct a Boolean formula [M, ¢, k] which is
satisfiable iff Kripke structure M has a run 7 such that

Tk p.
o [M,p, k] = [M]* A g, K]

Encoding
o [M]* encodes all paths of length k
o [p.kl = _[w, Klo V ViL1 [, Ko
e _ [y, k]o encodes that the path is acyclic and =, ¢
o /[, k]o encodes that the path is (k, /)-cyclic and = ¢

IA169 System Verification and Assurance — 08 str. 25/31

LTL tricks in BMC

Fragment LTL-X
o Reduces the number of transitions (smaller SAT instance).
e Similar to partial order reduction.

For the Interested
@ Keijo Heljanko: Bounded Model Checking for Finite-State Systems
http://users.ics.aalto.fi/kepa/qmc/slides-heljanko-2.pdf

@ Keijo Heljanko and Tommi Junttila: Advanced Tutorial on Bounded
Model Checking
http://users.ics.aalto.fi/kepa/acsd06-atpn06-bmc-tutorial/
lecturel.pdf

IA169 System Verification and Assurance — 08 str. 26/31

http://users.ics.aalto.fi/kepa/qmc/slides-heljanko-2.pdf
http://users.ics.aalto.fi/kepa/acsd06-atpn06-bmc-tutorial/lecture1.pdf
http://users.ics.aalto.fi/kepa/acsd06-atpn06-bmc-tutorial/lecture1.pdf

Conclusions on BMC

IA169 System Verification and Assurance — 08 str. 27/31

Advantages of BMC

General

e Reduces to a standard SAT problem, advances in SAT
solving help with BMC.

o Often finds counterexamples of minimal length (not
always).

e Boolean formulas can be more compact than OBDD
representation.

Verification of HW
e Thanks to k-induction, a very successful method.

Verification of SW
e Currently, according to Software Verification Competition
(TACAS 2014), BMC in connection with SMT is currently
among the best software verification methods (actually
falsification).

IA169 System Verification and Assurance — 08 str. 28/31

Downsides of BMC

General
e Not complete in general.
o Large SAT instances are still unsolvable.

Verification of SW

e Encoding an entire CFG as a SAT instance is currently
unrealistic.

e K-induction cannot be used
(the graph is incomplete, no back edges).

e Problems with dynamic data structure analysis.
e Loop analysis is hard.
o Inefficient for full arithmetic (partially solved by SMT).

IA169 System Verification and Assurance — 08 str. 29/31

Tools and food for thought...

Tools
e CBMC - BMC for ANSI-C.
e ESBMC — uses SMT, built on top of CBMC.
o LLBMC - BMC for LLVM bitcode.

Food for Thought...

e What differentiates modern SMT-BMC from symbolic
execution?

e Boundaries are not clear.

IA169 System Verification and Assurance — 08 str. 30/31

Homework

Homework

e Study structure and results of Software Verification
Competition (TACAS).

IA169 System Verification and Assurance — 08 str. 31/31

