6.1 (a) Encrypt your UČO using the Rabin cryptosystem with n = 698069. Then calculate all four possible decryptions of the ciphertext you calculated, with the knowledge that n = 887 × 787.

Solution:

• Encryption: m = 456149 and m < n, therefore we can compute the ciphertext

$$c = m^2 = 456149^2 \equiv 577578 \mod 698069.$$

• Decryption: The decryption formula is $m \equiv \sqrt{c} \pmod{n}$. We use Chinese remainder theorem to calculate the possible results.

$x \equiv 577578$	mod 887	$y \equiv 577578$	$\mod 787$
$x \equiv 577578^{\frac{887+1}{4}}$	mod 887	$y \equiv 577578^{\frac{787+1}{4}}$	mod 787
$x \equiv 577578^{222}$	mod 887	$y \equiv 577578^{197}$	mod 787
$x \equiv 231$	mod 887	$y \equiv 311$	mod 787

We are looking for the Bezout's coefficients (k and l) for p = 887 and q = 787

$$204 \cdot 787 - 181 \cdot 887 = 1.$$

Therefore k = -181 and l = 204.

Finally we can calculate all four possible decryptions, using this statement

$$\pm x \cdot l \cdot q \pm y \cdot k \cdot p \equiv m_i \mod n.$$

$$\begin{array}{ll} m_1 \equiv & 231 \cdot 204 \cdot 787 + 311 \cdot (-181) \cdot 887 \equiv 419782 & \mod 698069 \\ m_2 \equiv & 231 \cdot 204 \cdot 787 - 311 \cdot (-181) \cdot 887 \equiv 456149 & \mod 698069 \\ m_3 \equiv & -231 \cdot 204 \cdot 787 + 311 \cdot (-181) \cdot 887 \equiv 241920 & \mod 698069 \\ m_4 \equiv & -231 \cdot 204 \cdot 787 - 311 \cdot (-181) \cdot 887 \equiv 278287 & \mod 698069 \\ \end{array}$$

The original message is m_2 .

(b) Encrypt your UČO with the ElGamal cryptosystem with $p=567899,\ q=2,\ x=12345$ and random choice r=938.

Solution: First of all, the part of public key is $y=q^x \mod p$, therefore $y=2^{12345} \equiv 222588 \mod 567899$.

Now we are able to encrypt the message m=456149 The ciphertext is c=(a,b), where $a=q^r \mod p$ and $b=y^r w \mod p$.

$$\begin{array}{ll} a = 2^{938} & \equiv 201104 \mod 567899 \\ b = 222588^{938} \cdot 456149 \equiv 25233 \mod 567899 \end{array}$$

The message m = 456149 is encrypted as (201104, 25233).

Question 2.

$$q=7, y=505, p=541$$

$$m = \sqrt{p-1} = \sqrt{540} = 24$$

 $0 \ge i, j \ge 23$:

L_1 :

j	0	1		2	3	4	5	6	7	8	9	10	11
$q^{m \cdot j} \pmod{p}$	1	11	10 1	198	140	252	129	124	115	207	48	411	307
j	12	2	13	14	15	16	17	18	19	20	21	22	23
$q^{m \cdot j} \pmod{p}$	22	8	194	241	1	110	198	140	252	129	124	1115	207

L_2 :

i	0	1	2	3	4	5	6	7	8	9	10	11
$y \cdot q^{-i} \pmod{p}$	505	304	198	492	534	540	309	276	194	105	15	234
i	12	13	14	15	16	17	18	19	20	21	22	23
$y \cdot q^{-i} \pmod{p}$	188	336	48	316	277	426	370	362	129	173	102	401

Pairs with common second values, and resulting exponents:

$$\begin{array}{l} (9,48), (14,48), \, x_1=24\cdot 9+14=230 \; (\mathrm{mod} \; 540) \\ (5,129), (20,129), \, x_2=24\cdot 5+20=140 \; (\mathrm{mod} \; 540) \\ (20,129), (20,129), \, x_3=24\cdot 20+20=500 \; (\mathrm{mod} \; 540) \\ (13,194), (8,194), \, x_4=24\cdot 13+8=320 \; (\mathrm{mod} \; 540) \\ (2,198), (2,198), \, x_5=24\cdot 2+2=50 \; (\mathrm{mod} \; 540) \\ (17,198), (2,198), \, x_6=24\cdot 17+2=410 \; (\mathrm{mod} \; 540) \end{array}$$

Question 3.

We assume that year has 365 days. People born on 29^{th} of February usually celebrate birthday on the 28^{th} anyway.

(a) The birthday co-incidence probability given by the birthday paradox equation is:

$$1 - \frac{365!}{365^n(365 - n)!}$$

IV054 2019

Jan Pokorný (456195 (xpokorn3))

Homework 6

For n = 135, this gives:

$$1 - \frac{365!}{365^{135}(365 - 135)!} \approx 0.99999999999999$$

Meaning the probability is around 99.99999999960%, or, in other words, practically certain.

(b) Since the chance of some specific other student sharing birthday with me is $\frac{1}{365}$, the chance of him not sharing is $\frac{364}{365}$, the probability of all the 134 students other than me not sharing is $\left(\frac{364}{365}\right)^{134}$ and finally the probability of some other student sharing birthday is:

$$1 - \left(\frac{364}{365}\right)^{134} \approx 0.3076$$

Meaning the probability is around 30.76%.

Question 4.

Given problem is an equivalent to solving the birthday paradox for a year with 2^{64} days. Let's consider the complementary event, that is that no collision occurred. The probability of such event considering n 2^{64} -bit hashes (by the pigeonhole principle $n \le 2^{64}$) is equal to

$$P(A') = \prod_{i=0}^{n-1} (1 - \frac{i}{2^{64}}) = \prod_{i=0}^{n-1} \frac{1}{2^{64}} (2^{64} - i) = \frac{1}{2^{64n}} \cdot \frac{2^{64!}}{(2^{64} - n)!}$$

However as the size of hash is large, an approximation can be used. Assuming $n << 2^6 4$ we will use the fact that for $ln(1-\epsilon) = -\epsilon$ for small positive ϵ . We obtain:

$$ln(P(A')) = \sum_{i=0}^{n-1} ln(1 - \frac{i}{2^{64}}) = \sum_{i=0}^{n-1} -\frac{i}{2^{64}} = -\frac{1}{2^{64}} \cdot \frac{n(n-1)}{2} \approx -\frac{1}{2^{64}} \cdot \frac{n^2}{2} \text{ (for large n)}$$
$$e^{ln(P(A'))} = P(A') \approx e^{-\frac{n^2}{2 \cdot 2^{64}}}$$

The probability P(A) of generating at least one collision in a set of n 2^{64} -bit hashes is at least $\frac{3}{4}$ when $P(A') \leq \frac{1}{4}$. Therefore we obtain:

$$e^{-\frac{n^2}{2 \cdot 2^{64}}} \le \frac{1}{4}$$

$$-\frac{n^2}{2 \cdot 2^{64}} \le \ln(\frac{1}{4})$$

$$n^2 \le -2 \cdot 2^{64} \cdot \ln(\frac{1}{4}) \approx 5.11452... \cdot 10^{19}$$

$$n \approx 7.15159... \cdot 10^9$$

At leas $\approx 7.15159...\cdot 10^9$ guesses must be made in order to obtain probability of a collision at leas $\frac{3}{1}$.

Question 5.

We are encrypting message $x = 1111_2$, $s_0 = 195$ with parameters p = 11 and q = 43.

$$n = p \times q = 473$$

$$s_1 = 195^2 \mod 473 = 185$$

$$s_2 = 185^2 \mod 473 = 169$$

$$s_3 = 169^2 \mod 473 = 181$$

$$s_4 = 181^2 \mod 473 = 124$$

$$s_5 = 124^2 \mod 473 = 240$$

 $\sigma_1\sigma_2\sigma_3\sigma_4 = 1110(least\ significant\ bits\ of\ s_1,\ s_2,\ s_3,\ s_4)$

$$c = (s_5, x \oplus \sigma_1 \sigma_2 \sigma_3 \sigma_4) = \underline{(240,0001)}$$

Question 6.

- (a) The function is not negligible because if we set $p(n)=n^2$ and suppose the inequality $ln(1+\frac{1}{n})>\frac{1}{n^2}$, then $\lim_{n\to\infty}ln(1+\frac{1}{n})*n^2=\infty$ which is >1 for at least most of n values, meaning $f(n)\leq \frac{1}{p(n)}$ can not hold "for almost all n" as the definition states.
- (b) It is easy to see that for any polynomial $p(m) = a_m n^m + \cdots + a_0$ the function $r_p(n) = \sum_{i=0}^m |a_i| * n^m$ produces greater values than the polynomial. Therefore, if $f(n) \leq \frac{1}{r_p(n)}$, then $f(n) \leq \frac{1}{p(n)}$.

$$\begin{aligned} & e^{\frac{1}{n}}e^{-n} \leq \frac{1}{r_p(n)} \\ & e^{\frac{1}{n}}e^{-n} \leq \frac{1}{r_p(n)} \\ & e^{\frac{1-n^2}{n}} \leq \frac{1}{r_p(n)} \\ & ln(e^{\frac{1-n^2}{n}}) \leq ln(\frac{1}{r_p(n)}) \\ & \frac{1-n^2}{n} \leq ln(\sum_{i=0}^{m} |a_i|*n^m) \\ & \frac{1-n^2}{n} \leq -ln(\sum_{i=0}^{m} |a_i| *n^m) \\ & \frac{1-n^2}{n} \leq -ln(\sum_{i=0}^{m} |a_i|) - m * ln(n) \\ & \frac{1-n^2}{n} \leq -ln(\sum_{i=0}^{m} |a_i|) \geq m \\ & \frac{1-n^2}{n} + ln(\sum_{i=0}^{m} |a_i|) = \infty \\ & n \to \infty \\ & -ln(n) \end{aligned}$$

From the reason similar as in (a), m is lower than at least most of n values for any polynomial, hence the function is negligible.

(a) Suppose you know a valid plaintext-ciphertext pair w₁ = 457, (a₁, b₁) = (663, 2138), constructed using the ElGamal cryptosystem with public key p = 6661, q = 6, y = 6015. Also you know that instead of using a new random r to encrypt each new message, the sender just increments the previous one, i.e. r₂ = r₁ + 1. With this knowledge decrypt the following ciphertext (a₂, b₂) = (3978, 1466) without calculating discrete logarithms.

```
we know that: \begin{aligned} w_1 &= 457 \\ a_1 &= q^{r_1} \mod p \\ b_1 &= y^{r_1}w_1 \mod p \\ w_1 &= b_1a_1^{-x} \mod p \\ \text{and therefore } a_1^x &= w_1^{-1}b_1 \mod p \\ \text{and we also know:} \\ r_2 &= r_1 + 1 \\ a_2 &= q^{r_2} &= q^{r_1+1} = a_1q \mod p \\ b_2 &= y^{r_2}w_2 &= y^{r_1+1}w_2 \mod p \\ w_2 &= b_2a_2^{-x} \mod p \end{aligned}
```

To calculate w_2 now we can use this knowledge

$$\begin{aligned} w_2 &= \frac{b_2}{a_2^x} & \mod p \\ &= \frac{b_2}{(a_1 q)^x} & \mod p \\ &= \frac{b_2}{a_1^x q^x} & \mod p \\ &= \frac{b_2}{w_1^{-1} b_1 y} & \mod p \\ &= b_2 w_1 b_1^{-1} y^{-1} & \mod p \end{aligned}$$

Now to actually decrypt w_2 we need to calculate $b_1^{-1} \mod p$ and $y^{-1} \mod p$ (we can use for example extended eucklidean algorithm)

```
\begin{array}{l} b_1^{-1} \equiv 4153 \mod 6661 \\ y^{-1} \equiv 464 \mod 6661 \\ \text{and now we can calculate } w_2 \\ w_2 = b_2 w_1 b_1^{-1} y^{-1} = 1466 \cdot 457 \cdot 464 \cdot 4153 = 888 \end{array}
```

(b) Show that the same attack is possible for any linear update function of the random seed, i.e. whenever $r_2 = kr_1 + \ell \mod p - 1$.

```
we know that: a_1=q^{r_1} \mod p b_1=y^{r_1}w_1 \mod p w_1=b_1a_1^{-x} \mod p and therefore a_1^x=w_1^{-1}b_1 \mod p and we also know: r_2=kr_1+\ell \mod p-1 a_2=q^{r_2}=q^{kr_1+\ell}=a_1^kq^\ell \mod p and therefore:
```

$$\begin{array}{ll} w_2 = b_2 a_2^{-x} & \mod p \\ = b_2 (a_1^k q^\ell)^{-x} & \mod p \\ = b_2 (a_1^{xk} q^{x\ell})^{-1} & \mod p \\ = b_2 ((w_1^{-1} b_1)^k y^\ell)^{-1} & \mod p \\ = b_2 (w_1^{-k} b_1^k y^\ell)^{-1} & \mod p \\ = b_2 w_1^k b_1^{-k} y^{-\ell} & \mod p \\ = b_2 w_1^k (b_1^{-1})^k (y^{-1})^\ell & \mod p \end{array}$$