
Michal Červeňanský
Miriama Jánošová
Petra Rebrošová

Gremlin

1. No bright light
2. Do not get him wet
3. Do not feed him after midnight, no matter how much he begs

2

Gremlin

● Developed by Apache TinkerPop™ of the Apache Software Foundation
○ graph computing framework for both graph databases (OLTP)

and graph analytic systems (OLAP)
● Since 2009
● Current stable release: Gremlin 3.4.4 (14 Oct 2019)
● Cross-platform
● Graph traversal and query language for working with property graphs
● Traverse a graph looking for values, patterns and relationships

○ create sub-graphs
○ add or delete vertices and edges…

● Not widely used (1. Cypher... SPARQL, GraphQL, Gremlin)

3

Gremlin

● Gremlin is a functional, data-flow language and a traversal machine
● = virtual machine (instruction set + execution engine)
● Every step is either:

○ map-step (transforming the objects in the stream)
○ filter-step (removing objects from the stream)
○ sideEffect-step (computing statistics about the stream).

● Graph-based virtual machine coordinates the execution of a
multi-machine graph traversal

4

OLTP and OLAP
● "write once, run anywhere" -philosophy

○ All TinkerPop-enabled graph systems execute Gremlin traversals
(OLTP)

○ Every Gremlin traversal can be evaluated as either a real-time
database query or as a batch analytics query (OLAP)

○ User does not need to learn both database query language and
domain-specific BigData analytics language

5

Gremlin usage and support

● Gremlin Console

● Data System Providers:

○ Amazon Neptune

○ Hadoop

○ Apache Spark

○ Azure Cosmos DB

○ Neo4j

○ Orient DB

○ etc.

● Query Language Providers:

○ SQL, SPARQL (own compilers)

○ Gremlin-Python

○ Gremlin-Java

○ Gremlin.Net

○ Gremlin-Groovy

○ Gremlin-Scala

○ Orge (version for Clojure)

○ etc.
6

Gremlin Console

● Gremlin Console -> ./bin/gremlin.sh

● Set up the configuration:

○ conf = new BaseConfiguration()

○ conf.setProperty('gremlin.neo4j.directory',

Neo4j_database_with_loaded_data.db');

○ graph = Neo4jGraph.open(conf);

○ g = graph.traversal();

○ … use queries over g ...

7

Traversals

1. Imperative (procedural)
○ How to proceed at each step of traversal - the order of operations

2. Declarative (descriptive)
○ Allows each traverser to select pattern to execute from a collection

of patterns
○ Runtime query planner that chooses which traversal pattern to

execute next based on the historic statistics of each pattern
- favoring those patterns which tend to reduce/filter the most data

3. Hybrid
○ Combination of imperative and declarative

8

Imperative vs. Declarative Traversals

g.V()
.hasLabel('Tag')
.has('tagId', 'gremlin')
.inE().outV()
.hasLabel('Post')
.inE().outV()
.hasLabel('User')
.dedup();

 g.V()
.match(

__.as('t').has('tagId', 'gremlin'),
__.as('t').in('HAS_TAG').as('p'),
__.as('p').in('POSTED').as('u'))

.select('u').dedup();

● Looks similar to Cypher

9

Neo4j
● The most popular Graph database
● Query language: Cypher

● Also Cypher on Gremlin
○ Execution on TinkerPop engine
○ Mapping Cypher queries to Gremlin - not very efficient

10

Our Data
● Source: https://archive.org/details/stackexchange

● Data in XML: 85.3 GB

● Data in CSV: 10.88 GB

● DB: 43.6 GB

● Stack Overflow

○ Posts

○ Tags

○ Users

○ + relations between Posts

○ + relations between Posts and Tags

○ + relations between Posts and Users

11

https://archive.org/details/stackexchange

Entities - Post
46,947,633

● postId:ID(Post)
● title
● body
● score
● views
● comments

12

Entities - User

11,376,305

● userId:ID(User)
● displayname
● aboutme
● websiteurl
● location
● profileimageurl
● views
● upvotes
● downvotes

13

Entities - Tag

56,525

● tagId:ID(Tag)

14

Relationships

● HAS_TAG:

○ 55,078,412

○ Post -[:HAS_TAG]-> Tag

● PARENT_OF:

○ 28,248,207

○ Post -[:PARENT_OF]-> Post

15

● POSTED:

○ 46,383,097

○ User -[:POSTED]-> Post

Indexing
● Index created on the DB neo4j, not by Gremlin language
● Create index (Cypher):

○ CREATE INDEX ON :Post(views);
○ CREATE INDEX ON :Tag(tagId);
○ CREATE INDEX ON :User(reputation)
○ CREATE INDEX ON :Post(postId) - FAILED, run out of RAM

● Indexing failed -> next run -> Neo4j continues with indexing

● Matching with index was slower than without it
16

Indexing in Gremlin
// in Gremlin Console

graph = Neo4jGraph.open(conf);

graph.createIndex('postId', Post.class)

g = graph.traversal()

...

17

Queries - behind the scenes
● Neo4j shows time of execution in its results

● Difficult to measure time in Gremlin queries

○ Clock() does not work - time of saving query into a variable

○ script needed for query execution time

= (Gremlin DB setup + query)

- time of setup (4 commands)

18

Comparison of queries - Neo4j and Gremlin

● General querying: Cypher is enough and generally faster

● Gremlin:

○ better in high-level traversing

○ define exact traversal pattern

○ more execution control

● Cypher

○ the best traversing solution on its own

○ problem: multiple conditions

19

Comparison of queries - Neo4j and Gremlin

Find top 10 mostly viewed posts.

● Neo4j (24.22 s)

MATCH (p:Post)
RETURN p
ORDER BY p.views DESC
LIMIT 10;

20

● Gremlin (FAILED)

g.V()
.hasLabel('Post')
.order().by('views', desc)
.limit(10);

21

Comparison of queries - Neo4j and Gremlin
Select all users, who posted Posts with tag ‘gremlin’. (1167 results)

● Neo4j (11ms)

MATCH
(t:Tag {tagId:'gremlin'}) <-[:HAS_TAG]-(p:Post)
<-[:POSTED] - (u:User)
RETURN DISTINCT u;

22

● Gremlin (80 ms)

g.V()
.hasLabel('Tag')
.has('tagId', 'gremlin')
.inE().outV()
.hasLabel('Post')
.inE().outV()
.hasLabel('User')
.dedup();

Comparison of queries - Neo4j and Gremlin
Return top 10 trolls and count of their posts.

● Neo4j (65 552 results, 24.5 s)

MATCH (u:User) WITH u
ORDER BY u.downvotes DESC
LIMIT 10
MATCH (u)-[:POSTED]->(p:Post)
RETURN COUNT (p);

23

● Gremlin (65 552 results, 45.7 s)

g.V()
.hasLabel('User')
.order().by('downvotes', desc)
.limit(10)
.outE()
.hasLabel('POSTED')
.outV()
.count();

Difficult queries (1)
Top 10 user whose posts are the most heterogeneous and
has better score than 300.

● Neo4j (6.1 min)

MATCH (t:Tag)<-[:HAS_TAG]-(p:Post)
<-[:POSTED]-(u:User) where p.score > 300
RETURN distinct u,
COLLECT(distinct t) as tags,
count(distinct t) as ctags
ORDER BY SIZE(tags) DESC
Limit 10;

● Gremlin (3.85 min)

g.V.().hasLabel(‘User’).as(‘users’)
.outE().outV().hasLabel('Post')
.has('score', gt(300)).as(‘post’)
.map {

def t = g.V(it.get())
 .out(‘HAS_TAG’).count()
}.as(‘counts’)
.select(‘users’, ‘counts’)
.by(‘counts’, desc).limit(10) 24

Difficult queries (2)
Select and order by reputation all users that answered a question
with tags “gremlin” and “neo4j”. (118 results)

● Neo4j (8.21min)

with ['neo4j', 'gremlin'] as tags match (t:Tag)
where t.tagId in tags
with collect(t) as taglist
match (p:Post)
where all (t in taglist where
(p)-[:HAS_TAG]->(t))
match (u:User) - [:POSTED] -> (ans:Post) <- [:PARENT_OF] - (p)
return u order by toInteger(u.reputation) desc;

25

Difficult queries (2 cont.)
Select and order by reputation all users that answered a question
with tags “gremlin” and “neo4j”.

● Gremlin (3.31 min)

g.V()
.hasLabel('Post')
.and(out('HAS_TAG')
.has('Tag','tagId','neo4j'),out('HAS_TAG')
.has('Tag','tagId','gremlin'))
.outE().hasLabel('PARENT_OF')
.inV().inE('POSTED').outV().dedup()
.order().by('reputation').values() 26

27

Demo

28

Thank you for your attention

29

Do you have any questions?

