
PA193 - Secure coding

principles and practices

Security Code Review

Petr Švenda svenda@fi.muni.cz

PROBLEM

2 | PA193 - Security Code Review

Example problem – Debian RNG flaw

• Linus’s law

– “Given enough eyeballs, all bugs are shallow”

– https://en.wikipedia.org/wiki/Linus%27_Law

• Flaw in Debian’s random number generator (2008)

– CVE-2008-0166

– http://www.debian.org/security/2008/dsa-1571

– lead to predictable random numbers

– improper change to OpenSSL random generator

– persisted for almost two years!

– lead to only 262148 possible openSSH keys

• Change made based on static and dynamic analysis tools

recommendation!

3 | PA193 - Security Code Review

https://en.wikipedia.org/wiki/Linus'_Law
https://en.wikipedia.org/wiki/Linus'_Law
https://en.wikipedia.org/wiki/Linus'_Law
http://www.debian.org/security/2008/dsa-1571
http://www.debian.org/security/2008/dsa-1571
http://www.debian.org/security/2008/dsa-1571
http://www.debian.org/security/2008/dsa-1571
http://www.debian.org/security/2008/dsa-1571
http://www.debian.org/security/2008/dsa-1571

Debian RNG flaw

• Valgrind and IBM’s Purify reports problems

– usage of uninitialized variable

– OpenSSL crypto/rand/md_rand.c

• Discussion of maintainers (before and after change)

– http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=363516

4 | PA193 - Security Code Review

MD_Update(&m,buf,j);
MD_Update(&m,buf,j); /* purify complains */

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=363516
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=363516
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=363516
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=363516

Fatal mistake

5 | PA193 - Security Code Review

Morale

• Access to source code doesn’t guarantee bug-

free code

• Usage of automated tools can provide great

advantage, but deep understanding of code

before change must remain

• Code review eventually spotted the problem

6 | PA193 - Security Code Review

SECURITY CODE REVIEW

7 | PA193 - Security Code Review

Resources

• Review process and techniques are extensively

based on the excellent book “The Art of Software

Security Assessment: Identifying and Preventing

Software Vulnerabilities” by Mark Dowd,

John McDonald, Justin Schuh

• Book is available in faculty library

8 | PA193 - Security Code Review

| PA193 - Security Code Review

Security code review

• Architecture overview

– Design choices and possible design flaws

• Code review

– How well is architecture actually implemented

• Whitebox, greybox & blackbox testing

– different level of access to code and documentation

• Available tools

– mainly for code review

9

Application review phases

1. Pre-assessment

2. Application review

3. Documentation and analysis

4. Remediation support

10 | PA193 - Security Code Review

Timeline

• Good reviewer ranges between 100 to 1,000 lines

of code an hour

– highly dependent also on code complexity

– flexibility must be allowed

• Keep track of your previous progress

– and get feeling for your speed

– helping you making better future estimations

11 | PA193 - Security Code Review

Information Collection

• Developer interviews

• Developer documentation

• Standards documentation

• Source profiling

• System profiling

12 | PA193 - Security Code Review

Common problems

• Design documentation not available at all

• Design documentation is outdated

• Third party components without documentation

• Developers not available or not cooperating

• Limited time for everything

13 | PA193 - Security Code Review

Iterative process

1. Plan your next work

2. Perform auditing strategy you selected

– and make extensive notes

3. Reflect on time spend

– what you have learned

4. Repeat from step 1.

14 | PA193 - Security Code Review

Top-down approach

• Top-down approach

– water-fall like approach

– start from design specification

– establish threat model

– find design vulnerabilities first

– find logical implementation vulnerabilities second

– find low-level implementation bugs third

• Good results if design documentation is accurate

– but that is usually not the case

– something is missing or implemented differently

15 | PA193 - Security Code Review

Bottom-up approach

• Bottom-up approach

– starts with implementation

– targets low-level implementation vulnerabilities first

• e.g., by automated tools

– higher-level threat and design documentation later

• when understanding of application is much better

• Works well even if design documentation is not accurate

– but is slow as you need to read a lot of code that is NOT security

relevant

• Necessity for maintaining design model continuously

– e.g., DFD sketches and class diagrams

16 | PA193 - Security Code Review

Hybrid approach

• Combination of top-down and bottom-up approaches

• Focus on high-level characteristics

– General application purpose

– Assets and entry points

– Components and modules

– Inter-module relations

– Fundamental security

– Major trust boundaries

17 | PA193 - Security Code Review

Verify the progress you are making

• Ask often following questions:

• What have you learned about the application?

• Are you focusing on the most security-relevant

components?

• Have you gotten stuck on real problem or gone

down some rabbit hole?

18 | PA193 - Security Code Review

The Art of Software Security Assessment: Identifying and Preventing Software Vulnerabilities

Verify the progress you are making (cont.)

• Ask often following questions:

• Does your master ideas list have many plausible

entries?

• Have you been taking adequate notes and

recorded enough detail for review purposes?

• If you're working from application models and

documentation, do these models reflect the

implementation accurately?

19 | PA193 - Security Code Review

The Art of Software Security Assessment: Identifying and Preventing Software Vulnerabilities

| PA193 - Security Code Review

Security code review - hints

• You will always have a limited time

– try to rapidly build overall picture

– use tools to find low hanging fruit

• Focus on most sensitive and problematic areas

– use tools to focus your analysis scope

• More eyes can spot more problems

– experts on different areas

• It’s creative process

– be pragmatic, flexible, and results driven

• Have the rights skills

– you should know programming as well as have security mindset

20

Present results (Finding summary)

• Location of the vulnerability

• Vulnerability class

• Vulnerability description

• Prerequisites (for exploiting vulnerability)

• Business impact (on assets)

• Remediation (how to fix)

• Risk

• Severity

• Probability

21 | PA193 - Security Code Review

Finding summary - example

22 | PA193 - Security Code Review

Problem identification: DSA-1571-1 openssl

Severity: critical

Risk: high - directly exploitable by external attacker

Problem description: crypto/rand/md_rand.c:276 & 473 – The random number

generator in Debian's openssl package is predictable. This is caused by an

incorrect Debian-specific change to the openssl package. One of the sources of

a randomness based on usage of uninitialized buffer buff is removed.

Remediation: revert back to usage of uninitialized buffer buff

| PA193 - Security Code Review

Architecture review

| PA193 - Security Code Review

Architecture overview

• Get all information you can quickly

• Assets
– What has the value in the system?

– What damage is caused when successfully attacked?

– What mechanisms are used to protect assets?

• Roles
– Who has access to what?

– What credentials needs to be presented?

• Thread model
– What is expected to do harm?

– What are you defending against?

24

| PA193 - Security Code Review

Architecture review (2)

• Usage of well established techniques and

standards

• Comparison with existing schemes

– What is the advantage of new scheme?

– Why changes were made?

• Security tradeoffs documented

– Possible threat, but unmitigated?

– Is documented or overlooked?

25

| PA193 - Security Code Review

Sensitive data flow mapping

• Identify sensitive data

– password, key, protected data...

• Find all processing functions

– and focus on them

• Create data flow between functions

– e.g. Doxygen call graph

• Inspect when functions can be called

– Is key schedule validity checked?

– Can be function called without previous function calls?

• Where are sensitive data stored between calls?

26

| PA193 - Security Code Review

Protocol design (and implementation)

• Packet confidentiality, integrity and authenticity

• Packet removal/insertion detection

• Replay attack

• Reflection attack

• Man in the middle

27

| PA193 - Security Code Review

Cryptography usage

• CIA (Confidentiality, Integrity, Availability)
– Plaintext data over insecure channel? Encrypted only?

– Can be packet send twice (replay)?

– What is the application response on data modification?

• What algorithms are used
– Broken/insecure algorithms? MD5? simple DES?

• What key lengths are used?
– < 90 bits symmetric crypto?

– < 1024 bits asymmetric crypto?

• Random number generation
– Where the key comes from?

– Is source entropic enough?

– srand() & rand()?

28

| PA193 - Security Code Review

Cryptography usage (2)

• Key creation

– Where the keys originate? Enough entropy?

– Who has access?

• Key storage

– Hard-coded keys

– Keys in files in plaintext

– Keys over insecure channels

– Keys protected by less secure keys

• Key destruction

– How are keys erased from memory?

– Can exception prevent key erase?

29

| PA193 - Security Code Review

Cryptography implementation

• Implementation from well known libraries?

• Own algorithms?

– security by obscurity?

– usually not secure enough

• Own modifications?

– Why?

– sometimes used to prevent compatible programs

– decreased number of rounds?

– Performance optimization with security impact?

30

CODE INSPECTION

31 | PA193 - Security Code Review

Example process

1. Start review by suite of static analysis tools

– approximately up to 40-50% of software bugs can be found

– but incapable of finding application flaws and business logic vulns.

2. Results used to create prioritized list for human review

– security mechanisms to review

– potential security vulnerabilities to investigate

3. Manual inspection of issues in prioritized list

– use and abuse cases

– various code inspection strategies

4. Threat modeling used for large codebases (>100k loc)

– inspect impact of generally high-risk threat on application

• http://www.praetorian.com/campaign/software-security/security-code-review.html

 32 | PA193 - Security Code Review

http://www.praetorian.com/campaign/software-security/security-code-review.html
http://www.praetorian.com/campaign/software-security/security-code-review.html
http://www.praetorian.com/campaign/software-security/security-code-review.html
http://www.praetorian.com/campaign/software-security/security-code-review.html
http://www.praetorian.com/campaign/software-security/security-code-review.html
http://www.praetorian.com/campaign/software-security/security-code-review.html
http://www.praetorian.com/campaign/software-security/security-code-review.html
http://www.praetorian.com/campaign/software-security/security-code-review.html
http://www.praetorian.com/campaign/software-security/security-code-review.html

Code navigation

• Control-flow sensitive navigation

– follow function calls

– e.g., what parts of program are reachable from set of

functions callable without previous authentication?

• Data-flow sensitive navigation

– follow flows of interesting data

– e.g., password from input to verification and storage

• Code navigation tools provide great help

– call graphs (Doxygen, Performance profilers)

– tainted values (e.g., taintgrind)

– ...
33 | PA193 - Security Code Review

Code auditing strategies

• Code comprehension (CC) strategies

– analysing the source code directly to discover

vulnerabilities

• Candidate point (CP) strategies

– create a list of potential issues (via some mechanism)

– examine the source code for relevance of these issues

• Design generalization (DG) strategies

– reviewing the implementation and inferring higher-level

design abstractions

– medium- to high-level logic and design flaws

34 | PA193 - Security Code Review

| PA193 - Security Code Review

Code comprehension (CC) strategies

CC strategy - Trace Malicious Input

• Start at entry point to the system

– e.g., user input

• Trace flow of code forward with data flow analysis

– functions processing user input

• Set of possible “bad” inputs is created

– e.g., escaped shell command

• Code is examined for potential security issue

– where is user input “executed”?

36 | PA193 - Security Code Review

Trace Malicious Input - characteristics

37 | PA193 - Security Code Review

The Art of Software Security Assessment: Identifying and Preventing Software Vulnerabilities

CC strategy - Analyse Module & Algorithm

• Reading the code line by line from the beginning

• Do not follow function calls

• Writing down potential issues spotted

• Algorithm analysis is similar to module analysis, but

module implementation is usually longer

• Effective, if the code is not too long, but mentally

exhausting

– overlooked problems after some time, time-demanding

38 | PA193 - Security Code Review

Analyse a Module - characteristics

39 | PA193 - Security Code Review

The Art of Software Security Assessment: Identifying and Preventing Software Vulnerabilities

CC strategy – other useful strategies

• Analyse a Class or Object

– implementation of small unit

• Trace Black Box Hits

– focus on areas where fuzzers etc. found problems

– e.g., by debugging with value used to crash application

• Automated Source Analysis Tool

– used to generate candidate points

40 | PA193 - Security Code Review

| PA193 - Security Code Review

Candidate points (CP) strategies

Candidate points strategies

1. Use some tool or process for identifying candidate points

2. Deeper follow-up inspection by other (e.g., CC) strategy

• Simple Lexical Candidate Points

– patterns of common vulnerabilities (full text search, grep-like tool)

– deprecated functions (e.g., gets), strings like “key”, “password”...

– static analysis tools, e.g., Cppcheck rules

42 | PA193 - Security Code Review

Candidate points strategies

• Simple Binary Candidate Points

– generate candidate points from binary only (unavailable source code)

– list or search for specific strings in binary

– search for interesting system calls

– use disassembling, or binary debugging

• Application-Specific Candidate Points

– patterns of mistakes for particular application

– learned from previous code/binary analysis

– e.g., new rule for Cppcheck

43 | PA193 - Security Code Review

TOOLS

44 | PA193 - Security Code Review

Handy tools

• Syntax highlighting, full text search

– any reasonable editor

• Regular expression tools (grep)

– allow for more complex searches

• Automatic generation of call graphs

– Doxygen, Visual Studio and many other tools

45 | PA193 - Security Code Review

Handy tools

• Static and dynamic analyzers

– detect multiple issues

– annotations (e.g., SAL) will help even further

• Fuzzing tools

– behavior under stress, error messages...

• Mind-mapping software

– build and do not forget information you got

• Pen&Pencil

– still of great help (flexible)

46 | PA193 - Security Code Review

ANTI-PATTERNS

47 | PA193 - Security Code Review

| PA193 - Security Code Review

(Security) Antipatterns

• Common defective process and implementation

within organization

• Opposite to design patterns

– see http://sourcemaking.com/design_patterns

• Read http://sourcemaking.com/antipatterns

– good description, examples and how to solve

– not limited to object oriented programming!

48

http://sourcemaking.com/design_patterns
http://sourcemaking.com/antipatterns

Security anti-patterns

• Software development anti-patterns

– http://sourcemaking.com/antipatterns/software-

development-antipatterns

• Tesco password handling

– http://www.troyhunt.com/2012/07/lessons-in-website-

security-anti.html

• Critique of some usages of OAuth

– http://adactio.com/journal/1357/

49 | PA193 - Security Code Review

http://sourcemaking.com/antipatterns/software-development-antipatterns
http://sourcemaking.com/antipatterns/software-development-antipatterns
http://sourcemaking.com/antipatterns/software-development-antipatterns
http://sourcemaking.com/antipatterns/software-development-antipatterns
http://sourcemaking.com/antipatterns/software-development-antipatterns
http://www.troyhunt.com/2012/07/lessons-in-website-security-anti.html
http://www.troyhunt.com/2012/07/lessons-in-website-security-anti.html
http://www.troyhunt.com/2012/07/lessons-in-website-security-anti.html
http://www.troyhunt.com/2012/07/lessons-in-website-security-anti.html
http://www.troyhunt.com/2012/07/lessons-in-website-security-anti.html
http://www.troyhunt.com/2012/07/lessons-in-website-security-anti.html
http://www.troyhunt.com/2012/07/lessons-in-website-security-anti.html
http://www.troyhunt.com/2012/07/lessons-in-website-security-anti.html
http://www.troyhunt.com/2012/07/lessons-in-website-security-anti.html
http://www.troyhunt.com/2012/07/lessons-in-website-security-anti.html
http://adactio.com/journal/1357/
http://adactio.com/journal/1357/
http://adactio.com/journal/1357/

Recommended reading

• Process of security code review

– http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01668009

• Software Security Code Review

– http://www.softwaremag.com/l.cfm?doc=2005-07/2005-07code

• Performing security Review (Microsoft)

– http://silverstr.ufies.org/blog/msdn-webcast-code-review.pdf

• SDL security code review process (MS Security Push)
– http://msdn.microsoft.com/en-us/library/cc307418.aspx

• OWASP security review

– https://www.owasp.org/index.php/Security_Code_Review_in_the_SDLC

• On the effectiveness of code review

– http://www.cs.berkeley.edu/~finifter/papers/coderev-essos13.pdf

50 | PA193 - Security Code Review

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01668009
http://www.softwaremag.com/l.cfm?doc=2005-07/2005-07code
http://www.softwaremag.com/l.cfm?doc=2005-07/2005-07code
http://www.softwaremag.com/l.cfm?doc=2005-07/2005-07code
http://www.softwaremag.com/l.cfm?doc=2005-07/2005-07code
http://www.softwaremag.com/l.cfm?doc=2005-07/2005-07code
http://silverstr.ufies.org/blog/msdn-webcast-code-review.pdf
http://silverstr.ufies.org/blog/msdn-webcast-code-review.pdf
http://silverstr.ufies.org/blog/msdn-webcast-code-review.pdf
http://silverstr.ufies.org/blog/msdn-webcast-code-review.pdf
http://silverstr.ufies.org/blog/msdn-webcast-code-review.pdf
http://silverstr.ufies.org/blog/msdn-webcast-code-review.pdf
http://silverstr.ufies.org/blog/msdn-webcast-code-review.pdf
http://silverstr.ufies.org/blog/msdn-webcast-code-review.pdf
http://msdn.microsoft.com/en-us/library/cc307418.aspx
http://msdn.microsoft.com/en-us/library/cc307418.aspx
http://msdn.microsoft.com/en-us/library/cc307418.aspx
https://www.owasp.org/index.php/Security_Code_Review_in_the_SDLC
https://www.owasp.org/index.php/Security_Code_Review_in_the_SDLC
https://www.owasp.org/index.php/Security_Code_Review_in_the_SDLC
http://www.cs.berkeley.edu/~finifter/papers/coderev-essos13.pdf
http://www.cs.berkeley.edu/~finifter/papers/coderev-essos13.pdf
http://www.cs.berkeley.edu/~finifter/papers/coderev-essos13.pdf
http://www.cs.berkeley.edu/~finifter/papers/coderev-essos13.pdf

| PA193 - Security Code Review

Recommended reading

• Why cryptosystems fail, R. Anderson
– http://www.cl.cam.ac.uk/~rja14/Papers/wcf.pdf

• Static code analysis tools
– http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

• Security in web applications (OWASP)
– http://www.owasp.org/index.php/Code_Review_Introduction

51

http://www.cl.cam.ac.uk/~rja14/Papers/wcf.pdf
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://www.owasp.org/index.php/Code_Review_Introduction

CONCLUSIONS

52 | PA193 - Security Code Review

Conclusions

• Plan your work and time (work iteratively)

• Different reviews needs different techniques (be flexible)

• Code review is creative process (have fun)

• Tools can help you a lot (use them)

• but main part of work is up to you

• Code review also contains human interaction (be polite)

53 | PA193 - Security Code Review

Questions

