
DynamoDB
Daniel Charvát, Denisa Šrámková, Viliam Juríček, Šimon Berka

Introduction to DynamoDB
● Key-value document database developed by Amazon

○ They discovered that 90 % of their operations query a single table
○ SQL database tables was thus mostly redundant

● Fully managed, multimaster, durable database with in-memory caching
● Partition through consistent hashing to spread data across instance nodes
● Size is defined through read and write capacity units

○ Allowed number of operations per second
○ Generally cheaper with less frequent usage

Companies that are using DynamoDB

Source: https://www.featuredcustomers.com/vendor/amazon-dynamodb/customers

https://www.featuredcustomers.com/vendor/amazon-dynamodb/customers

Ranking

Source: https://db-engines.com/en/ranking/

https://db-engines.com/en/ranking/

Features
Strengths

● Seamless scalability through
automatic instance expansion

● Data backed up to Amazon S3
● Ease of integration with other

AWS services

Drawbacks

● No ACID transactions
○ Although eventual consistency

is almost guaranteed
● Not suitable for large binary

objects.
● Cross-region replicability not

available

Setting up DynamoDB
There are several options:

● Local
○ Windows, Linux, Mac OS (downloadable version)
○ Apache Maven (POM file)
○ Docker

● Web service
1. Sign up to AWS
2. Get an AWS access key
3. Configure credentials

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.DownloadingAndRunning.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.Maven.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.Docker.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SettingUp.DynamoWebService.html

Accessing DynamoDB
Again there are several options:

● AWS Management Console
● AWS Command Line Interface
● DynamoDB API - supports Java, JavaScript, .NET, Node.js, PHP, Python

(AWS SDK called Boto 3), Ruby, C++, Go, Android and iOS

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ConsoleDynamoDB.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.CLI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Using.API.html

Core components
● a table is a collection of items
● each item is a collection of attributes
● primary keys are used to uniquely identify each item

in a table
● secondary indexes provide more querying flexibility

Other than the primary key, the ‘People’ table is
schemaless, which means that neither the attributes nor
their data types need to be defined beforehand.

Source: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html

Core components
The primary key for table ‘Music’ consists of two
attributes (Artist and SongTitle).

Each item in the table must have these two attributes.

The combination of Artist and SongTitle distinguishes
each item in the table from all of the others.

Source: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html

Primary key
● must be specified when creating a table
● DynamoDB support two kinds of primary keys:

○ partition key: composed of one attribute (PersonID)
○ partition key and sort key: composed of two attributes (Artist,

SongTitle)

● each primary key attribute must be a scalar (of a data type: string,
number, or binary)

Source: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html

Secondary indexes
● we can query the data in the table using an alternate key (in addition to

queries against the primary key)
● two kinds of indexes:

○ global: both partition and sort key can be different from those on the
table

○ local: same partition key as the table, but a different sort key

● default indexes limit per table: 20 global, 5 local

Source: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html

Secondary indexes
We can query data items by Artist
(partition key) or by Artist and
SongTitle (partition key and sort key).

If we also wanted to query the data by
Genre and AlbumTitle:

1. Create an index on Genre and
AlbumTitle

2. Query the index

Source: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html

RDBMS vs. DynamoDB

Source: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SQLtoNoSQL.html

Characteristics Relational Database Management
System (RDBMS)

Amazon DynamoDB

Optimal Workloads Ad hoc queries; data warehousing; OLAP Web-scale applications

Data Model Requires a well-defined schema (data is
normalized into tables, rows, and columns).

Schemaless - Can manage structured or
semistructured data.

Performance optimized for storage optimized for compute

Scaling Scale up through faster hardware
tables can be span across multiple hosts in
a distributed system (upper limits on
scalability).

Designed to scale out using distributed clusters of
hardware (No upper limit).

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SQLtoNoSQL.html

Creating a table - schema example

{
"TableName": "TestCertificates",
"KeySchema": [

{ "AttributeName": "cert_info_link", "KeyType": "HASH" },
{ "AttributeName": "cert_authority", "KeyType": "RANGE" }

],
"GlobalSecondaryIndexes": [

{ "IndexName": "log_type_index",
 "KeySchema": [

 {
 "AttributeName": "log_type",

"KeyType" : "HASH"
 },
 {

"AttributeName": "cert_authority",
"KeyType" : "RANGE"

 }
],

cert_info_link not_valid_before not_valid_afte
r

cert_common_name cert_authority log_type

http://ct.google... 1573257600 1581119999 thesmartlocal0... cPanel, Inc. X509LogEntry

http://ct.googleapis.com/logs/xenon2020/ct/v1/get-entries?start=57610940&end=57610940

Creating a table - schema example
 "Projection": {

 "ProjectionType": "ALL"
 },
 "ProvisionedThroughput" : {

 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5

 }
}

],
"AttributeDefinitions": [

{ "AttributeName": "cert_info_link", "AttributeType": "S" },
{ "AttributeName": "cert_authority", "AttributeType": "S" },
{ "AttributeName": "log_type", "AttributeType": "S" }

],
"ProvisionedThroughput": {

"ReadCapacityUnits": 5,
"WriteCapacityUnits": 5

}
}

LIVE DEMO

