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Motivation

Images in optical microscopy are affected by blur and by noise. This blur is
almost visible in z-axis. Images also suffer from noise due to low light
intensities in confocal imaging.

Cell at the start of
optical path Cell after acquisition
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Motivation

The task of image restoration ≡ transforming the acquired image to its
original form.

Acquired cell Restored cell image

David Svoboda, Marek Kaš́ık (CBIA@FI) Filters in Image Processing autumn 2019 5 / 42



Motivation
Image Blur

The blur can be described by Point Spread Function (PSF). PSF is
response of optical setup to an infinitely small point source of light placed
to the input. All the points are influenced by this function.

Blur can be caused by different sources:

1 Move of the camera during acquisition

2 Defocus

3 Physical limits
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Motivation
Image Blur

Examples

line - move disc - defocused camera Airy disc - physical limit
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Motivation
Noise

Noise is present in almost every real image. It can be caused by, for
example:

Environmental conditions during image acquisition (temperature)

Quality of the sensing elements (hot pixels)

Interference during image/data transmission

Noise is “a random change” of pixel values. Our interest is usually focused
on the three basic types of noise:

Additive noise (amplifiers)

Impulse noise (hot/cold pixels in CCD)

Poisson noise (photon-shot noise)
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Motivation
Noise

Examples

Additive noise Impulse noise
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Motivation
Noise

Additive noise
The most common type of noise. Gray values and noise are independent:

g = f + n

where f is the original image, n is the noise, and g is the noisy image

Noise n may have different distributions:

Gaussian distribution (amplifiers)

Rayleigh distribution (radar)

Exponential distribution (laser imaging)

Gamma distribution (laser imaging)
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Motivation
Noise

Poisson Noise

Important type of noise in CCD imaging (photon-shot noise, thermal
noise)

Poisson noise is not additive and depends on the signal.

The noisy image f of the original one g is given by random Poisson
process, which describes photon collection for each pixel position
(i , j).

Let photons occur at CCD pixel (i , j) with the average rate gij
(photons/s) and let the original image is observed for t seconds.
Then the probability that exactly X photons have occurred at pixel
(i , j) is given by

p(X ) =
λX e−λ

X !

where λ = gij · t and X = 0, 1, 2, ...
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Restoration

Fundamentals
Digital image restoration tries to restore original image from acquired
image WITH the knowledge of characteristics of degradations.

Examples of restorations:

intensity correction

chromatic aberration correction

deconvolution
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Deconvolution

Deconvolution is an inverse process to convolution. It tries to remove blur
from image. This inverse process has to deal with noise as well.

Classification of deconvolution methods:

⇒ According to linearity of image processing:

Linear – linear filtering is performed

Non-linear – non-linear filtering is performed

⇒ According to knowledge of PSF:

Blind Deconvolution – PSF is unknown

Non-blind Deconvolution – PSF is known
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Deconvolution

Image degradation:

original

image

observed

image- -

6

-
DISTORTION RESTORATION

estimate

noise

f g f̂

n

Deconvolution tries to invert degradation of an image. Such process is
possible only in some cases. Sometimes, the image is irrecoverably
damaged and we cannot restore most of details.

Notice: Blur removes some frequencies from the image. In this case, we
cannot restore these frequencies.
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Deconvolution
Example

An example of blurred image may be an image acquired in confocal
microscopy. Picture is blurred with the point-spread function (PSF) of
microscope.

Cell at the start of Cell after acquisition Acquired image
optical path (blur + noise) after deconvolution
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Deconvolution
Example

Point-spread function used in the previous slide:

Point-spread function of confocal microscope
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Convolution × Matrix multiplication
Block circulant matrix

A =

[
1 2
3 4

]
B =

[
−1 1
−2 2

]
C = A ∗ B =

 −1 −1 2
−5 −3 8
−6 −2 8


Aext =

 1 2 0
3 4 0
0 0 0

 Bext =

 −1 1 0
−2 2 0

0 0 0



Cp = Bb · Ap =



−1 0 1 0 0 0 −2 0 2
1 −1 0 0 0 0 2 −2 0
0 1 −1 0 0 0 0 2 −2
−2 0 2 −1 0 1 0 0 0

2 −2 0 1 −1 0 0 0 0
0 2 −2 0 1 −1 0 0 0
0 0 0 −2 0 2 −1 0 1
0 0 0 2 −2 0 1 −1 0
0 0 0 0 2 −2 0 1 −1


·



1
2
0
3
4
0
0
0
0


=



−1
−1

2
−5
−3

8
−6
−2

8


Cp, Ap . . . linearized versions of Cext and Aext

Matrix Bb . . . block circulant version of Bext

David Svoboda, Marek Kaš́ık (CBIA@FI) Filters in Image Processing autumn 2019 18 / 42



Convolution × Matrix multiplication
Block circulant matrix

Any convolution
g = h ∗ f

can be written as a matrix multiplication.
The above equation can be written as

g = Hf

where

g and f are understood as linearized matrices, i.e. vectors

H is block circulant version of matrix h

Notice: The math background and complexity is the same as in the case
of the convolution. It is only a notation.
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Unconstrained Restoration

Unconstrained restoration is a base method for image deconvolution. It is
very fast and applicable to data without noise. This method assumes
following image formation process:

g = Hf

g . . . acquired image (including degradation)
H . . . point spread function
f . . . ideal image we are searching for
f̂ . . . our estimate of f

We seek to minimize the function:

W (f̂ ) = ‖e(f̂ )‖2 = ‖g − Hf̂ ‖2 = (g − Hf̂ )T (g − Hf̂ )

where ‖a‖ =
√
aTa is the Euclidean norm of vector and e(f̂ ) = g − Hf̂ is

a vector of residuals.
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Unconstrained Restoration

Setting the derivative of W (f̂ ) to zero with respect to f̂ produces:

∂W (f̂ )

∂ f̂
= −2HT (g − Hf̂ ) = 0

and solving for f̂ yields:
f̂ = H−1g

which can be written (in the case of space-invariant PSF by using of
convolution theorem):

f̂ = FT−1

{
FT (g)

FT (h)

}
Disadvantages:

Problems with zero-amplitude frequencies.

The approach doesn’t deal with noise.

Inverse matrix may not exists.
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Wiener Filtering
Cross-correlation (revision)

Cross-correlation
Cross-correlation function Rfg indicates the relative degree to which two
functions f and g agree for various amounts of misalignment. It is given by

Rfg (τ) =

∞∫
−∞

f (t)g(t + τ)dt

Auto-correlation
Auto-correlation is special case of cross-correlation:

Rf (τ) =

∞∫
−∞

f (t)f (t + τ)dt
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Wiener Filtering
Fourier analysis (revision)

Power spectrum
Power spectrum P of signal f is the FT of autocorrelation of f .

FT [Rf (τ)] = FT [f (t) ∗ f (−t)] = F(k)F(−k) = F(k)F∗(k) = |F(k)|2 = Pf (k)

Lena Power spectra of Lena
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Wiener Filtering
Derivation

We are searching for filter W that suppresses noise and keeps the signal
quality:

f̂ = W ∗ (f + n) = W ∗ s

f is noise-free input

W is unknown filter

n is additive noise

f̂ is signal s = f + n filtered with W

We try to minimize:

MSE (W ) =

∞∫
−∞

e2(t)dt =

∞∫
−∞

(
f (t)− f̂ (t)

)2
dt = . . .
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Wiener Filtering
Derivation

MSE (W ) =

∞∫
−∞

(
f (t)− f̂ (t)

)2
dt

=

∞∫
−∞

[
f 2(t)− 2f (t)f̂ (t) + f̂ 2(t)

]
dt = T1 + T2 + T3

where

T1 =

∞∫
−∞

f (t)2dt = Rf (0)

T2 = −2

∞∫
−∞

f (t)f̂ (t)dt = −2

∞∫
−∞

f (t)[(W ∗ s)(t)]dt = −2

∞∫
−∞

W (t)Rfs(t)dt

T3 =

∞∫
−∞

f̂ 2(t)dt =

∞∫
−∞

(W ∗ s)(t)(W ∗ s)(t)dt =

∞∫
−∞

∞∫
−∞

W (t)W (τ)Rs(τ − t)dτdt
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Wiener Filtering
Derivation

MSE (W ) = Rf (0)− 2

∞∫
−∞

W (t)Rfs(t)dt +

∞∫
−∞

∞∫
−∞

W (t)W (τ)Rs(τ − t)dτdt

We try to minimize MSE(W), i.e.

∂MSE (W )

∂W
→ 0

Solution

Rfs = W ∗ Rs → FT→ Pfs = FT (W ) · Ps → FT (W ) =
Pfs

Ps
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Wiener Filtering

Provided noise and signal are NOT correlated the transfer function of filter
’W’ minimizing MSE is defined:

FT (W ) =
Pfs
Ps

=
Pf

Pf + Pn
=

|FT (f )|2

|FT (f )|2 + |FT (n)|2

where:

Pf is power spectrum of noise-free signal

Pn is power spectrum of noise

Notice: ’W’ is called Wiener filter.
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Wiener Deconvolution

Unconstrained restoration followed by Wiener filtering we get optimal
deconvolution respecting the MSE condition:

f̂ = FT−1

(
FT (g)

FT (h)

Pf
Pf + Pk

)
where

Pk =

∣∣∣∣FT (n)

FT (h)

∣∣∣∣2
is a cross power spectrum of noise and PSF.

There exists more practical version of Wiener deconvolution:

f̂ = FT−1

(
FT (g)

FT (h)

Pg − Pn
Pg

)
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Wiener Deconvolution
An example

Lena Deconvolved Lena
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Constrained Least Square Restoration

Idea
To suppress noise in the result of deconvolution we should impose some
constraints to solution. Such constraint can be the convolution of result
with some convolution kernel and the minimization of power of this image.
The task is to minimize:

W (f̂ ) = ‖Qf̂ ‖2 + λ(‖g − Hf̂ ‖2 − ‖n‖2)

g − Hf = n

where

Q . . . convolution kernel, which imposes some constraint on resulting
image f̂

λ . . . Lagrange multiplier (magic factor)

Example: Concerning Q, we can use Laplace filter which boosts high
frequencies (noise).
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Constrained Restoration

Now we need to solve equation:

∂W (f̂ )

∂ f̂
= 2QTQf̂ − 2λHT (g − Hf̂ ) = 0

Solving for f̂ then yields:

f̂ = (λHTH + QTQ)−1λHTg
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Constrained Least Square Deconvolution
An example

Lena Deconvolved Lena
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Iterative Methods

In the most cases it is not possible to find solution of problem of
restoration by simple linear filtering. Hence there exist different methods
for restoration, which are iterative. This methods iteratively improve initial
estimate until it is acceptable.

Most common iterative methods:

EM-MLE (Expectation Maximization – Maximum Likelihood
Estimation)

ICTM (Iterative Constrained Tikhonov-Miller algorithm)

Used criteria:

number of iterations

relative change between two iterations

difference between blurred estimate and input
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EM-MLE

EM-MLE is one of the best methods for restoration of images degraded by
noise with Poisson statistics. Its principle consists in maximizing certain
functional. Such maximization is performed by Expectation-Maximization
method, which is iterative numerical method. The functional which is
maximized is likelihood functional and is expressed by:

L(f̂ ) =
∏
j

p(x) =
∏
j

[µ(uj)]Nj e−µ(uj )

Nj !
,

where

p(x) is a probability density function following Poisson distribution

Nj is j-th point value of acquired image

µ(uj) is blurred version of our estimate (Hf̂ ).

Notice: EM-MLE method is also known as Richardson-Lucy method.
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EM-MLE
Illustration

On the left is acquired image with Poisson distributions on values of g(x).
On the right, you can see the same distributions, but used probabilities
values (green spots) are from positions of (Hf̂ )(x) (green lines). Product
of this probabilities is likelihood value.
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EM-MLE

After derivation of this method we get simple expression for one iteration:

f k+1 = f kHT

(
g

Hf k + b

)
,

where

b is the known background

Hf k and HT () are matrix-vector multiplications

all other operations are point-wise
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EM-MLE
Example

Acquired cell Restored cell image
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ICTM

ICTM method considers additive noise with Gaussian distribution. Due to
iterative form, we can impose non-linear constraints to result of
deconvolution. One of the base constraints is non-negativity of resulting
intensities. This cannot be achieved by non-iterative method.
In this method we seek to minimize functional of the form:

W (f̂ ) =
1

2
(‖Hf̂ − g‖2 + γ‖Qf̂ ‖2).

Notice: The functional of this form is solvable by algorithm of conjugate
gradients (see numerical methods – FI:PV027 Optimization).
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ICTM
Algorithm

Computation consists in the following steps:

f k+1 = P(f k + αkdk),

where dk is direction of k − th step, αk is size of the k − th step, f k is
result of the last iteration and P() is projection operator, which clips
values to non-negative values. Direction dk+1 is computed in this way:

dk+1 =
‖rk‖2

‖rk−1‖2
dk − rk ,

where rk = Afk − b, A = HTH + γQTQ and b = HTg .
Termination of algorithm:

threshold >

∣∣∣∣W i+1 −W i

W i+1

∣∣∣∣ ,
where W i is value of W () at iteration i .
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ICTM
An example

Acquired cell Restored cell image
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You should know the answers . . .

Explain the difference between a constrained and unconstrained image
restoration.

Explain the equation g = H ∗ f + n.

Explain why we cannot invert the convolution theorem to eliminate
the consequences of convolution with known PSF.

Explain the meaning of the multiplication (
∏

) in EM-MLE algorithm.

What is a difference between Wiener filtering and Wiener
deconvolution?

How do we get Pn in order we could perform the Wiener
deconvolution?

Are you able to implement Constrained least square restoration in
your favourite programming language?

How do we stop iterative restoration methods?
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