PA196: Paftern Recognition

3. Linear discriminants (cont’d)

Dr. Vliad Popovici

popovici@recetox.muni.cz

RECETOX
Masaryk University, Brno



Outline

@ Linear Discriminant Analysis (cont’d)
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@ Linear Discriminant Analysis (cont’d)
LDA, QDA, RDA



LDA

Remember (first lecture):
e Bayes decision: assign x to the class with maximum a
posteriori probability
e |let there be K classes denoted g, ..., gk, with
corresponding priors P(g;)
e the posteriors are:
pP(xIgi)P(g;)

P(gilx) = > p(xig)P(9) oc P(XI971)P(9))

e decision function (for class g; vs class g;) arise from log
odds-ratios (for example):

o P(gilx) o p(xlg)) , P(g) |>0, predict g
EPglx) ~ “Ep(xig) " P(g)

N <0, predict g



Under the assumption of Gaussian class-conditional
densities:

1

p(xig) = exp | =7 (X — )= (x - p)

(2ﬂ)d|zg|1/2

(X is the determinant of covariance matrix X) the
decision function becomes

P(gilx) t t ¢ t
hi(X) = lo = (X'WX+WX+wp)- (X'WX+W X+ w;
U( ) g P(Qﬂx) ( / i /0) ( J j }O)
where
Wi=--37, w=xy
and

1 _ 1
Wig = —Eﬂ,TZ,' "i - > log|%il + log P(g))



Simplest LDA

If ¥; = ¥£; = ol ("spherical' covariance matrices)
hy(x) = wj(X - Xo)

where

1 o? P(gi)
Wi =pui—, Xo==(w+u)- lo = 1
= M — Hj 0 2(#/ ,Uj) ™ _F‘j||2 g P(Qj) (1i ﬂ/)






Classical LDA

If all classes share a common covariance matrix, X, = X,
the decision function becomes

hj(x) = w(X - Xo)

where

) Py,
G =)= G —rg) ¢ Plg) )

. 1
W=7 (). Xo = 5 (itiy)-






Estimation of LDA parameters

we are given {(X;, g).i = 1,...,n} with x; e R and
gi€{gr,.... 9k}t

priors: ﬁ(g,-) = n;/n where n; is the number of elements
of class g; in the training set

mean vectors: j; = nlineg,- X

covariance mattrix:
Y =38 Sxeg (X = ) (X = i) /(N = K)



Quadratic Discriminant Analysis

Class-conditional probabilities are general Gaussians and
the decision function has the form:

P(gilx)

hj(x) = log Plgix) (XWX + W)X + Wio) — (XWX + WX + wjp)
where :

Wi=-5%" wi=%
and

1 _ 1
Wijp = —E,U,-TZ,- i - 5 log || + log P(g))



LDA and QDA

Hastie et al: The Elements of Statistical Learning - chpt 4

Note: a similar boundary to QDA could be obtained by
applying LDA in an augmented space with axes xi, ..., Xg,

X1 X9, ..., Xg-1Xd> X]Q,...,Xg,



Regularized DA: between LDA and
QDA

Combine the pooled covariance with class-specific
covariance matrices, and allow the pooled covariance
the be more spherical or more general.

Si(a,y) =aSy + (1 -a) [yi +(1- y)&zl]

e o= 1. QDA; « = 0: LDA
e y = 1: general covariance matrix; y = 0: spherical
covariance matrix

e o and y must be optimized



Implementation of LDA

use diagonalization of the covariance matrices
(either pooled or class-specific), which are symmetric
and positive definite:

¥, = UDV!

where U; is a d x d orthonormal matrix and D; is a
diagonal matrix with eigenvalues dy > 0 on the
diagonal

the ingredients for the decision functions become:
(X = )" (% = ) = [U] (x = )] D] [U] (x - )]

and
log %1 = ) log dl
K



Implementation of LDA, cont’d

A possible 2-step procedure for LDA classification
(common covariance matrix £ = UDU"):
@ 'sohere’ the data: X* = D2UX
® assign a sample x to the closest centroid in
tfransformed space, modulo the effect of the priors
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@ Linear Discriminant Analysis (cont’d)

LD subspace



the centroids y; i = 1,..., K lie in an affine subspace of
dimension at most K — 1 < d

any dimension orthogonal to this subspace does not
influence the classification

the classification is carried out in a low dimensional
space, hence we have a dimensionality reduction
the subspace axes can be found sequentially, using
Fisher’s criterion (find directions that maximally
separate the centroids with respect to the variance)

this is essentially the same as Principal Component
Analysis



© compute M the K x d matrix of class centroids (by
rows) and the common covariance matrix W
(within-class covariance)

® compute M* = MW-2 (using eigen-decomposition of
W)

® compute B* — the covariance matrix of M*
(between-class covariance matrix), and its
eigen-decomposition B* = V*DgV**

O the columns of V* (ordered from largest to smallest
eigen-value dpg;) give the coordinates of the optimal
subspaces

e the i—th discriminant variable (canonical variable) is
given by Z = (W2 v")'X



Classification in Reduced Subspace

Canonical Coordinate 2

Canonical Coordinate 1

Hastie et al. - The Elements of Statistical Learning - chpt. 4



Coordinate 3

Coordinate 7

Linear Discriminant Analysis
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@ Linear Discriminant Analysis (cont'd)

LDA: wrap-up



LDA, FDA and MSE regression with a partficular coding
of class labels, lead to equivalent solutions
(separating hyperplane)

LDA (QDA) is the optimal classifier in the case of
Gaussian class-conditional distributions

LDA can be used to project data into a lower
dimensional space for visualization

LDA derivation assumes Gaussian densities, but FDA
does not

LDA is naturally extended to multiple classes



Outline

9 Logistic regression



ldea: model the posterior probabilities as linear functions
in X and ensure they sum up to 1.
For K classes gy, ..., 0k :
o P(gilx)
P(gkIx)

which leads to

= (W, X) + W[, Vi=1,..., K-1

exp({Wj, X) + w;
P(gix) = — =Rl o
1+ 355 exp((W), X) + W)
1
1+ 215 exp((Wj, ) + wjp)

P(gkIx) =



the transformation p - log[p/(1 — p)] is called logit
fransform

the choice of reference class (K in our case) is purely
a convention

the set of parameters of the model:
0 ={Wy,wWig,...,Wg_1, Wk_10}

the log-likelihood is

L(0) = ), log P(gix;; 0)

i=1



For the binary case (K = 2), take the classes to be
encoded in response variables y;: y; = O for class g; and
y; = 1 for class g».

e asingle posterior probability is needed:

B ~exp({W, X) + wp)
Ply = 0X) = T tw. 0 + wo)

e the likelihood function becomes:

L(6 = {w,wp}) =

n
D YW, X)) + wo) — log(1 + exp(¢W, X)) + wp)]
i=1
e using z = [1,X] and a = [wp, W],

L(@) = " [yKa.2) - log(1 + exp((@.2)))]

i=1



objective: find a* = arg maxq L(Q)

Tab = Sy 2i(vi= P(yi = 0z))

at a (local) extremum, a;:) 0 which leads to a

system of equations to be solved for a

the solution can be found by a Newton-Raphson
procedure (iteratively re-weighted least squares)




A few remarks on logistic regression:

brings the tools of linear regression to pattern
recognition

can be used to identify those input variables that
explain the output

its predictions can be interpreted as posterior
probabilities

by introducing a penalty term, variable selection can
be embedded into the model construction - we’ll see
it later!

both LDA and logistic regression use a linear form for
the log-posterior odds log(P(gj|x)/P(gk|x)); LDA
assumes the posterior to be Gaussians, while logistic
regression assumes they only lead to linear
log-posterior odds
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® Large margin (linear) classifiers



there are theoretical considerations to justify the goal
of maximizing the margin achieved by the separating
hyperplane

intuitively, the larger the margin, more "room" for noise
in data and, hence, better generalization

let a fraining set be {(x;, y;),i = 1,....,n} with y; = 1

the margin of a point x; w.r.t. the boundary function h
is y; = yih(x))

it can be shown that the maximal error attained by h
is upper bounded by a function of min(y;) (however,
the bound might not be tight)



~

margin of a set:+. o O
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® Large margin (linear) classifiers
Linearly separable case



e consider the dataset {(x;, y;),i = 1,...,n} be linearly
separable,i.e. v; >0

e we will consider linear classifiers h(x) = (W, X) + wy
(with the predicted class being sign(h(x))

e if the (functional) margin achievedis 1, then y; > 1

e then, the geometric margin is the normalized
functional margin 1/||w||, hence:

Proposition
The hyperplane (w, wyp) that solves the optimization
problem

o 1
minimMizew, w, §<w,w>

subjectto  yi((W,xp)+wp)=>1,i=1,...,n

realizes the maximal margin hyperplane with geometric
margin y = 1/|w].



Solving the constrained optimization problem:
* |et the objective function be f(w) and the equality
constraints hy(w) =0fori=1,...,m, then the
Lagrangian function is

L(w.B) = f(w +Zﬁ,

e a necessary and sufficient condition for w* to be a
solution of the opftimization problem (f : continuous
and convex, h; : continuous and differentiable) is

oLw.B) _
ow*

oL(w*,p*) 0
B’ N

for some values of g*



For a constrained optimization with a domain Q c R" :

minimizey  f(w)
subjectto gi(w)=0,i=1,...,k
hiw)=0,i=1,....m

the Lagrangian function has the form

L(w,a,B) = f(w +Zalgl ZBI

with a; and g; being the Lagrange multipliers.



Karush-Kuhn-Tucker (KKT) optimality conditions for a
convex optimization problem: for a solution w* and
corresponding mutlipliers ¢* and g*,

oL
B 0
a;gi(w) =0
gi(w") <0
apx>0

e for active constraints (g;(w) = 0.) «; > O; for inactive
constraints (gj(w) <0.) ;=0

* a; can be seen as the sensitivity of f to the active
constraint



Duality of convex optimization:

¥

e the solution is a saddle point
e w are the primal variables
e Lagrange multipliers are the dual variables

¢ solving the dual optimization problem may be simpler:
the Lagrange mult. are the main variables, so set to 0
the derivatives w.r.t. w and substitute the result into
the Lagrangian

e the resulfing function contains only the dual variables
and must be maximized under simpler constraints



...and back to our initial problem:
e the primal Lagrangian is

-I n
L(w, wo, @) = 5(W. W) — D ailyi(w, x) + wp) - 1]
i=

e from KKT conditions, w = 3 ; yia;x; and Y; yia; = 0
¢ which leads to the dual Lagrangian

1
L(w, wp, @) = Z @ -5 Z Z yiviaiai(X;, X;)
i i



Proposition
If @* is the solution of the quadratic optimization problem

n n
maximize W(a) = Zcx,- - ] Z Yiviaiai(X;, X;)

n
subject to Z ajy; =0

i=1

then the vector w* = 3, yja7X; realizes the maximal margin
hyperplane with the geometric mean 1/|lw*||.



in the dual formulation, wj still needs to be specified,
SO

Wo =5 )T:a_x]{<w Xt + r;flgf{(W ,x,)})

from KKT conditions: a;[y;((W*,X) + wg) — 1] = 0, so only
for x; lying on the margin, a; # 0
those x; for which «; # 0 are called support vectors

the optimal hyperplane is a linear combination of
support vectors:

h(x) = " yiei (X, X) + wy
ieSV






e the margin achieved is

] .
== 2]

ieSV

¢ an (leave-one-out) estimate of the generalization
error is the proportion of support vectors of the total
fraining sample size,
#SV
n
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® Large margin (linear) classifiers

Non-linearly separable case: soft margins



L2-norm soft margins

e infroduce the slack variables ¢ and allow "softer
margins:

- 1 Y
MIiNIMIZ&w,w; ¢ §<W,W>+C § 6;2,
i=1

subjectto  y;((W,Xp)+wp)=>1-¢,i=1,....n

>
f/ZO,/: 1,....n

for somme C >0
e theory suggests optimal choice for C : 1/ max;{|Ixil[4},
but in practice C is selected by testing various values
¢ the problem is solved in the dual space and the
margin achieved is

[Z a) - ||a||2/C)_

[eSV

Nl—



LT-norm soft margins

e optimization problem:

n

MINIMIzew, w, ¢ %(w, w) + CZ&,
=1

subjectto  yi((W,xp)+wp)>1-¢&,i=1,...,n

f,‘ZO,I': 1,....n

for somme C >0
e this results in "box contraints"ona; : 0 <a; < C

e non-zero slack variables correspond 1o @; = C and to
points with geometric margin less than 1/||w||



Wrap-up

LDA and MSE-based methods lead to similar solutions,
even though they are derived under different
assumptions

LDA (and FDA) assign the vectors x to the closest
centroid, in the transformed space

logistic regression and LDA model the likelihood as a
linear function

the predicted values from logistic regression can be
interpreted as posterior probabilities

margin optimization provides an alternative
approach
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