PA196: Pattern Recognition 05. Nonparametric techniques

Dr. Vlad Popovici popovici@recetox.muni.cz

> RECETOX Masaryk University, Brno

> > K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

1 [Density estimation](#page-1-0)

[Histograms](#page-4-0) [Parzen density estimation](#page-8-0)

2 k[-nearest neighbor estimation](#page-12-0)

Introduction

KORKA EXTER I DAR

- let **^X**¹, . . . , **^X**ⁿ be i.i.d. ^d−dimensional random variables
- let $p(x)$ be their continuous distribution:

$$
p(\mathbf{x}) \geq 0, \qquad \int_{\mathbb{R}^d} p(\mathbf{x}) \ d\mathbf{x} = 1
$$

- the problem is to estimate $p(x)$ i.e. find $\hat{p}(x)$
- Note: a density estimate does not need to be a density itself!; it can have negative values or infinite integral...

Desirable properties:

• asymptotical unbiasedness:

$$
E[\hat{p}(\mathbf{x})] \to p(\mathbf{x}) \text{ as } n \to \infty
$$

- consistency:
	- mean squared error: $MSE(\hat{p}) = E[(\hat{p}(\mathbf{x}) p(\mathbf{x}))^2]$
	- \leftrightarrow MSE(\hat{p}) = Var(\hat{p}) + [bias(\hat{p})]²
	- if $MSE \rightarrow 0$ for all $\mathbf{x} \in \mathbb{R}^d$ then it is a *pointwise consistent* estimator of p in the quadratic mean
- global measure of accuracy: the mean integrated squared error (average of all possible samples):

$$
MISE = E\left[\int (\hat{p}(\mathbf{x}) - p(\mathbf{x}))^2 d\mathbf{x}\right] = \int E[(\hat{p}(\mathbf{x}) - p(\mathbf{x}))^2] d\mathbf{x}
$$

KORKA EXTER I DAR

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

1 [Density estimation](#page-1-0) [Histograms](#page-4-0)

[Parzen density estimation](#page-8-0)

2 k[-nearest neighbor estimation](#page-12-0)

Histograms

- the simplest density estimator: divide the interval of values in N equal intervals (cells)
- $\hat{p}(x) = \frac{n_j}{\sum_{j=1}^{N} n_j dx}$ where n_j is the number of points falling into the j−th interval straddling the point x
- in *d* dimensions: $\hat{p}(\mathbf{x}) = \frac{n_j}{\sum_{j=1}^{N} n_j dV}$

Problems:

- exponential growth of number of cells (N^d)
- super-exponential growth in sample size needed for a proper estimation
- discontinuity between cells

KORKARYKERKE POLO

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \pmod{2} \mathbf{B} + \mathbf{A} \pmod{2} \mathbf{B}$ 299 È

Modifications:

- data-adaptive histograms: allow the location, size and shape of the cells to adapt to the available data
- assume variable independence (naive Bayes): $p(\mathbf{x}) = \prod_{i=1}^d p(x_i)$. For each variable one can use a histogram with N cells, which leads to $\mathsf{N} d \ll \mathsf{N}^d$ cells.
- Lancaster models: assume that interactions above a certain order vanish.
- Bayesian networks:

 $p(\mathbf{x}) = p(x_d|x_1, \ldots, x_{d-1})p(x_{d-1}|x_1, \ldots, x_{d-2})p(x_2|x_1)p(x_1)$

KORKAPRA ER ET AQO

• dependence trees: pairwise conditional probabilities

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

1 [Density estimation](#page-1-0) **[Histograms](#page-4-0)** [Parzen density estimation](#page-8-0)

2 k[-nearest neighbor estimation](#page-12-0)

Parzen estimator (kernel methods)

- fix the volume of the cell and use the number of point falling within to construct a density estimate
- idea: smooth the histogram with a properly selected kernel function
- the kernels are chosen to have a compact support
- the density estimate is

$$
\hat{p}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)
$$

KORKA EXTER I DAR

where K is the kernel function and h is a smoothing parameter (spread, bandwidth)

Examples of kernel functions

\n- rectangular:
$$
K(x) = \begin{cases} \frac{1}{2}, & \text{for } |x| < 1 \\ 0, & \text{otherwise} \end{cases}
$$
\n- triangular: $K(x) = \begin{cases} 1 - |x|, & \text{for } |x| < 1 \\ 0, & \text{otherwise} \end{cases}$
\n

• normal:
$$
K(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)
$$

• Bartlett-Epanechnikov:

$$
K(x) = \begin{cases} \frac{3}{4}(1 - x^2/5)/\sqrt{5}, & \text{for } |x| < \sqrt{5} \\ 0, & \text{otherwise} \end{cases}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Different levels of smoothing:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

from Webb: Statistical pattern recognition

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

[Density estimation](#page-1-0)

[Histograms](#page-4-0) [Parzen density estimation](#page-8-0)

2 k[-nearest neighbor estimation](#page-12-0)

k−NN

KELK KØLK VELKER I EL I DA O

• the probability that a point **z** falls into a volume V centered at **x** is

$$
\theta = \int_{V(\mathbf{X})} p(\mathbf{x}) \ d\mathbf{x}
$$

• for a small volume, $\theta \approx p(\mathbf{x})V$

- on the other hand, $\theta \approx \frac{k(x)}{n}$ $\frac{\Delta}{n}$: the fraction of points falling within V
- $\bullet \Rightarrow k$ NN density estimator:

$$
\hat{p}(\mathbf{x}) = \frac{k(\mathbf{x})}{nV}
$$

• ^k−NN: fix ^k(**x**)/ⁿ or, equivalently (for a given ⁿ) fix ^k and find the volume V centred at containing k points

- example: if **x**^k is the k−th closest point to **x** then V can be taken as a sphere of radius $\|\mathbf{x} - \mathbf{x}_k\|$
- the volume of a d−dimensional sphere is

$$
\frac{2r^d\pi^{\frac{d}{2}}}{d}\Gamma(d/2)
$$

KO KA (DIKKE) KE KO BI YOKO

where $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$ (for $n \in \mathbb{N}$, $\Gamma(n) = (n-1)!$)

• this is in contrast with the histogram, where the volume is fixed and k varies

k −NN density estimation with $k = 1$

イロト イ部 トイモト イモト

重

 299

from Webb: Statistical pattern recognition

$k-NN$ density estimation with $k = 2$

イロト イ部 トイモト イモト

 299

ŧ

from Webb: Statistical pattern recognition

Notes:

- the density estimate produced is not a density itself
- (the estimate varies as $1/|x|$ leading to an infinite integral)
- it is asymptotically unbiased if

$$
\lim_{n \to \infty} k(n) = \infty
$$

$$
\lim_{n \to \infty} \frac{k(n)}{n} = 0
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

[Density estimation](#page-1-0)

[Histograms](#page-4-0) [Parzen density estimation](#page-8-0)

2 k[-nearest neighbor estimation](#page-12-0)

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

[Density estimation](#page-1-0)

[Histograms](#page-4-0) [Parzen density estimation](#page-8-0)

2 k[-nearest neighbor estimation](#page-12-0)

- $k-NN$ can be used to estimate the density \rightarrow apply MAP rule to get a classification rule
- let there be k_i samples of class q_i among the closest k samples to **x**; $\sum_{i=1}^{m} k_i = k$ (*m* is the total number of classes)
- let n_i be the total number of samples from class g_i : $\sum_{i=1}^m n_i = n$
- then the estimate of the class-conditional probability is

$$
\hat{p}(\mathbf{x}|g_i) = \frac{k_i}{n_i V}
$$

KORKAPRASHASH SHOAC

• the estimated prior is $\hat{p}(g_i) = \frac{n_i}{n}$

k−NN decision rule

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q @

- MAP rule: assign **x** to g_i if $\hat{p}(g_i|\mathbf{x}) \ge \hat{p}(g_j|\mathbf{x})$ for all j
- **•** from Bayes' theorem: assign **x** to g_i if

$$
\frac{k_i}{n_i V} \frac{n_i}{n} \ge \frac{k_j}{n_j V} \frac{n_j}{n}
$$

for all $j \neq i$

k−NN decision rule Assign **x** to g_i if

 $k_i \geq k_j$, $\forall j \neq i$

What about the ties? Breaking the ties

• random assignment among classes with the same number of neighbors

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- assign to the class with the closest mean vector
- assign to the most compact class
- weighted distance
- etc. etc.

Error rate for k−NN

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

(Cover, Hart, 1967)

$$
e^* \leq e \leq e^*\left(2-\frac{me^*}{m-1}\right)
$$

where e^* is the Bayes error rate, m is the number of classes and e is the k−NN error rate As $n \to \infty$, $e^* \le e \le 2e^*$

Note on implementing k−NN:

- as n becomes large, finding the k NN incurs more computation
- various approximating algorithms, e.g. LAESA: linear approximating and eliminating search algorithm
- idea: use the properties of the metric space and reduce the number of comparisons to a set of identify "prototypes"

KORK EXTERNE PROVIDE

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

[Density estimation](#page-1-0)

[Histograms](#page-4-0) [Parzen density estimation](#page-8-0)

2 k[-nearest neighbor estimation](#page-12-0)

Refinements: editing techniques

KORK EXTERNE PROVIDE

Idea: remove misclassified samples to obtain homogeneous regions.

Procedure: given a set R and a classification rule η , let S be the set of misclassified samples from R by η . Remove these and re-train η on $R'=R\setminus S$, etc. etc

Possible implementation:

- **1** consider a partition of the full set into N subsets R_1, \ldots, R_N
- 2 classify samples in R_i using k–NN trained on the union of M "next" sets: $R_{(i+1) \mod N} \cup \cdots \cup R_{(i+M-1) \mod N}$ for $1 < M < N - 1$
- ³ remove the samples misclassified and repartition
- **4** repeat until a predefined number of iterations do not remove any more samples

Notes:

- $M = N 1$ is similar to cross-validation
- if N is equal to number of samples, the procedure becomes leave-one-out
- the result is a set of homogeneous "clusters" of samples

Refinements: condensation

K ロ K K 레 K K ミ K X E K Y B K Y Q Q Q

- after editing, the clusters can be "condensed"
- idea: remove samples in the center of the clusters, that do not contribute to the decision

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

[Density estimation](#page-1-0)

[Histograms](#page-4-0) [Parzen density estimation](#page-8-0)

2 k[-nearest neighbor estimation](#page-12-0)

Distance

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q @

- choice of distance depends on the (knowledge of the) domain
- is the space isotrop? are some variables "more important"? etc etc
- general Euclidean distance:

$$
d(\mathbf{x}, \mathbf{z}) = \sqrt{(\mathbf{x} - \mathbf{z})^t \mathbf{A} (\mathbf{x} - \mathbf{z})}
$$

• alternative (van der Heiden, Groen - 1997 - radar applications):

$$
d(\mathbf{x}, \mathbf{z}) = \sqrt{(\mathbf{x}^{(p)} - \mathbf{z}^{(p)})^t (\mathbf{x}^{(p)} - \mathbf{z}^{(p)})}
$$

where

$$
x_i^{(p)} = \begin{cases} (x_i^p - 1)/p, & \text{if } 0 < p \le 1 \\ \log x_i, & \text{if } p = 0 \end{cases}
$$

What about k ?

KORK EXTERNE PROVIDE

- the larger k the more robust is the procedure; however
- k must be less than the smallest of n_i
- k can be optimized in a cross-validation approach
- Enas, Choi (1986) suggest: $k \approx n^{2/8}$ or $k \approx n^{3/8}$ where n is the sample size