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Introduction

• let X1, . . . ,Xn be i.i.d. d−dimensional random variables
• let p(x) be their continuous distribution:

p(x) ≥ 0,
∫
Rd

p(x) dx = 1

• the problem is to estimate p(x) i.e. find p̂(x)

• Note: a density estimate does not need to be a density itself!;
it can have negative values or infinite integral...



Desirable properties:
• asymptotical unbiasedness:

E[p̂(x)]→ p(x) as n → ∞

• consistency:
• mean squared error: MSE(p̂) = E[(p̂(x) − p(x))2]
• ↔ MSE(p̂) = Var(p̂) + [bias(p̂)]2

• if MSE → 0 for all x ∈ Rd then it is a pointwise consistent
estimator of p in the quadratic mean

• global measure of accuracy: the mean integrated squared
error (average of all possible samples):

MISE = E

[∫
(p̂(x) − p(x))2 dx

]
=

∫
E[(p̂(x) − p(x))2] dx
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Histograms

• the simplest density estimator: divide the
interval of values in N equal intervals
(cells)

• p̂(x) =
nj∑N

j=1 njdx
where nj is the number of

points falling into the j−th interval
straddling the point x

• in d dimensions: p̂(x) =
nj∑N

j=1 njdV
dx

Problems:
• exponential growth of number of cells (Nd)
• super-exponential growth in sample size needed for a proper

estimation
• discontinuity between cells





Modifications:
• data-adaptive histograms: allow the location, size and shape

of the cells to adapt to the available data
• assume variable independence (naive Bayes):

p(x) =
∏d

i=1 p(xi). For each variable one can use a histogram
with N cells, which leads to Nd � Nd cells.

• Lancaster models: assume that interactions above a certain
order vanish.

• Bayesian networks:

p(x) = p(xd |x1, . . . , xd−1)p(xd−1|x1, . . . , xd−2)p(x2|x1)p(x1)

• dependence trees: pairwise conditional probabilities
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Parzen estimator (kernel methods)

• fix the volume of the cell and use the number of point falling
within to construct a density estimate

• idea: smooth the histogram with a properly selected kernel
function

• the kernels are chosen to have a compact support
• the density estimate is

p̂(x) =
1

nh

n∑
i=1

K
(x − xi

h

)
where K is the kernel function and h is a smoothing
parameter (spread, bandwidth)



Examples of kernel functions

• rectangular: K(x) =

1/2, for |x | < 1

0, otherwise

• triangular: K(x) =

1 − |x |, for |x | < 1

0, otherwise

• normal: K(x) = 1√
2π

exp(−x2/2)

• Bartlett-Epanechnikov:

K(x) =

3
4 (1 − x2/5)/

√
5, for |x | <

√
5

0, otherwise



Different levels of smoothing:

from Webb: Statistical pattern recognition
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k−NN

• the probability that a point z falls into a volume V centered at
x is

θ =

∫
V(X)

p(x) dx

• for a small volume, θ ≈ p(x)V

• on the other hand, θ ≈ k(x)
n : the fraction of points falling within

V
• ⇒ k−NN density estimator:

p̂(x) =
k(x)

nV

• k−NN: fix k(x)/n or, equivalently (for a given n) fix k and find
the volume V centred at containing k points



• example: if xk is the k−th closest point to x then V can be
taken as a sphere of radius ‖x − xk ‖

• the volume of a d−dimensional sphere is

2rdπ
d
2

d
Γ(d/2)

where Γ(t) =
∫ ∞

0 x t−1e−x dx (for n ∈ N, Γ(n) = (n − 1)!)
• this is in contrast with the histogram, where the volume is

fixed and k varies



k−NN density estimation with k = 1

from Webb: Statistical pattern recognition



k−NN density estimation with k = 2

from Webb: Statistical pattern recognition



Notes:
• the density estimate produced is not a density itself
• (the estimate varies as 1/|x | leading to an infinite integral)
• it is asymptotically unbiased if

lim
n→∞

k(n) = ∞

lim
n→∞

k(n)

n
= 0
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• k−NN can be used to estimate the density→ apply MAP rule
to get a classification rule

• let there be ki samples of class gi among the closest k
samples to x;

∑m
i=1 ki = k (m is the total number of classes)

• let ni be the total number of samples from class gi :∑m
i=1 ni = n

• then the estimate of the class-conditional probability is

p̂(x|gi) =
ki

niV

• the estimated prior is p̂(gi) = ni
n



k−NN decision rule

• MAP rule: assign x to gi if p̂(gi |x) ≥ p̂(gj |x) for all j
• from Bayes’ theorem: assign x to gi if

ki

niV
ni

n
≥

kj

njV
nj

n

for all j , i

k−NN decision rule
Assign x to gi if

ki ≥ kj , ∀j , i



What about the ties? Breaking the ties
• random assignment among classes with the same number of

neighbors
• assign to the class with the closest mean vector
• assign to the most compact class
• weighted distance
• etc. etc.



Error rate for k−NN

(Cover, Hart, 1967)

e∗ ≤ e ≤ e∗
(
2 −

me∗

m − 1

)
where e∗ is the Bayes error rate, m is the number of classes and e
is the k−NN error rate
As n → ∞, e∗ ≤ e ≤ 2e∗.



Note on implementing k−NN:
• as n becomes large, finding the k NN incurs more

computation
• various approximating algorithms, e.g. LAESA: linear

approximating and eliminating search algorithm
• idea: use the properties of the metric space and reduce the

number of comparisons to a set of identify "prototypes"
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Refinements: editing techniques

Idea: remove misclassified samples to obtain homogeneous
regions.
Procedure: given a set R and a classification rule η, let S be the
set of misclassified samples from R by η. Remove these and
re-train η on R ′ = R \ S, etc. etc



Possible implementation:

1 consider a partition of the full set into N subsets R1, . . . ,RN

2 classify samples in Ri using k−NN trained on the union of M
"next" sets: R(i+1) mod N ∪ · · · ∪ R(i+M−1) mod N for
1 ≤ M ≤ N − 1

3 remove the samples misclassified and repartition

4 repeat until a predefined number of iterations do not remove
any more samples

Notes:
• M = N − 1 is similar to cross-validation
• if N is equal to number of samples, the procedure becomes

leave-one-out
• the result is a set of homogeneous "clusters" of samples



Refinements: condensation

• after editing, the clusters can be "condensed"
• idea: remove samples in the center of the clusters, that do not

contribute to the decision
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Distance

• choice of distance depends on the (knowledge of the) domain
• is the space isotrop? are some variables "more important"?

etc etc
• general Euclidean distance:

d(x, z) =
√

(x − z)tA(x − z)

• alternative (van der Heiden, Groen - 1997 - radar
applications):

d(x, z) =
√

(x(p) − z(p))t (x(p) − z(p))

where

x(p)
i =

(xp
i − 1)/p, if 0 < p ≤ 1

log xi , if p = 0



What about k?

• the larger k the more robust is the procedure; however
• k must be less than the smallest of ni

• k can be optimized in a cross-validation approach
• Enas, Choi (1986) suggest: k ≈ n2/8 or k ≈ n3/8 where n is

the sample size
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