
Lukáš Dvořák, Jan Hermann, Vojtěch Kaňa, Martin Toufar

Contents
● overview
● features
● data representation
● clusters
● comparison with Neo4j

OrientDB
● open source document-graph database
● initial release in 2010
● written in Java
● cross-platform

Features
● reliable - full ACID transactions
● supports subset of SQL
● five different indexing algorithms
● up to 120,000 records per second
● multi-master replication
● easy installation
● quick import of relational databases
● schema-less, schema-full and schema-mixed mode

● graph

● document

● key-value

● object

Multimodel database

Graph database

● data is stored in edges and vertices

● two base classes

○ V - for vertices

○ E - for edges

● custom classes can be made by extending V or E

Example

orientdb> CREATE CLASS Person EXTENDS V

orientdb> CREATE CLASS Student EXTENDS Person

orientdb> CREATE PROPERTY Student.name STRING

Edge

● connection between vertices

● bidirectional

● regular/lightweight

Regular edges

● extension of class E, can have properties

● stored as document

Lightweight edges

● stored in vertices

Lightweight edges

● advantages

○ faster creation and traversal

● disadvantages

○ cannot store properties

○ it’s difficult to query using SQL

Record ID

● #<cluster>:<position>

○ cluster identifier:

■ positive - persistent records

■ negative - temporary records

○ position - absolute position of record in cluster

Cluster

● collection of records of the same type

● similar to table in relational databases

● by default, OrientDB creates one cluster for each Class

Cluster selection

● round-robin

● balanced

● local

○ used in distributed mode

○ choses cluster stored on the current node

Advantages of using multiple clusters

● optimization

● parallel queries

● sharding

Example

orientdb> CREATE CLUSTER <cluster-name>

orientdb> ALTER CLASS <class-name> ADDCLUSTER <cluster-name>

OrientDB vs Neo4j

50/50 read/update Insert new vertices Read neighboring
vertices

Query Language
● 2 options in OrientDB - SQL-like or MATCH:

○ SELECT name, out('ACTS').title FROM Person WHERE name = 'Robin'
○ MATCH {class:Person, as:actor, where:(name:'Robin')) -ACTS_IN->

{as:movie} RETURN actor.name, movie.title

● Neo4j:

○ MATCH (actor:Person{name:'Robin'})-[:ACTS_IN]->(movie) RETURN
actor.name, movie.title

DEMO

Sources
● OrientDB documentation
● https://en.wikipedia.org/wiki/OrientDB

Thanks for your attention.

