PA196: Pattern Recognition

3. Linear discriminants (cont'd)

Dr. Vlad Popovici popovici@recetox.muni.cz

RECETOX Masaryk University, Brno

1 Linear Discriminant Analysis (cont'd)

LDA, QDA, RDA

LD subspace

LDA: wrap-up

2 Logistic regression

3 Large margin (linear) classifiers

Linearly separable case

Non-linearly separable case: soft margins

Linear Discriminant Analysis (cont'd) LDA, QDA, RDA

> LD subspace LDA: wrap-up

- 2 Logistic regression
- 3 Large margin (linear) classifiers Linearly separable case Non-linearly separable case: soft margins

Remember (first lecture):

- Bayes decision: assign x to the class with maximum a posteriori probability
- let there be K classes denoted g_1, \ldots, g_K , with corresponding priors $P(g_i)$
- the posteriors are:

$$P(g_i|\mathbf{x}) = \frac{p(\mathbf{x}|g_i)P(g_i)}{\sum_{i}^{K} p(\mathbf{x}|g_i)P(g_i)} \propto p(\mathbf{x}|g_i)P(g_i)$$

• decision function (for class g_i vs class g_j) arise from log odds-ratios (for example):

$$\log \frac{P(g_i|\mathbf{X})}{P(g_j|\mathbf{X})} = \log \frac{p(\mathbf{X}|g_i)}{p(\mathbf{X}|g_j)} + \frac{P(g_i)}{P(g_j)} \begin{cases} > 0, & \text{predict } g_i \\ < 0, & \text{predict } g_j \end{cases}$$

Under the *assumption* of Gaussian class-conditional densities:

$$p(\mathbf{x}|g) = \frac{1}{(2\pi)^d |\Sigma_g|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^t \Sigma^{-1}(\mathbf{x} - \mu)\right]$$

($|\Sigma|$ is the determinant of covariance matrix Σ) the decision function becomes

$$h_{ij}(\mathbf{x}) = \log \frac{P(g_i|\mathbf{x})}{P(g_i|\mathbf{x})} = (\mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + w_{i0}) - (\mathbf{x}^t \mathbf{W}_j \mathbf{x} + \mathbf{w}_j^t \mathbf{x} + w_{j0})$$

where

$$\mathbf{W}_i = -\frac{1}{2}\Sigma_i^{-1}, \quad \mathbf{w}_i = \Sigma_i^{-1}\mu_i$$

and

$$w_{i0} = -\frac{1}{2}\mu_i^t \Sigma_i^{-1} \mu_i - \frac{1}{2} \log |\Sigma_i| + \log P(g_i)$$

Simplest LDA

If $\Sigma_i = \Sigma_i = \sigma^2 \mathbf{I}$ ("spherical" covariance matrices)

$$h_{ij}(\mathbf{x}) = \mathbf{w}_{ij}(\mathbf{x} - \mathbf{x}_0)$$

where

$$\mathbf{w}_{ij} = \mu_i - \mu_j, \quad \mathbf{x}_0 = \frac{1}{2}(\mu_i + \mu_j) - \frac{\sigma^2}{||\mu_i - \mu_j||^2} \log \frac{P(g_i)}{P(g_j)}(\mu_i - \mu_j)$$

Classical LDA

If all classes share a common covariance matrix, $\Sigma_i = \Sigma$, the decision function becomes

$$h_{ij}(\mathbf{x}) = \mathbf{w}^t(\mathbf{x} - \mathbf{x}_0)$$

where

$$\mathbf{w} = \Sigma^{-1}(\mu_i - \mu_j), \ \mathbf{x}_0 = \frac{1}{2}(\mu_i + \mu_j) - \frac{1}{(\mu_i - \mu_j)^T \Sigma^{-1}(\mu_i - \mu_j)} \log \frac{P(g_i)}{P(g_j)}(\mu_i - \mu_j)$$

Estimation of LDA parameters

- we are given $\{(\mathbf{x}_i, g_i), i = 1, ..., n\}$ with $\mathbf{x}_i \in \mathbb{R}^d$ and $g_i \in \{g_1, ..., g_K\}$.
- priors: $\hat{P}(g_i) = n_i/n$ where n_i is the number of elements of class g_i in the training set
- mean vectors: $\hat{\mu}_i = \frac{1}{n_i} \sum_{\mathbf{x} \in \mathcal{G}_i} \mathbf{x}$
- covariance matrix: $\hat{\Sigma} = \sum_{k=1}^{K} \sum_{\mathbf{x} \in \mathcal{G}_k} (\mathbf{x} \hat{\mu}_k) (\mathbf{x} \hat{\mu}_k)^{\dagger} / (n K)$

Quadratic Discriminant Analysis

Class-conditional probabilities are general Gaussians and the decision function has the form:

$$h_{ij}(\mathbf{x}) = \log \frac{P(g_i|\mathbf{x})}{P(g_i|\mathbf{x})} = (\mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + w_{i0}) - (\mathbf{x}^t \mathbf{W}_j \mathbf{x} + \mathbf{w}_j^t \mathbf{x} + w_{j0})$$

where

$$\mathbf{W}_i = -\frac{1}{2}\Sigma_i^{-1}, \quad \mathbf{w}_i = \Sigma_i^{-1}\mu_i$$

and

$$w_{i0} = -\frac{1}{2}\mu_i^t \Sigma_i^{-1} \mu_i - \frac{1}{2} \log |\Sigma_i| + \log P(g_i)$$

LDA and QDA

Hastie et al: The Elements of Statistical Learning - chpt 4

Note: a similar boundary to QDA could be obtained by applying LDA in an augmented space with axes x_1, \ldots, x_d , $x_1x_2, \ldots, x_{d-1}x_d, x_1^2, \ldots, x_d^2$

Regularized DA: between LDA and QDA

Combine the pooled covariance with class-specific covariance matrices, and allow the pooled covariance the be *more spherical* or *more general*:

$$\hat{\Sigma}_{k}(\alpha, \gamma) = \alpha \hat{\Sigma}_{k} + (1 - \alpha) \left[\gamma \hat{\Sigma} + (1 - \gamma) \hat{\sigma}^{2} \mathbf{I} \right]$$

- $\alpha = 1$: QDA; $\alpha = 0$: LDA
- $\gamma = 1$: general covariance matrix; $\gamma = 0$: spherical covariance matrix
- α and γ must be optimized

Implementation of LDA

 use diagonalization of the covariance matrices (either pooled or class-specific), which are symmetric and positive definite:

$$\Sigma_i = \mathbf{U}_i \mathbf{D}_i \mathbf{U}_i^t$$

where \mathbf{U}_i is a $d \times d$ orthonormal matrix and D_i is a diagonal matrix with eigenvalues $d_{ik} > 0$ on the diagonal

• the ingredients for the decision functions become:

$$(\mathbf{x} - \mu_i)^{\dagger} \Sigma_i^{-1} (\mathbf{x} - \mu_i) = [\mathbf{U}_i^{\dagger} (\mathbf{x} - \mu_i)]^{\dagger} \mathbf{D}_i^{-1} [\mathbf{U}_i^{\dagger} (\mathbf{x} - \mu_i)]$$

and

$$\log |\Sigma_i| = \sum_k \log d_{ik}$$

Implementation of LDA, cont'd

A possible 2-step procedure for LDA classification (common covariance matrix $\Sigma = \mathbf{UDU}^t$):

- **1** "sphere" the data: $\mathbf{X}^* = \mathbf{D}^{-\frac{1}{2}} \mathbf{U}^t \mathbf{X}$
- 2 assign a sample x to the closest centroid in transformed space, modulo the effect of the priors

1 Linear Discriminant Analysis (cont'd) LDA, QDA, RDA LD subspace

- 2 Logistic regression
- 3 Large margin (linear) classifiers
 Linearly separable case
 Non-linearly separable case: soft margins

- the centroids μ_i i = 1,..., K lie in an affine subspace of dimension at most K − 1 < d
- any dimension orthogonal to this subspace does not influence the classification
- the classification is carried out in a low dimensional space, hence we have a dimensionality reduction
- the subspace axes can be found sequentially, using Fisher's criterion (find directions that maximally separate the centroids with respect to the variance)
- this is essentially the same as Principal Component Analysis

- compute M the K x d matrix of class centroids (by rows) and the common covariance matrix W (within-class covariance)
- compute M* = MW^{-1/2} (using eigen-decomposition of W)
- 3 compute \mathbf{B}^* the covariance matrix of \mathbf{M}^* (between-class covariance matrix), and its eigen-decomposition $\mathbf{B}^* = \mathbf{V}^* \mathbf{D}_B \mathbf{V}^{*\dagger}$
- 4 the columns of V^* (ordered from largest to smallest eigen-value d_{Bi}) give the coordinates of the optimal subspaces
 - the *i*-th discriminant variable (canonical variable) is given by $Z_i = (\mathbf{W}^{-\frac{1}{2}} V_i^*)^T \mathbf{X}$

Classification in Reduced Subspace

Canonical Coordinate 1

Hastie et al. - The Elements of Statistical Learning - chpt. 4

Hastie et al. - The Elements of Statistical Learning - chpt. 4

1) Linear Discriminant Analysis (cont'd)

LDA, QDA, RDA LD subspace LDA: wrap-up

2 Logistic regression

3 Large margin (linear) classifiers
Linearly separable case
Non-linearly separable case: soft margins

- LDA, FDA and MSE regression with a particular coding of class labels, lead to equivalent solutions (separating hyperplane)
- LDA (QDA) is the optimal classifier in the case of Gaussian class-conditional distributions
- LDA can be used to project data into a lower dimensional space for visualization
- LDA derivation assumes Gaussian densities, but FDA does not
- LDA is naturally extended to multiple classes

Linear Discriminant Analysis (cont'd)
 LDA, QDA, RDA
 LD subspace
 LDA: wrap-up

- 2 Logistic regression
- 3 Large margin (linear) classifiers
 Linearly separable case
 Non-linearly separable case: soft margins

Idea: model the posterior probabilities as linear functions in ${\bf x}$ and ensure they sum up to 1.

For K classes g_1, \ldots, g_K :

$$\log \frac{P(g_i|\mathbf{x})}{P(g_K|\mathbf{x})} = \langle \mathbf{w}_i, \mathbf{x} \rangle + w_{i0}, \qquad \forall i = 1, \dots, K-1$$

which leads to

$$P(g_i|\mathbf{x}) = \frac{\exp(\langle \mathbf{w}_i, \mathbf{x} \rangle + w_{i0})}{1 + \sum_{j=1}^{K-1} \exp(\langle \mathbf{w}_j, \mathbf{x} \rangle + w_{j0})}, \quad i = 1, \dots, K-1$$

$$P(g_K|\mathbf{x}) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(\langle \mathbf{w}_j, \mathbf{x} \rangle + w_{j0})}$$

- the transformation p → log[p/(1 p)] is called logit transform
- the choice of reference class (K in our case) is purely a convention
- the set of parameters of the model: $\theta = \{\mathbf{w}_1, w_{10}, \dots, \mathbf{w}_{k-1}, w_{k-10}\}$
- the log-likelihood is

$$L(\theta) = \sum_{i=1}^{n} \log P(g_i|x_i;\theta)$$

For the binary case (K = 2), take the classes to be encoded in response variables y_i : $y_i = 0$ for class g_1 and $y_i = 1$ for class g_2 .

a single posterior probability is needed:

$$P(y = 0|\mathbf{x}) = \frac{\exp(\langle \mathbf{w}, \mathbf{x} \rangle + w_0)}{1 + \exp(\langle \mathbf{w}, \mathbf{x} \rangle + w_0)}$$

the likelihood function becomes:

$$L(\theta = \{\mathbf{w}, w_0\}) = \sum_{i=1}^{n} [y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + w_0) - \log(1 + \exp(\langle \mathbf{w}, \mathbf{x}_i \rangle + w_0)]$$

• using z = [1, x] and $a = [w_0, w]$,

$$L(\mathbf{a}) = \sum_{i=1}^{n} [y_i \langle \mathbf{a}, \mathbf{z} \rangle - \log(1 + \exp(\langle \mathbf{a}, \mathbf{z} \rangle))]$$

- objective: find $\mathbf{a}^* = \arg \max_{\mathbf{a}} L(\mathbf{a})$
- $\frac{\partial L(\mathbf{a})}{\partial \mathbf{a}} = \sum_{i=1}^{n} \mathbf{z}_i (y_i P(y_i = 0 | \mathbf{z}_i))$
- at a (local) extremum, $\frac{\partial L(\mathbf{a})}{\partial \mathbf{a}} = 0$ which leads to a system of equations to be solved for \mathbf{a}
- the solution can be found by a Newton-Raphson procedure (iteratively re-weighted least squares)

A few remarks on logistic regression:

- brings the tools of linear regression to pattern recognition
- can be used to identify those input variables that explain the output
- its predictions can be interpreted as posterior probabilities
- by introducing a penalty term, variable selection can be embedded into the model construction - we'll see it later!
- both LDA and logistic regression use a linear form for the log-posterior odds $\log(P(g_i|x)/P(g_K|x))$; LDA assumes the posterior to be Gaussians, while logistic regression assumes they only lead to linear log-posterior odds

Linear Discriminant Analysis (cont'd) LDA, QDA, RDA LD subspace LDA: wrap-up

2 Logistic regression

3 Large margin (linear) classifiers
Linearly separable case
Non-linearly separable case: soft margins

- there are theoretical considerations to justify the goal of maximizing the margin achieved by the separating hyperplane
- intuitively, the larger the margin, more "room" for noise in data and, hence, better generalization
- let a training set be $\{(\mathbf{x}_i, y_i), i = 1, ..., n\}$ with $y_i = \pm 1$
- the margin of a point \mathbf{x}_i w.r.t. the boundary function h is $\gamma_i = y_i h(\mathbf{x}_i)$
- it can be shown that the maximal error attained by h is upper bounded by a function of $\min(\gamma_i)$ (however, the bound might not be tight)

 Linear Discriminant Analysis (cont'd) LDA, QDA, RDA LD subspace LDA: wrap-up

2 Logistic regression

3 Large margin (linear) classifiers
Linearly separable case
Non-linearly separable case: soft margins

- consider the dataset $\{(\mathbf{x}_i, y_i), i = 1, ..., n\}$ be linearly separable, i.e. $y_i > 0$
- we will consider linear classifiers $h(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + w_0$ (with the predicted class being $\operatorname{sign}(h(\mathbf{x}))$
- if the (functional) margin achieved is 1, then $\gamma_i \ge 1$
- then, the geometric margin is the normalized functional margin 1/||w||, hence:

Proposition

The hyperplane (\mathbf{w}, w_0) that solves the optimization problem

minimize_{$$\mathbf{w}, w_0$$} $\frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle$
subject to $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + w_0) \ge 1, i = 1, ..., n$

realizes the maximal margin hyperplane with geometric margin $\gamma = 1/\|\mathbf{w}\|$.

Solving the constrained optimization problem:

• let the objective function be $f(\mathbf{w})$ and the equality constraints $h_i(\mathbf{w}) = 0$ for i = 1, ..., m, then the Lagrangian function is

$$L(\mathbf{w},\boldsymbol{\beta}) = f(\mathbf{w}) + \sum_{i=1}^{m} \beta_i h_i(\mathbf{w})$$

 a necessary and sufficient condition for w* to be a solution of the optimization problem (f: continuous and convex, h_i: continuous and differentiable) is

$$\frac{\partial L(\mathbf{w}^*, \boldsymbol{\beta}^*)}{\partial \mathbf{w}^*} = 0$$
$$\frac{\partial L(\mathbf{w}^*, \boldsymbol{\beta}^*)}{\partial \boldsymbol{\beta}^*} = 0$$

for some values of β^*

For a constrained optimization with a domain $\Omega \subseteq \mathbb{R}^n$:

minimize_{**w**}
$$f(\mathbf{w})$$

subject to $g_i(\mathbf{w}) \ge 0, i = 1,..., k$
 $h_i(\mathbf{w}) = 0, i = 1,..., m$

the Lagrangian function has the form

$$L(\mathbf{w}, \alpha, \beta) = f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w}) \sum_{i=1}^{m} \beta_i h_i(\mathbf{w})$$

with α_i and β_i being the Lagrange multipliers.

Karush-Kuhn-Tucker (KKT) optimality conditions for a convex optimization problem: for a solution \mathbf{w}^* and corresponding multipliers α^* and $\boldsymbol{\beta}^*$,

$$\frac{\partial L}{\mathbf{w}^*} = 0$$

$$\frac{\partial L}{\boldsymbol{\beta}^*} = 0$$

$$\alpha_i^* \mathcal{G}_i(\mathbf{w}^*) = 0$$

$$\mathcal{G}_i(\mathbf{w}^*) \le 0$$

$$\alpha_i^* \ge 0$$

- for active constraints ($g_i(\mathbf{w}) = 0$,) $\alpha_i > 0$; for inactive constraints ($g_i(\mathbf{w}) < 0$,) $\alpha_i = 0$
- α_i can be seen as the sensitivity of f to the active constraint

Duality of convex optimization:

- the solution is a saddle point
- w are the primal variables
- Lagrange multipliers are the dual variables
- solving the dual optimization problem may be simpler: the Lagrange mult. are the main variables, so set to 0 the derivatives w.r.t. w and substitute the result into the Lagrangian
- the resulting function contains only the dual variables and must be maximized under simpler constraints

...and back to our initial problem:

the primal Lagrangian is

$$L(\mathbf{w}, w_0, \alpha) = \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle - \sum_{i=1}^{n} \alpha_i \left[y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + w_0) - 1 \right]$$

- from KKT conditions, $\mathbf{w} = \sum_i y_i \alpha_i \mathbf{x}_i$ and $\sum_i y_i \alpha_i = 0$
- which leads to the dual Lagrangian

$$L(\mathbf{w}, w_0, \alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_i \sum_j y_i y_j \alpha_i \alpha_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

Proposition

If α^* is the solution of the quadratic optimization problem

maximize
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

subject to $\sum_{i=1}^{n} \alpha_i y_i = 0$
 $\alpha_i \ge 0, i = 1, \dots, n$

then the vector $\mathbf{w}^* = \sum_i y_i \alpha_i^* \mathbf{x}_i$ realizes the maximal margin hyperplane with the geometric mean $1/||\mathbf{w}^*||$.

• in the dual formulation, w_0^* still needs to be specified, so

$$w_0^* = -\frac{1}{2} \left(\max_{V_i = -1} \{ \langle \mathbf{w}^*, \mathbf{x}_i \rangle \} + \max_{V_i = 1} \{ \langle \mathbf{w}^*, \mathbf{x}_i \rangle \} \right)$$

- from KKT conditions: $\alpha_i^*[y_i(\langle \mathbf{w}^*, \mathbf{x} \rangle + w_0^*) 1] = 0$, so only for \mathbf{x}_i lying on the margin, $\alpha_i^* \neq 0$
- those \mathbf{x}_i for which $\alpha_i \neq 0$ are called *support vectors*
- the optimal hyperplane is a linear combination of support vectors:

$$h(x) = \sum_{i \in SV} y_i \alpha_i^* \langle \mathbf{x}_i, \mathbf{x} \rangle + w_0^*$$

the margin achieved is

$$\gamma = rac{1}{\|\mathbf{w}^*\|} = \left(\sum_{i \in \mathrm{SV}} lpha_i^*
ight)^{-rac{1}{2}}$$

 an (leave-one-out) estimate of the generalization error is the proportion of support vectors of the total training sample size,

$$\frac{\#SV}{n}$$

Linear Discriminant Analysis (cont'd) LDA, QDA, RDA LD subspace LDA: wrap-up

2 Logistic regression

3 Large margin (linear) classifiers
Linearly separable case
Non-linearly separable case: soft margins

L2-norm soft margins

 introduce the slack variables ξ and allow "softer" margins:

$$\begin{aligned} & \text{minimize}_{\mathbf{w},w_0,\xi} & & \frac{1}{2}\langle \mathbf{w},\mathbf{w}\rangle + C\sum_{i=1}^n \xi_i^2, \\ & \text{subject to} & & y_i(\langle \mathbf{w},\mathbf{x}_i\rangle + w_0) \geq 1 - \xi_i, i = 1,\dots,n \\ & & & \xi_i \geq 0, i = 1,\dots,n \end{aligned}$$

for some C > 0

- theory suggests optimal choice for $C: 1/\max_i \{||\mathbf{x}_i||^2\}$, but in practice C is selected by testing various values
- the problem is solved in the dual space and the margin achieved is

$$\left(\sum_{i \in \mathbb{N}} \alpha_i^* - ||\alpha||^2 / C\right)^{-\frac{1}{2}}$$

L1-norm soft margins

optimization problem:

minimize_{$$\mathbf{w}, w_0, \xi$$} $\frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C \sum_{i=1}^{n} \xi_i,$
subject to $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + w_0) \ge 1 - \xi_i, i = 1, \dots, n$
 $\xi_i \ge 0, i = 1, \dots, n$

for some C > 0

- this results in "box contraints" on $\alpha_i : 0 \le \alpha_i \le C$
- non-zero slack variables correspond to $\alpha_i = C$ and to points with geometric margin less than $1/||\mathbf{w}||$

Wrap-up

- LDA and MSE-based methods lead to similar solutions, even though they are derived under different assumptions
- LDA (and FDA) assign the vectors x to the closest centroid, in the transformed space
- logistic regression and LDA model the likelihood as a linear function
- the predicted values from logistic regression can be interpreted as posterior probabilities
- margin optimization provides an alternative approach