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Reminder - scalar product

• scalar (dot, inner) product of two
vectors: x,w ∈ Rd : w · x = 〈w,x〉 =
wtx =

∑d
i=1 wixi ∈ R

• cos θ = 〈w,x〉
‖w‖ ‖x‖

• 〈w,x〉 = 0 ⇐⇒ w ⊥ x
• projection of x on w is

Projw x =
〈x,w〉
‖w‖

w
‖w‖

=
〈x,w〉
‖w‖2

w

θ

x

w

Projwx
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General problem
• we consider the binary classification problem (K = 2)
• without loss of generality, we let the labels of the

classes be ±1
• we are given a set
X ×Y = {(xi , yi)|i = 1, . . . ,n} ⊂ Rd × {−1,+1}

• the goal is to find the parameters of the classifier such
that the number of misclassified points is minimized

• let the discriminant function have the form

h(x) = wtx + w0 = 〈w,x〉+ w0 = w0 +
d∑

i=1

wixi

• note that x can be replaced with φ(x)! (we’ll discuss
this later)

• the classifier is

sign(h(x)) = sign(〈w,x〉+ w0)



• an error: if sign(〈w,xi〉+ w0) , yi ; in other words: if
yi(〈w,xi〉+ w0) < 0⇔ yih(xi) < 0

• the risk of misclassification (error) is

R(h) = Pr[Y , sign(h(X))]

where (X ,Y ) is a random pair of observations
• the empirical risk is the estimation of the risk on a

given set of points:

R̂n(h) =
1
n

n∑
i=1

1{yi,sign(h(xi))} =
1
n

n∑
i=1

1yih(xi)<0

• you need n ≥ d + 1 points for learning the classifier



x

h(x) = 0w

x1

x2

x3

w0 /||
w||

r
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xp
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ThelineardecisionboundaryH,whereh(x) =wtx+w0 = 0, separatesthe
featurespace into two half-spacesR 1 (whereh(x) > 0)andR 2 (whereh(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classi cation. Copyright
c 2001 by JohnWiley& Sons, Inc.
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Margins

Functional Margin
The functional margin of a point xi with respect to a
hyperplane w is defined to be

γi = yi(〈w,xi〉+ w0) = yih(xi)

Geometric Margin
The geometric margin of a point xi with respect to a
hyperplane w is defined to be

γi = yi

(〈
w
‖w‖

,xi

〉
+

w0

‖w‖

)
= yi

h(xi)

‖w‖

→ Geometric margin is the normalized functional margin.



Margin of a point



Margin of a set (of points)

The maximum margin among all (hyper)planes is the
margin of a set of points. The corresponding hyperplane is
called maximum margin hyperplane.
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Generalization to multi-class
problems

• a multi-class problem can be
decomposed in a series of
two-class problems: 1-vs-all or
1-vs-1

• or, one can use K (no. of
classes) discriminant fn. hi(x)
and build classifiers of the
form: assign x to class i if
hi(x) > hj(x) for all i , j

• this defines K (K − 1)/2
hyperplanes
Hij : hi(x) − hj(x) = 0

• in practice, there are usually
less hyperplanes that form the
decision surface

g1

g2

g3

H13

H23

H12R1

R2
R3



Generalized linear discriminants
Consider a function ψ : Rd → Rd̂ . The discriminant function

g(x) = 〈a, ψ(x)〉 =
d̂∑

i=1

aiψi(x)

is a linear function in a (but not in x).
Example: let x = x ∈ R and let ψ(x) = [1, x , x2]t ∈ R3.
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Remarks:
• a problem which is not linearly separable in Rd may

become linearly separable in Rd̂

• ψ =?

• finding the coefficients in Rd̂ requires much more
training points!

• the decision surface, when projected back into Rd

(by ψ−1) is non-linear



• a convenient (but trivial) transformation:
"normalization" of the notation

• take ψ(x) = y [1,x]t . This allows us to write

γ = yh(x) = y(〈w,x〉+ w0) = 〈a, z〉

where a = [w0,w]t and z = y [1,x]t

• the problem becomes: find a such that

〈a, z〉 > 0

i.e. all the margins are positive
• the decision surface Ĥ in Rd+1, defined by 〈a, z〉 = 0,

corresponds to a hyperplane passing through the
origin of the z−space
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• consider we are given the set {(xi , yi)} with yi = ±1
• with the previous "normalized" notation, the set is

linearly separable if

〈a, zi〉 > 0, ∀i = 1, . . . ,n

• the solution a is constrained by each point zi

aaa

• under current conditions, the solution is not unique!
• solutions on the boundary of the solution space may

be too sensitive→ you can use the condition
〈a, zi〉 ≥ ξ > 0
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General approach

• let J(a) be a criterion function that measures the
"suitability" of a candidate solution a

• by convention, the solution to the classification
problem is obtained as

a∗ = argmin
a

J(a)

• usually, J is chosen to be continuous (at least in a
neighborhood of the solution) and differentiable



Gradient descent

ak+1 = ak − ηk∇J(ak)

• the negative gradient, −∇J(a) is
locally the steepest descent
towards a (local) minimum

• ηk is a line search parameter or
learning rate

• start with some a0 and iterate until
|ηk∇J(ak)| < θ

x0

x1

x2

x3

x4

*

*



Using Taylor’s 2nd order approximation:

J(a) u J(ak) + ∇J(a − ak) +
1
2
(a − ak)

tH(a − ak),

where H is the Hessian matrix H =
[

∂2J
∂ai∂aj

]
ij
, one can find

the optimal learning rate as

ηk =
‖∇J‖2

(∇J)tH(∇J)
.

Note: if J is quadratic, then ηk is a constant.



Newton’s method

ak+1 = ak − H−1(∇J)

• works well for quadratic objective functions
• problems if the Hessian is singular
• no need to invert H: solve the system Hs = −∇J and

update the solution ak+1 = ak + s
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The perceptron

• criterion: find a∗ (or, equivalently, w∗ and w∗0) that
minimize

J(a) = −
∑
i∈I

γi = −
∑
i∈I

〈a, zi〉

where I is the set of indices of misclassified points
• note: since γi < 0 for all misclassified points, J(a) ≥ 0,

reaching 0 when all points are correctly classified
• it is easy to see that

∇aJ(a) = −
∑
i∈I

zi



• using gradient descent we get the updating iterations
of the form

ak+1 = ak + ηkzi

• the perceptron in guaranteed to converge in a finite
number of iterations, if the training set is separable -
Novikoff’s thm

• from Novikoff’s thm. the number of mistakes the
perceptron makes is upper bounded by(

2R
γ

)2

where R is the radius of the sphere containing the
data points, i.e. R = maxi ‖xi‖



Perceptron algorithm (batch
perceptron)

Input: A separable training set X ×Y and a stop criterion θ

Output: ak such that γi > 0,∀i and k is the number of
mistakes

1: a0 ← 0, k ← 0, η0 ← some initial value
2: repeat
3: for i = 1 to n do
4: if γi = 〈ak , zi〉 < 0 then
5: ak+1 ← ak + ηkzi
6: k ← k + 1
7: end if
8: end for
9: until |ηk

∑
i∈Ik zi | < θ



What about ηk? There are different "schedules" for
modifying it...

• conditions: ηk ≥ 0, limm→∞
∑m

k=1 ηk = ∞ and

lim
m→∞

∑m
k=1 η

2
k(∑m

k=1 ηk

)2
= 0

• ηk = constant > 0
• ηk ∝

1
k



• let a be the solution of the perceptron algorithm
• it is easy to see that a =

∑n
i=1 αizi where

αi =

0, if point i was always correctly classified
> 0,∝ the number of times point i was misclassified

• αi can be seen as the importance (or contribution) of
zi to the classification rule

• the discriminant function can be rewritten as

h(x) = 〈a, z〉

=

〈 n∑
i=1

αizi , z
〉

=
n∑

i=1

αi〈zi , z〉

• this is the dual form of the perceptron algorithm



Dual formulation of the perceptron
algorithm

Input: A training set X ×Y
Output: α = [α1, . . . , αn]

1: α← 0
2: repeat
3: for i = 1 to n do
4: if γi =

(∑n
j=1 αj〈zj , zi〉

)
≤ 0 then

5: αi ← αi + 1
6: end if
7: end for
8: until no mistakes



Dual representation - remarks

• in dual representation, the only way data is involved
in the algorithm/formula is through the dot products
〈zi , zj〉

• this property is valid for a large class of methods
• the dot products for the data can be computed

offline, and stored in a Gram matrix G = [〈zi , zj〉]ij
• similarly, to predict the class of a new point x, just

(some of) the products 〈z, zi〉 are needed



Relaxation procedures

Another objective function:

Jr(a) =
1
2

∑
i∈I

(〈a, zi〉 − ξ)
2

‖zi‖
2

• it is smooth and has a continuous gradient function
• the term ξ is introduced to avoid the solution on the

boundary of the solution space
• ‖z‖2 is a normalization term to avoid Jr being

dominated by the largest vectors
• 1/2 is merely to make the gradient nicer...

∇Jr =
∑
i∈I

〈a, zi〉 − ξ

‖zi‖
2

zi



Algorithms:
• batch relaxation with margin: update step:

ak+1 = ak + ηk

∑
i∈Ik

ξ − 〈ak , zi〉

‖zi‖
2

zi

• single-sample relaxation with margin: update step (for
each misclassified sample zi):

ak+1 = ak + ηk
ξ − 〈ak , zi〉

‖zi‖
2

zi

• if ηk < 1: underrelaxation; if ηk > 1: overrelaxation
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Fisher criterion

Objective
Find the hyperplane (w,w0) on which the projected data
is maximally separated.



• the lenght of the projection of a
vector z onto w is 〈w,z〉

‖w‖
• projection of the difference vector

between the means of the two
classes (taking ‖w‖ = 1):

|〈w, (µ+1 − µ−1)〉|

• maximize the difference, relative to
the projected pool variance
(scatter):

1
n+1 + n−1

(s2
+1 + s2

−1)

• s2
· =

∑
i(〈w,xi〉 − 〈w, µ·〉)2 where the

sum is over the elements in either
class

Objective: maximize

J(w) =
|〈w, µ+1〉 − 〈w, µ−1〉|

2

s2
+1 + s2

−1



• the lenght of the projection of a
vector z onto w is 〈w,z〉

‖w‖
• projection of the difference vector

between the means of the two
classes (taking ‖w‖ = 1):

|〈w, (µ+1 − µ−1)〉|

• maximize the difference, relative to
the projected pool variance
(scatter):

1
n+1 + n−1

(s2
+1 + s2

−1)

• s2
· =

∑
i(〈w,xi〉 − 〈w, µ·〉)2 where the

sum is over the elements in either
class

Objective: maximize

J(w) =
|〈w, µ+1〉 − 〈w, µ−1〉|

2

s2
+1 + s2

−1



Fisher criterion

w∗ = argmax
w

J(w) = argmax
w

wtSbw
wtSww

where
• Sb = (µ+1 − µ−1)(µ+1 − µ−1)

t ← between-class scatter
matrix

• Sw =
∑

i∈I+1
(xi − µ+1)(xi − µ+1)

t +
∑

i∈I−1
(xi − µ−1)(xi − µ−1)

t

← within-class scatter matrix
• Sw is proportional to sample covariance matrix for the

pooled data



• Jw is also known as Rayleigh quotient
• the solution has the form

w∗ ∝ S−1
w (µ+1 − µ−1)

and it defines the direction of Fisher’s linear
discriminant

• the classification of d−dimensional points is
transformed into a classification of one-dimensional
points



• no assumption on the underlying distributions was
made in finding w∗

• the complete form of the linear discriminant is

〈w,x〉+ w0 = 0

• to find w0 one can, for example:
• assume p(x| ± 1) to be Gaussians: this leads to the

previously seen formulas for w0 (see Ch. 2)
• try to find a value optimal for the training set
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Linear regression problem
Find a = ([w0,w]t) such that

bi = 〈a, zi〉, i = 1, 2, . . . ,n

for some fixed positive constants bi . In matrix notation,
solve the linear system

Za = b

for a.

• Z is a n × (d + 1)−dimensional matrix (design matrix), a
is a (d + 1)−elements vector.

• b is a n−elements vector (response vector)
• usually n > d + 1, so the system is overdetermined→

no exact solution



• define the error vector

e = Za − b

• minimum squared error criterion:

minimize Js(a) = ‖e‖2 =
n∑

i=1

(〈a, zi〉 − bi)
2

• at the minimum, the gradient ∇Js = 2Zt(Za − b) is zero
⇒ a = (ZtZ)−1Ztb = Z†b, where Z† is the pseudoinverse
of Z

• the solution depends on b and different choices lead
to various properties of the solution



Relation to Fisher’s linear
discriminant

• by properly choosing the class coding, one can show
that MSE approach is equivalent to FDA

• bi =
n

n+1
for the class "+1" (with n+1 elements) and

bj =
n

n−1
for the class "-1" (with n−1 elements)

• the MSE criterion for a = [w0,w] leads to

w ∝ nS−1
w (µ+1 − µ−1)

which is the direction of FDA
• additionally, it gives a value for the threshold:

w0 = −µtw (µ is the grand mean vector)
• the decision rule becomes: if wt(x − µ) > 0 classify x as

belonging to the first class



Relation with Bayesian classifier

• let the Bayesian discriminant be

h0(x) = P(g1|x) − P(g2|x)

• the samples are assumed to be drawn independently
and identically distributed from the underlying
distribution

p(x) = p(x|g1)P(g1) + p(x|g2)P(g2)

• MSE becomes

ε2 =

∫
(〈a, z〉 − h0(x))

2 p(x) dx



• → the solution to MSE problem, a, generates an
approximation of the Bayesian discriminant

• p(x) =?

• main problem of MSE: places more emphasis on
points with high p(x) instead of point near to the
discrimination surface

• → the "best" approximation of Bayes decision does
not necessarily minimize the probability of error



Numerical considerations on the LS
problem

Using the pseudo-inverse is not the best technique, from a
numerical stability perspective:
• computing ZtZ and Ztb may lead to information loss

due to approximations in floating-point computations
• the conditioning of the system is worsen:
cond(ZtZ) = [cond(Z)]2

Normally, a matrix factorization is used for improved
numerical stability: QR, SVD,...



QR factorization

The n ×m (with m > n) matrix Z can be factorized as

Z = QR

where
• Q is an orthogonal matrix: QtQ = I⇔ Q−1 = Qt

• R is an upper triangular matrix

With this, the solution a to our problem is the solution of
the triangular system (solved by backsubstitution):

Ra = Qtb



A statistical perspective

A linear model (linear regression) problem:

E[b] = Za, under the assumptionCov(b) = σ2I

It can be shown that the best linear unbiased estimator is

â = (ZtZ)−1Ztb = R−1Qtb

for a decomposition Z = QR. Then: b̂ = QQtb.
(Gauss-Markov thm.: LS estimator has the lowest variance
among all unbiased linear estimators.) Also,

Var(â) = (ZtZ)−1σ2 = (RtR)−1σ2

where σ2 = ‖b − b̂‖2/(n − d − 1).
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• the MSE criterion, Js(a) =
∑n

i=1(〈a, zi〉 − bi)
2 can also be

minimized by gradient descent method
• since

∇Js = 2Zt(Za − b)

the update rule becomes

a1 = some value

ak+1 = ak + ηkZt(Zak − b)

• if ηk = η1/k , the procedure convergest to a limiting
value for a satistifying

Zt(Za − b) = 0

• this algorithm yields a solution even if ZtZ is singular or
badly conditioned



The Widrow-Hoff (or LMS) algorithm implements sequential
gradient descent. (In signal processing: least mean
squares filter - adaptive filtering...)
Input: A training set (X,y)
Output: a - approximate MSE solution

1: initialize a,b, η1, θ and k ← 0
2: repeat
3: k ← (k + 1)n
4: a← a + ηk(bk − 〈a, zk〉)zk
5: ηk ← η1/k
6: until |ηk(bk − 〈a, zk〉)zk | < θ



[DHS - Fig.5.17]

x1

x2

separating hyperplane

LMS solution
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• consider b = Za be the margins (instead of fixed
labels)

• idea: adjust both the coefficients a and the margins b
such that b > 0 (each margin should be positive)

• formally: find a and b > 0 such that

Js(a,b) = ‖Za − b‖2

becomes 0
• use a modified gradient descent, with gradient taken

w.r.t. a and b
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