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Reminder - scalar product

scalar (dot, inner) product of two
vectors: X, WeRY: w-X = (W,X) =
wix=3% wxeR

— WX
0= I

W, X) =0 & wiX
projection of x on w is

Ccos

CXW) W (X, W)

ProjyX= ——— = ——
Wil liwil (w2
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General problem

we consider the binary classification problem (K = 2)

without loss of generality, we let the labels of the
classes be +1
we are given a set
XxY ={X,y)li=1,....,nfcRYx{-1,+1)
the goalis to find the parameters of the classifier such
that the number of misclassified points is minimized
let the discriminant function have the form
d
h(X) = WX 4+ wp = (W, X) + Wy = W + Z WX
i=1
note that x can be replaced with ¢(x)! (we’ll discuss
this later)
the classifier is

sign(h(X)) = sign({W, X) + wyp)



an error: if sign({W, X;) + wWp) # y;; in other words: if
Yi({w, X)) + wp) < 0 & y;h(x;) <0
the risk of misclassification (error) is

R(h) = Pr[Y # sign(h(X))]

where (X, Y) is a random pair of observations
the empirical risk is the estimation of the risk on a
given set of points:

n

Z 1y sign(hx)) = lnz

you need n > d + 1 points for learning the classifier



The linear decision boundary H, where h(x) = wix+w, = 0, separatesthe
feature space into two half-spacesR ; (where h(x) > 0) and R , (where h(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattemn Classification. Copyright
C 2001 by John Wiley & Sons, Inc.
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Margins

Functional Margin

The functional margin of a point x; with respect to a
hyperplane w is defined to be

yi = Yi(W, Xp) + Wp) = yih(X;)

Geometric Margin

The geometric margin of a point x; with respect to a
hyperplane w is defined to be

V’(Wu >+||W70||) y%

— Geometric margin is the normalized functional margin.



Margin of a point




Margin of a set (of points)

The maximum margin among all (hypenplanes is the
margin of a set of points. The corresponding hyperplane is
called maximum margin hyperplane.

margin of a setls,
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Generalization to multi-class
problems

a multi-class problem can be
decomposed in a series of
two-class problems: 1-vs-all or
1-vs-1

or, one can use K (no. of
classes) discriminant fn. h;(x)
and build classifiers of the
form: assign x to class i if

hi(x) > hj(x) for all i # j

this defines K(K — 1)/2
hyperplanes

H,'j : h,'(X) - hj(X) =0

in practice, there are usually
less hyperplanes that form the
decision surface




Generalized linear discriminants
Consider a function y : RY — RY. The discriminant function

4
g(x) = (@y(x)) = ) awi(x)
i=1

is a linear function in a (but not in x).
Example: let x = x e R and let y(x) = [1, x, x?]" e R3,



Remarks:
* a problem which is not linearly separable in R may
become linearly separable in RY
° w =7
¢ finding the coefficients in R requires much more
fraining points!

* the decision surface, when projected back into RY
(by ¢~ 1) is non-linear



a convenient (but trivial) fransformation:
"‘normalization” of the notation

take y(x) = y[1,x]". This allows us to write
y = yh(x) = y({W.X) + wp) = (a,2)

where a = [wp, W] and z = y[1,x]’
the problem becomes: find a such that

(a,z) >0

i.e. all the margins are positive

the decision surface H in R+, defined by (a,z) = 0,
corresponds to a hyperplane passing through the
origin of the z—space
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consider we are given the set {(Xx;, y;)} with y; = £1

with the previous "normalized" notation, the set is
linearly separable if

@@,z)y>0, Vi=1,...,n

the solution ais constrained by each point z;

a a a

under current conditions, the solution is not unique!

solutions on the boundary of the solution space may
bbe 100 sensitive — you can use the condition
(@,z;)) > ¢>0
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General approach

* let J(a) be a criterion function that measures the
"suitability" of a candidate solution a

e by convention, the solution to the classification
problem is obtained as

a’ =arg mciln J(a)

e usually, Jis chosen to be continuous (at least in a
neighborhood of the solution) and differentiable



Gradient descent
Qi1 = Qg —nVJ(Qy)

¢ the negative gradient, -vJ(a) is
locally the steepest descent
towards a (local) minimum

* 5y is A line search parameter or
learning rate

e start with some ag and iterate until
nVJ(ai)l <6

([




Using Taylor’s 2nd order approximation:

1

J(@) = J(ay) + VJ(a-ay) + 5(a-a,) Ha-ay),

2
where H is the Hessian maftrixH = [ ] one can find

the optimal learning rate as

VP
~(VI)H(VI)

Note: if J is quadratic, then n is a constant.



Newton’s method
Qy1 = o —H' (V)

e works well for quadratic objective functions
e problems if the Hessian is singular

e no need to invert H: solve the system Hs = —VJ and
update the solution a, 1 = a, + s
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The perceptron

e criterion: find a* (or, equivalently, w* and w;) that

minimize
- Z)’i == Z(G,ZD

jiel iel
where 1 is the set of indices of misclassified points

e note: since y; < O for all misclassified points, J(a) > 0,
reaching 0 when all points are correctly classified

e it is easy to see that

VaJ(a Z Z;

iel



e using gradient descent we get the updating iterations
of the form
Ay 1 = Qg + 12

e the perceptron in guaranteed to converge in a finite
number of iterations, if the fraining set is separable -
Novikoff’s thm

e from Novikoff’s thm. the number of mistakes the
perceptron makes is upper bounded by

)

Y

where R is the radius of the sphere containing the
data points, i.e. R = max; |||



Perceptron algorithm (batch
perceptron)

Input: A separable training set X x Y and a stop criterion ¢
Output: a, such that y; > 0, Vi and k is the number of
mistakes
1. ag « 0, k < 0, ng « some initial value
2: repeat
3 fori=Ttondo
4 if v = (ay,z;) < 0then
S Q1 Qe + 14
6: Ke—Kk-+1
7 end if
8: end for
9. until |n, Ziel[k Zj| <0



What about n,? There are different "schedules" for
modifying it...

e conditions: n, > 0, limm_e X5 7k = 0 And

m 2
. Zk:1 My
lim ———

m—oo 2 - O
(ZT:1 nk)
* 1, = constant > 0

1
® Nk <y



let a be the solution of the perceptron algorithm
it is easy to see that a = 2;”: , @;z; where

0, if point i was always correctly classified
a; =
: > 0, « the number of times point i was misclassified

a; can be seen as the importance (or contribution) of
z; to the classification rule

the discriminant function can be rewritten as

h(x) = (a,z)
= <Z aZ;, Z>
i=1

@[z}, Z)

I
.MJ

i=1

this is the dual form of the perceptron algorithm



Dual formulation of the perceptron
algorithm

Input: A fraining set X x Y
Output: o = [ag,...,an]
a0
2: repeat
3: fori=1tondo
4 if y; = (X, 2)(2;,2) < O then
5 aj — a;+ 1
6: end if
7. end for
8. until no mistakes



Dual representation - remarks

in dual representation, the only way data is involved
in the algorithm/formula is through the dot products
(2, 2))

this property is valid for a large class of methods

the dot products for the data can be computed
offline, and stored in a Gram matrix G = [(z;,Z))];

similarly, to predict the class of a new point x, just
(some of) the products (z,z;) are needed



Relaxation procedures

Another objective function:

1o (a,z) - ¢)?
HO) =50

iel

it is ssnooth and has a continuous gradient function

the tferm ¢ is infroduced to avoid the solution on the
boundary of the solution space

||zl is a normalization term to avoid J, being
dominated by the largest vectors

1/2 is merely to make the gradient nicer...

<avzl'>_§
vy, = Y&z —¢,
= g Y

iel



Algorithms:
e bafch relaxation with margin: update step:

_ &— (.2
Q+1 = °k+ﬂkzw i

I'E]Ik

e single-sample relaxation with margin: update step (for
each misclassified sample z)):

§— (.2

Ay = A +1¢
* iz

e if nx < 1: underrelaxation; if n, > 1: overrelaxation
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Fisher criterion

Objective
Find the hyperplane (w, wp) on which the projected data
is maximally separated.




e the lenght of the projection of a

vector z onto w is ﬁ

e projection of the difference vector
between the means of the two
classes (taking |w|| = 1):

KW, (pg1 = )

e maximize the difference, relative to M
the projected pool variance ‘

(scaftter):

1 2 2
n+] + n_] (s-‘r] + S—])
o 2= 3,((W,X;) — (W, 1.))2 where the
sum is over the elements in either
class



¢ the lenght of the projection of a

vector z onto w is ﬁ

e projection of the difference vector
between the means of the two
classes (taking |w|| = 1):

KW, (pg1 = )

e maximize the difference, relative to
the projected pool variance
(scattern):

Objective: maximize

_ 1 2 s 2
Nniy+ Ny +1 =1 J(W) = KW, 1) — (W, 1)l
§2 .+ 5%
o 2 = 3,((W, X)) — (W, 1.))? where the N
sum is over the elements in either
class



Fisher criterion

)
w'S,w
W* = arg max J(W) = arg max
g max J(W) = argma WIS W
where
® Sy = (up1 —p_1)(usy —uoy)' « between-class scatter
matrix

® Sy = ier,, (X = s 1) (X = 1) + Bier, (Xj = o1 ) (X — )’
«— within-class scatter matrix

e §,, is proportional to sample covariance matrix for the
pooled data



* Jw is also known as Rayleigh quotient
e the solufion has the form

W o S (e — )
and it defines the direction of Fisher’s linear

discriminant

¢ the classification of d-dimensional points is
fransformed info a classification of one-dimensional
points



® no assumption on the underlying distributions was
made in finding w*
e the complete form of the linear discriminant is

(W, Xy +wg =0

e to find wy one can, for example:
* assume p(x| = 1) to be Gaussians: this leads to the
previously seen formulas for wy (see Ch. 2)
¢ try to find a value optimal for the training set
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Linear regression problem
Find a = ([wg, W] such that

b=(@,z), i=12,...,n

for some fixed positive constants b;. In matrix notation,
solve the linear system

Za=D>b
for a.

e Zisanx(d+ 1)-dimensional matrix (design matrix), a
isa (d+ 1)—elements vector.

* b is a n—elements vector (response vector)

e usually n> d + 1, so the system is overdetermined —
Nno exact solution



define the error vector
e=Za-b

minimum squared error criterion:

n
minimize Jy(a) = llel? = " ((a.2)) - by)?

i=1

at the minimum, the gradient VJ; = 2Z(Za - b) is zero
= a=(2'2)"'2'"b = Z'b, where Z' is the pseudoinverse
ofZ

the solution depends on b and different choices lead
to various properties of the solution



Relation to Fisher’s linear
discriminant

by properly choosing the class coding, one can show
that MSE approach is equivalent to FDA

by = - - for the class "+1" (with n,, elements) and
b; = for the class "-1" (with n_; elements)
the MSE criterion for a = [wp, W] leads to

W o NS, (iy — o)

which is the direction of FDA

additionally, it gives a value for the threshold:

wo = —u'w (u is the grand mean vector)

the decision rule becomes: if w/(x — ) > O classify x as
belonging to the first class



Relation with Bayesian classifier

e |et the Bayesian discriminant be

ho(X) = P(g11x) - P(g21x)

e the samples are assumed to be drawn independently
and identically distributed from the underlying
distribution

p(x) = p(xIg1)P(g1) + P(XIg2) P(G0)

e MSE becomes

& = [ (@2~ ho))? pix) cix



— the solution to MSE problem, a, generates an
approximation of the Bayesian discriminant

p(x) =7
main problem of MSE: places more emphasis on

points with high p(x) instead of point near to the
discrimination surface

— the "best" approximation of Bayes decision does
not necessarily minimize the probability of error



Numerical considerations on the LS
problem

Using the pseudo-inverse is not the best technique, from a
numerical stability perspective:
e computing Z'Z and Z'b may lead to information loss
due to approximations in floating-point computations
¢ the conditioning of the system is worsen:
cond(Z'Z) = [cond(Z)]?
Normally, a matrix factorization is used for improved
numerical stability: QR, SVD....



QR factorization

The nx m (with m > n) matrix Z can be factorized as
Z=QR

where
* Qis an orthogonal matrix. Q' Q=1 Q' = Q'
e Ris an upper friangular matrix

With this, the solution a to our problem is the solution of
the triangular system (solved by backsubstitution):

Ra=Q'b



A statistical perspective

A linear model (linear regression) problem:
Elb] =Za,  under the assumption Cov(b) = o2/
It can be shown that the best linear unbiased estimator is

a=22)"Z7b=R"'Q'b

for a decomposition Z = @R. Then: b = @Q'b.
(Gauss-Markov thm.: LS estimator has the lowest variance
among all unbiased linear estimators.) Also,

Var(@) = (2'2)'0? = (R'R) 102

where o2 = |b-b|2/(n-d - 1).



Outline

@ Linear regression

The Widow-Hoff procedure



the MSE criterion, Js(a) = X1, ((a.,2;) - b;)? can also be
minimized by gradient descent method

since
VJs = 22(Za - b)

the update rule becomes

a; = some value
A1 = o +mZ' (Zay - b)

if n, = m/k, the procedure convergest to a limiting
value for a satistifying

Z/(Za-b) =0

this algorithm yields a solution even if Z'Z is singular or
badly conditioned



The Widrow-Hoff (or LMS) algorithm implements sequential
gradient descent. (In signal processing: least mean
squares filter - adaptive filtering...)

Input: A training set (X,y)

Output: a - approximate MSE solution

1. initialize a,b,n;, 6 and k « 0
2: repeat

3 ke (k+1)n

4 A d+ (b —(a,z4))zk
5  mem/K

6: until [ (by — (Q,2Z,))zy] < 6



(DHS - Fig.5.17)
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consider b = Za be the margins (instead of fixed
labels)

idea: adjust both the coefficients a and the margins b
such that b > 0 (each margin should be positive)

formally: find a and b > 0 such that
Js(a,b) = Za - b|]?

becomes 0

use a modified gradient descent, with gradient taken
w.rt.aand b
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