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Context

• binary classifiers: Y (x) ∈ {0, 1} is the predicted class
label

• Y is obtained usually from some discriminant function
h(x) ∈ R: Y = I[h(X) ≥ θ]

• h(x) (be it margin, posterior probability, etc) can be
interpreted as a score

• let C be the true label (0 or 1): gold standard or
ground truth

• we assume symmetric loss



In medical applications...

• a classifier is often called a test
• the class of interest usually refers to an abnormal

condition (e.g. "diseased")
• "positive test" indicates that the abnormal condition is

predicted
• tests:

• diagnostic: detect the presence of disease
• prognostic: predict a clinical outcome (e.g.

"recurrence" vs "non-recurrence")
• screening: a test is applied to a large population to

detect the presence of an abnormal condition with
low prevalence; it is usually followed by other tests



Confusion matrix

Gold standard
C = 0 C = 1

Y = 0 true negative false negative

P[Y = 0|C = 0] P[Y = 0|C = 1] P[Y = 0]

Y = 1 false positive true positive

P[Y = 1|C = 0] P[Y = 1|C = 1] P[Y = 1]

P[C = 0] P[C = 1]

Goal
Estimate conditional and marginal probabilities.
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• estimation is based on a finite test sample
{(Yi ,Ci)|i = 1, . . . ,n} i.i.d. drawn from the population

• the probabilities will be estimated in terms of
fractions/ proportions from the test sample

Confusion matrix based on the test sample:

Gold standard
C = 0 C = 1

Y = 0 n−
C̄

n−C n−

Y = 1 n+

C̄
n+

C n+

nC̄ nC n

C indicates the "positive class" (C = 1) and C̄ indicates
the "negative class" C = 0.



Notes on the sampling of the test set: the most frequent
ways of selecting the test set are
• i.i.d. from the underlying distribution→ it means that it

also approximates well the class priors (prevalence);
in clinical studies this is called "cohort study"

• "case-control": a fixed number of positive (cases) and
negative (controls) samples are randomly selected
from the population→ the class priors are not
respected

In the following, i.i.d. sampling is implied, unless stated
otherwise.
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Basic performance parameters

• a performance parameter P is a random variable,
and we only estimate it as P̂

• however, to simplify notation we will denote the
parameter simply as P even when referring to its
estimate - the meaning is clear from context

• error rate or proportion of misclassified samples:

Err = P[Y , C]→
n+

C̄
+n−C
n

• false positive fraction: FPF = P[Y = 1|C = 0]→
n+

C̄
n+

C̄
+n−

C̄

(aka 1-Specificity (Sp))

• true positive fraction: TPF = P[Y = 1|C = 1]→
n+

C
n+

C+n−C
(aka Sensitivity (Se))



• let ρ = P[C = 1] be the prevalence of the positive
cases

• then
Err = ρ(1 − TPF) + (1 − ρ) FPF



• Positive Predicted Value:
PPV = P[C = 1|Y = 1]→

n+
C

n+
C+n+

C̄

• Negative Predicted Value:

NPV = P[C = 0|Y = 0]→
n−

C̄
n−

C̄
+n−C

• perfect classifier/test: PPV = NPV = 1
• totally uninformative classifier/test:

PPV = ρ,NPV = 1 − ρ
•

PPV =
ρTPF

ρTPF +(1 − ρ) FPF

NPV =
(1 − ρ)(1 − FPF)

(1 − ρ)(1 − FPF) + ρ(1 − TPF)



• in information-retrieval applications: recall stands for
TPF and precision stands for PPV

• F−measure:

Fα =
(1 − α)(precision × recall)
α × precision + recall

• Matthews correlation coefficient

MCC =
n+

C × n−
C̄
− n+

C̄
× n−C√

(n+
C + n+

C̄
)(n+

C + n−C)(n−
C̄

+ n+

C̄
)(n−

C̄
+ n−C)



Correcting for chance...

• Example 1: let the prevalence of positive cases be
ρ = 0.75 and consider a classifier that predicts "1" or "0"
with equal probabilities (flip of a coin)

• simply by chance, the classifier will be right in
0.5 × 0.75 = 0.375 proportion of cases

• Example 2: medical imaging: the true labels are not
known, but there is an expert producing a labelling
and the classifier produces another set of labels

• how can we compare the two, taking into account
the concordances due to mere chance?



...using agreement statistics

• probability of observed agreement between classifier

and the true labels: Po =
n−

C̄
+n+

C
n

• S−coefficient is defined as S = 2Po − 1
• by taking into account the chance agreement (Pe):

what is the ratio between the difference between
observed and expected chance agreement (Po − Pe)
and maximum possible agreement beyond chance:

Po − Pe

1 − Pe



• if the estimation of chance agreement is

Pe =

(
n+ + nC

2n

)2

+

(
n− + nC̄

2n

)2

the fraction is denoted as π = Po−Pe
1−Pe

and is called
Scott’s π coefficient

• if the estimation of chance agreement is

Pe =
n+ × nC

n2
+

n− × nC̄

n2

the fraction is denoted as κ = Po−Pe
1−Pe

and is called
Cohen’s kappa coefficient

• in medical applications, κ is usually used for
measuring the agreement between an expert and
another system



Confidence intervals (CI)

• need ways for characterizing the uncertainty in the
estimates

• informally, CI is a measure of reliability of the
estimates; sample-based (observed)

• confidence level: how often the confidence interval
contains the estimated value

• the values within the CI can be seen as alternative
estimates of the parameter of interest

• smaller the sample size, larger the CI
• the (TPF,FPF) and (PPV,NPV) are r.v. from a Bernoulli

trial



(
• Bernoulli trial: experiment with a random binary

outcome
• binomial distribution: discrete pdf of the number of

successes in n independent Bernoulli trials with
success probability p

• X ∼ B(n,p) :

P[X = k] =

(
n
k

)
pk(1 − p)n−k

E[X ] = np

Var[X ] = np(1 − p)

• as n→ ∞,
X − np√
np(1 − p)

∼ N(0, 1)

)



• simplest CI: normal approximation: a 1 − α CI for the
binomial parameter p (proportion of successes
(between 0 and 1) in n trials) is

p ± z1−α/2

√
p(1 − p)

n

where z1−α/2 is the 1 − α/2 percentile of standard
normal distribution (e.g. for 95% CI, α = 0.05 and
z0.975 ≈ 1.96)

Warning
The normal approximation is poor for FPF or TPF close to 0
or 1.



Agresti-Coull 1 − α CI:
• let n be the number of trials and p the number of

successes, then let ñ = n + z2
1−α/2 and

p̃ = 1
ñ

(
p + 1

2z2
1−α/2

)
, then a good approximation for

the CI is

p̃ ± z1−α/2

√
p̃(1 − p̃)

ñ

• other formulas for CI: Wilson score intervals;
Clopper–Pearson interval, Bayesian CIs



Example: a test for predicting pCR in breast cancer yields

pCR=0 pCR=1
predicted 0 61 5
predicted 1 24 10

TPF = 0.67, FPF = 0.28
PPV = 0.29, NPV = 0.92

95% confidence intervals:
• normal approx.: FPF ∈ (0.197, 0.391),

TPF ∈ (0.428, 0.905)

• Wilson: FPF ∈ (0.208, 0.398), TPF ∈ (0.417, 0.848)

• Bayesian: FPF ∈ (0.205, 0.397), TPF ∈ (0.416, 0.860)



Joint confidence intervals
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• what is the joint 100(1 − α)% confidence region for
(FPF,TPF)?
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Rectangular confidence regions
If (Plow ,Pup) and (Qlow ,Qup) are the 1 − α∗ univariate
confidence intervals for two binomial random variables P
and Q, then the rectangle

R ≡ (Plow ,Pup) × (Qlow ,Qup)

is a (1 − α) confidence region for (P,Q), where
α = 1 − (1 − α∗)2.

Examples:
• 95% univariate CI lead to a 90.25% confidence region
• for a 95% confidence region, 97.5% univariate CIs are

needed
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A motivating example

Using (FPF,TPF) for comparing tests:

0,0

0,1

1,0

T
P

F
, 
S

e

FPF, 1−Sp

DC

A B

• single point performance measure: partition the
space in 4 regions

• region A: better than current test
• region D: worse than current test
• regions B,C: less clear



Other issues with single point performance metrics:
• difficulty in selecting the optimal threshold: different

context may need different operating regimes
• additive batch effects may spoil the single–point

performance



ROC curves: Theory

Negative Positive

S(X)

0,0

0,1

1,0
FPF, 1−Sp

T
P

F
, 
S

e

t

• continuous test score
Y = S(x) (could be
margin h(x))

• FPF(t) = P[y ≥ t |C = 0]

• TPF(t) = P[Y ≥ t |C = 1]

• ROC =
{(FPF(t),TPF(t))|∀t ∈ R}

• limt→∞ FPF(t) =
limt→∞ TPF(t) = 0

• limt→−∞ FPF(t) =
limt→−∞ TPF(t) = 1



Properties of the ROC curves:
• monotone increasing function
• ROC curve is invariant to strictly increasing

transformations of the scores Y = ψ(S(x))

• parametric model:

ROC =
{
(α,TPF(FPF−1(α)))|∀α ∈ (0, 1)

}
• ROC(0) = 0, ROC(1) = 1, and

∂ROC(t)

∂t
=

fC(FPF−1(t))

fC̄(FPF−1(t))
,

where fC and fC̄ are the probability densities of the
scores within diseased and healthy populations,
respectively.

• the ROC curve describes the relationship between the
two distributions, and is independent of them



Note that

∂ROC(t)

∂t
=

P[Y = t |C = 1]

P[Y = t |C = 0]
= LR(t)

→ the likelihood ratio at threshold t .

• if LR is monotonically increasing, then the
classification rule of the form LR > t is optimal

• the ROC curve based on LR is uniformly above all
other curves

• the optimal ROC curve is concave;⇒ its slope is a
monotone decreasing function



Summary indices

Area under the ROC curve (AUC):

AUC =

∫ 1

0
ROC(t)dt

Properties:
• 0.5 ≤ AUC ≤ 1
• AUC = P[YC > YC̄ ]→ the

probability of correctly ordering a
random pair of cases
(Mann–Whitney–Wilcoxon
U–statistic)

• AUC =
∫ 1
0 TPF(FPF−1(t))dt =

−
∫ ∞
−∞

TPF(t)d FPF(t)
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The binormal ROC curve

Assuming normal distributions for the scores:

YC ∼ N(µC , σ
2
C); YC̄ ∼ N(µC̄ , σ

2
C̄

),

ROC becomes:

ROC(t) = Φ

(
µC − µC̄

σC
+
σC̄

σC
Φ−1(t)

)

General form

ROC(t) = Φ(α + βΦ−1(t))

where α, β > 0 and Φ is the standard normal CDF.
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Properties:

• AUC = Φ

(
α√

1+β2

)
• binormal assumption: there exists some monotone

strictly increasing function h(·) which makes YC and
YC̄ normally distributed

• if the ROC is binormal, ROC(t) = Φ(α + βΦ−1(t)), then
h(s) = −Φ−1(FPF(s)) transforms the scores YC and YC̄
into normally distributed random variables.



Empirical estimates of ROC

ROCe(t) = TPF(FPF−1(t)) :

TPF(t) =

nC∑
i=1

I[YCi ≥ t ]

FPF(t) =

nC̄∑
i=1

I[YC̄i ≥ t ]

Empirical estimate

False positive rate
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“ROC” for single threshold



Empirical estimates of AUC

Mann–Whitney–Wilcoxon U–statistic:

AUCe =
1

nCnC̄

nC∑
i=1

nC̄∑
j=1

(
I[YCi > YC̄j ] + 0.5I[YCi = YC̄j ]

)
Note: if only one point in the (FPF,TPF) space is given,
AUC = 0.5(1 + TPF−FPF).



AUC: sampling variability

Var(AUCe) =
1

nCnC̄
[AUC(1 − AUC) + (nC − 1)(Q1 − AUC2)

+ (nC̄ − 1)(Q2 − AUC2)]

where

Q1 = P[YCi ≥ YC̄j ,YCk ≥ YC̄j ]

Q2 = P[YCi ≥ YC̄j ,YCi ≥ YC̄k ].



Semi–parametric models

Start from
ROC(t) = TPF(FPF−1(t |α)|β)

and assume some parametric form for TPF and FPF for
which estimate the parameters from data.



Ex. of semi–parametric model:

YCi = µC + σCεi

YC̄i = µC̄ + σC̄εi

where ε have mean 0 and variance 1 and follow some
distribution function S.

S(t) =
1

nC + nC̄

∑
i

I

[
YCi − µC

σC
≥ t

]
+

∑
i

I

[
YC̄i − µC̄

σC̄
≥ t

]
which leads to

ROC(t) = S
(
(µC̄ − µC)/σC + (σC̄/σC)S−1(t)

)



Ex: empirical vs. semi-parametric
estimation
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AUCe ≈ 0.7475; AUCsp ≈ 0.7418
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Why estimation?

• finite training data
• no formula for CI without distribution assumptions
• often, a single data set is available for both model

building and performance measuring
• performance estimated on the modeling data is

optimistically biased

Idea
Split (maybe repeatedly) the available data into a
training and a validation set, and assess the performance
only on the data that has not been used in building the
model.



WARNING
All the processing steps that depend on the sampling and
which lead to the final model, MUST BE REPEATED
IDENTICALLY ON EVERY TRAIN-VALIDATION SPLIT!
This includes, but is not limited to: data normalization,
feature selection, classifier training, meta-parameter
optimization.



Notes:
• any two training sets generated from the full data set

by resampling will usually overlap to some extent→
the models are not totally independent

• the variability is usually under-estimated
• the procedure is easy to be parallelized, but attention

must be paid to the parallel RNG (to avoid repeating
the same sequences)



Resampling methods

• simple split–sample approach
• k–fold cross–validation
• Monte–Carlo cross-validation
• repeated k–fold cross–validation
• leave–one–out
• bootstrapping
• ...



k−fold cross–validation

• separated train and test
sets

• randomly dived data
into k subsets (folds) –
you may also choose to
enforce the proportion
of the classes (stratified
CV)

• train on k − 1 folds and
test on the holdout fold

• estimate the error as the
average error measured
on holdout folds

TRAIN SET TEST SET

• usually k = 5 or k = 10
• if k = n⇒

leave–one–out estimator
• improved estimation:

repeated k−CV (e.g.
100 × (5 −CV ))



k−fold cross–validation

From k folds:
• ε1, . . . , εk errors on the test folds (any other

performance parameter)
• Êk−CV = 1

k
∑k

j=1 εj

• estimated standard deviation
Confidence intervals (simple version – normal
approximation):

E ≈ Ê ±

0.5
n

+ z

√
Ê(1 − Ê)

n


where n is the dataset size and z = Φ−1(1 − α/2), for a 1 − α
confidence interval (e.g. z = 1.96 for 95% conf. interval)



Bootstrap error estimation

Performance estimation

(X,Y)

(X1,Y1) (XB,YB)

E1 E2 EB

...(X2,Y2)

1 generate a new dataset (Xb,Yb) by resampling with
replacement from the original dataset (X ,Y )

2 train the classifier on (Xb,Yb) and test on the left out
data, to obtain an error Êb.

3 repeat 1–2 for b = 1, . . . ,B and collect Êb.



Bootstrap error estimation

• estimate the error: for example, use the .632 estimator

Ê = 0.368E0 + 0.632
1
B

B∑
b=1

Êb

where E0 is the error rate on the full training set (X ,Y ).
• use the empirical distribution of Êb to obtain

confidence intervals



LPO bootstrap
Classification rule:

ĥ(x)
C
≷
C̄
θ

where ĥ is the estimated log-likelihood ratio and C and C̄
are the class labels.
Empirical AUC (conditioned on the training set) can be
approximated by:

ÂUC =
1

n1n2

n2∑
j=1

n1∑
i=1

ψ
(
ĥ(xi |C), ĥ(xj |C̄)

)
where ψ is the Mann-Whitney kernel,

ψ(a,b) =


1 a > b
1
2 a = b
0 a < b

Yousef et al., Estimating the uncertainty in the estimated mean area under the ROC curve of a classifier,

PRL 2005



Estimation of the expected AUC by LPO bootstrap:

ÂUC
LPO

=
1

n1n2

n2∑
j=1

n1∑
i=1

ÂUCi,j

ÂUCi,j =

∑B
b=1 Ibj Ibi ψ(ĥb(xi), ĥb(xj))∑B

b=1 Ibj IbI



When 2 independent data sets are available, one can
estimate:
• the expected value of the conditional AUC:

expectation over the population of training sets of the
same size;

• variability of the performance estimate due to finite
train set;

• variability of the performance estimate due to finite
validation sets;

Yousef et al., Assessing classifiers from two independent data sets using ROC analysis: a nonparametric

approach, PAMI 2006



Conclusions

What we do learn from CV (and related):
• the expected performance of the modeling recipe;
• the imprecision in estimating the performance;
• we can have a look at:

• what are the most stable features
• what are the points always missclassified

What we do not learn from CV:
• the best features
• the best classifier
• the best

meta–parameters

We obtain these by training
on the full dataset (no CV).
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General considerations:
• comparison of methods/algorithms or models?
• let there be two models M1 and M2 and a

performance parameter P
• what differences are relevant?
• proper planning of the experimental design
• hypothesis testing (equivalence/difference and

inferiority/superiority):
H0 : there is no difference in performance
P(M1) = P(M2)
H1 : P(M1) , P(M2) (two sided test) or
H1 : P(M1) ≷ P(M2) (single sided or
inferiority/superiority test)

• informally, one can check the overlap between CIs
• ideally, one would have a very large test set for

comparison



In everyday applications...
• one has limited data→ use the resampling (like

cross-validation) for testing
• let P11, . . . ,P1K be the performance of the 1st model

on the K test sets and P21, . . . ,P2K the performance of
the 2nd model on the same K test sets

• simple tests: paired t−test and Wilcoxon signed rank
test

• warning: variability is underestimated,hence t-test has
inflated Type I error; there is a "corrected t-test" to
alleviate the problem

• the two samples {P1·} and {P2·} are not independent!



McNemar’s test

• consider a single test set of size m, on which both
models are applied

• the following contingency table is constructed:

Model M2
0 1

Model M1
0 c00 c01
1 c10 c11

with
• c00 counting how many times both models

misclassified the same sample
• c11 counting how many times both models correctly

classified the same sample
• c10 and c01 counting how many times M1 correctly

classified a sample the M2 misclassified, and
vice-versa



• McNemar’s test: H0 both classifiers have the same
performance (same error rates)

• construct the test statistic

χ2
Mc =

(|c01 − c10| − 1)2

c01 + c10

• χ2
Mc has an approximate χ2 distribution with 1 df

• χ2
Mc is to be compared with χ2

1,1−α values for 1 − α
significance level

• rule-of-thumb: the test needs a sample size large
enough such that c01 + c10 is at least 30



Wrap-up

• many performance parameters, depend on the
intended usage

• performance estimation is a key step of classifier
building process

• pay attention of proper application of resampling
methods for performance estimation

• always (ALWAYS!) report the uncertainty in the
estimates

• classifier performance comparison depends, again,
on the intended application

• McNemar’s test and CIs provide indications on
performance differences
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MAQC-II:

• ∼ 300 participants, from 5 countries:
• data providers
• data analysis teams (DATs): 36 teams, (∼ 100 people)
• regulatory board (mainly FDA)

• 6 datasets, 13 endpoints
• > 30000 “models”
• each Data Analysis Plan (DAP) is peer-reviewed
• each DAT selects a single candidate model for each

endpoint
• MAQC-II consortium selects 2 models for each

endpoint, before the release of the validation sets





DAP

Constraints:
• should be generally applicable, independent on

dataset/endpoint
• trade-off: undestandability/reproducibility vs.

performance/complexity
• the models should make single-chip predictions

Solution:
• use MAS5 for normalization
• favor “simple” classifiers
• nested 10 × 5 −CV
• use AUC as main performance criterion



Normalization (MAS5)

CV performance estimation

Feature selection/ranking

Classifier design

CV: performance estimation

Model optimization

Classifier design

Feature selection/ranking

Quality Control

Test on external data

CV: performance estimation

• classifiers: DLDA, LDA,
k−NN, CART, logistic
regression

• meta-parameters:
number of features, k , ...

• inner CV: optimize the
meta-parameter

• outer CV: estimate the
performance of the
system



Some performance results

Estimated vs. validation performance (AUC)
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Estimation bias
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