PA196: Pattern Recognition 08. Multiple classifier systems (cont'd)

> Dr. Vlad Popovici popovici@recetox.muni.cz

> > RECETOX Masaryk University, Brno

> > > K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

General idea

K ロ K K 레 K K ミ K K E K Y B K Y Q Q Q

Outline

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

2 [Random forests](#page-6-0)

[AdaBoost](#page-10-0)

[Introduction](#page-11-0) [Basic AdaBoost](#page-17-0) [Different views on AdaBoost](#page-40-0) [An additive logistic regression perspective](#page-44-0)

Bagging (Breiman, 1996)

KORKA EXTER I DAR

- bagging = bootstrap aggregation
- create T bootstrap samples X_t by sampling with replacement
- train a classifier on each X_t
- aggregate the classifications by plurality voting to obtain the aggregated classifier H
- a similar approach works for regression
- works well with unstable classifiers (with high variance): decision trees, neural networks

Why does bagging work?

• reduces variance (due to sampling in the test sets):

$$
\mathbb{E}[(y - H(\mathbf{x}))^2] = (y - \mathbb{E}[H(\mathbf{x})])^2 + \mathbb{E}[(H(\mathbf{x}) - \mathbb{E}[(H(\mathbf{x}))])^2]
$$

= bias² + variance

• the bias of H remains approximately the same as for h_t :

Bias(H) =
$$
\frac{1}{T} \sum_{t=1}^{T} \text{Bias}(h_t)
$$

• but the variance is reduced:

$$
\text{Var}(H) \approx \frac{1}{T} \text{Var}(h_1)
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

Variants:

- draw random subsamples of data \rightarrow "Pasting"
- draw random subsets of features \rightarrow "Random Subspaces"
- draw random subsamples and random features \rightarrow "Random Patches"

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Outline

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

2 [Random forests](#page-6-0)

[AdaBoost](#page-10-0)

[Introduction](#page-11-0) [Basic AdaBoost](#page-17-0) [Different views on AdaBoost](#page-40-0) [An additive logistic regression perspective](#page-44-0)

Idea: induce randomness in the base classifier (tree) and combine the predictions of an ensemble of such trees (forest) by averaging or majority vote.

- refinement of bagging trees
- (1st level of randomness) grow the trees on bootstrap samples
- (2nd level of randomness) when growing a tree, at each node α ratio in randomness) when growing a tree, at each no
consider only a random subset of features (typically \sqrt{d} or $log₂$ d features)
- for each tree, the error rate for observation left out from the learning set is monitored ("out-of-bag" error rate)
- the result is a collection of "de-correlated" trees that by averaging/voting should lead to decreased variance of the final predictor

KORKA EXTER I DAR

RF - randomness in training

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

RF - decision

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Outline

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

3 [AdaBoost](#page-10-0)

[Introduction](#page-11-0) [Basic AdaBoost](#page-17-0) [Different views on AdaBoost](#page-40-0) [An additive logistic regression perspective](#page-44-0)

Outline

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

[Introduction](#page-11-0)

[Basic AdaBoost](#page-17-0) [Different views on AdaBoost](#page-40-0) [An additive logistic regression perspective](#page-44-0)

General approach

KORKAPRASHASH SHOAC

(I will follow Freund & Schapire's tutorial on boosting)

- let $S = \{(\mathbf{x}_i, y_i)|i = 1, ..., n\}$ be a data set with $y_i \in \{\pm 1\}$ and \mathbf{x}_i
a d-dimensional vector of features \mathbf{x}_i a d–dimensional vector of features x_{ii}
- let there exist a learner (or a few) able to produce some basic classifiers h_t , based on sets such as S
- h_t will be called "weak classifiers" and the condition is that $Err(h_t) = 0.5 - \epsilon_t$ where $0 < \epsilon \leq 0.5$
- for each iteration $t = 1, \ldots, T$ produce a version of the training set S_t on which h_t are fit and then, assemble their predictions

• how to select the training points at each round? \rightarrow concentrate on most difficult points

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

• how to combine the weak classifiers? \rightarrow take the (weighted) majority vote

Boosting

A general methodology of producing highly accurate predictors based on averaging some weak classifiers.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Context

KORK EXTERNE PROVIDE

- PAC framework:
	- a strong-PAC algorithm:
		- for any distribution (of data)
		- $\forall \epsilon > 0, \forall \delta > 0$
		- given enough data (i.i.d. from the distribution)
		- with probability at least 1δ , the algorithm will find a classifier with error $\leq \epsilon$
	- a weak-PAC algorithm: the same conditions, but the guaranteed error is $\epsilon \geq \frac{1}{2} - \gamma$
- when weak-PAC learnability leads to strong-PAC?

AdaBoost

KORK EXTERNE PROVIDE

- a development of previous "boosting" algorithms
- first to reach widespread applicability, due to simplicity of the implementation and good observed performance (in addition to theoretical performance)
- Freund & Schapire (EuroCOLT, 1995); the more complete version: "A decision-theoretic generalization of on-line learning and an application to boosting", J. Comp Sys Sc 1997
- AdaBoost: adaptive boosting

Outline

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

3 [AdaBoost](#page-10-0)

[Introduction](#page-11-0)

[Basic AdaBoost](#page-17-0)

[Different views on AdaBoost](#page-40-0) [An additive logistic regression perspective](#page-44-0)

Basic AdaBoost

KORKA EXTER I DAR

Input: a training set $S = \{(\mathbf{x}_i, y_i)\}$ and the number of iterations T
Output: final classifier H as a combination of weak classifiers by **Output:** final classifier H as a combination of weak classifiers h_t **for** $t = 1$ **to** T **do**

construct a distribution D_t on $\{1, \ldots, n\}$ find a weak classifier

$$
h_t: X \to \{-1, +1\}
$$

which minimizes the error ϵ_t on D_t ,

$$
\epsilon_t = \mathsf{Pr}_{D_t}[h_t(\mathbf{x}_i) \neq y_i]
$$

end for

How to construct D_t ?

•

- let $D_1(i) = 1/n$ (uninformative priors)
- given D_t and a weak classifier h_t , \overline{a}

$$
D_{t+1} = \frac{D_t(i)}{Z_t} \times \begin{cases} \exp(-\alpha_t) & \text{if } h_t(\mathbf{x}_i) = y_i \\ \exp(\alpha_t) & \text{if } h_t(\mathbf{x}_i) \neq y_i \end{cases} = \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(\mathbf{x}_i))
$$

• Z_t is a properly chosen normalization constant

$$
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \in \mathbb{R}_+
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

What about the final decision/classifier?

$$
H(\mathbf{x}) = \text{sign}\left(\sum_{t=1}^T \alpha_t h_t(\mathbf{x})\right)
$$

How to use D_t for training a classifier?

• either generate a new training sample from S by sampling according to D_t , or

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

• use directly the sample weights for constructing h_t

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

Initial state:

weak classifiers: single variable threshold function

◆ロト→伊ト→ミト→ミト

 299

目

Iteration 1:

Iteration 2:

 $2Q$ **K ロ ▶ K 伊 ▶ K ヨ ▶** $\rightarrow \equiv$ ∍

Iteration 3:

◆ロト→伊ト→ミト→ミト 299 Þ

Final classifier:

 $4 \Box$ \rightarrow $4 \overline{\beta}$ \rightarrow $4 \overline{\equiv}$ \rightarrow $4 \overline{\equiv}$ \rightarrow 299 B

Training error theorem: let ϵ_t < 1/2 be the error rate at step t and let $\gamma_t = 1/2 - \epsilon_t$, then the training error of the final classifier is
unner bounded by upper bounded by

$$
Err_{\text{train}}(H) \le \exp\left(-2\sum_{t=1}^T \gamma_t^2\right)
$$

KORKA EXTER I DAR

- then if $\forall t : \gamma_t \ge \gamma > 0$, Err_{train} $\le \exp(-2\gamma^2 T)$
- it follows that $Err_{train} \rightarrow 0$ as $T \rightarrow \infty$
- if $\gamma_t \gg \gamma$ the convergence is much faster

What about overfitting?

• Occam's razor suggests that simpler rules are preferable

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- for SVMs, sparser models (less SVs) have better generalization properties
- AdaBoost?

What about overfitting?

- Occam's razor suggests that simpler rules are preferable
- for SVMs, sparser models (less SVs) have better generalization properties
- AdaBoost?
- practice shows that AdaBoost is resistant to overfitting, in normal conditions

KORK EXTERNE PROVIDE

What about overfitting?

- Occam's razor suggests that simpler rules are preferable
- for SVMs, sparser models (less SVs) have better generalization properties
- AdaBoost?
- practice shows that AdaBoost is resistant to overfitting, in normal conditions
- in highly noisy conditions, AdaBoost can overfit! Regularized versions exist to tackle this situation

KORK EXTERNE PROVIDE

Where does the robustness (to overfitting) come from?

- it's a matter of margin! (most likely)
- define the margin as the "strength of the vote", i.e. "weighted fraction of correct votes" - "weighted fraction of incorrect votes"

The output from the final classifier (before sign()) \in [-1, 1] :

KORKA EXTER I DAR

Example (from F&S's tutorial): the "letters" data set from UCI, C4.5 weak classifiers

(ロ) (個) (通) (通) ÷. 299

...and a real world example: prediction of pCR in breast cancer

- AdaBoost with weighted top scoring pairs weak classifiers
- data: MDA gene expression data (∼22,000 variables) from MAQC project: $n = 130$ training samples, $n = 100$ testing samples
- data comes different hospitals, clinical series, no much control on the representativeness of the training set

KORKA EXTER I DAR

• endpoint: pathologic complete response (pCR)

Training and testing errors (with functional margin)

AdaBoost with wTSP

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

iterations = 1,
$$
err_{tr} = 0.17
$$
, $err_{ts} = 0.39$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

iterations = 5,
$$
err_{tr} = 0.02
$$
, $err_{ts} = 0.34$

K ロ K (日) K 경 K (경 K 경 X) 영 K (이)

iterations = 10,
$$
err_{tr} = 0.0
$$
, $err_{ts} = 0.31$

K ロ K (日) K 경 K (경 K 경 X) 영 K (이)

iterations = 50,
$$
err_{tr} = 0.0
$$
, $err_{ts} = 0.23$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

iterations = 100, $err_{tr} = 0.0$, $err_{ts} = 0.22$

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

Ideas:

- large margin allows a sparser approximation of the final classifier, hence the final classifier should have better generalization properties than its size would suggest
- the AdaBoost increases the margin as *grows and* decreases the effective complexity of the final classifier
- $\forall \theta > 0$, Err $(H) \leq \hat{Pr}$ [margin $\leq \theta$] + O($\sqrt{ }$
"complexity" of weak classifiers $(h/n/\theta)$ where h is the "complexity" of weak classifiers

KORKAPRASHASH SHOAC

• Pr[margin $\leq \theta$] \rightarrow 0 exponentially fast in T if $\gamma_t > \theta$

Outline

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

3 [AdaBoost](#page-10-0)

[Introduction](#page-11-0) [Basic AdaBoost](#page-17-0) [Different views on AdaBoost](#page-40-0) [An additive logistic regression perspective](#page-44-0)

A few different interpretations

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- game theory: AdaBoost classifier as a solution of a minmax game
- loss minimization
- additive logistic model
- maximum entropy
- etc. etc.

AdaBoost as a minimizer of exponential loss

- let $L(y, f(x))$ be the loss function measuring the discrepancies between true target (label or real value) y and the predicted value f(**x**)
- it can be shown that AdaBoost minimizes (remember the scaling factor Z_t ?)

$$
\prod_t Z_t = \frac{1}{n} \sum_i \exp(-y_i f(\mathbf{x}_i))
$$

where $f(\mathbf{x}) = \sum_t \alpha_t h_t(\mathbf{x})$

- yf(**x**) is the (functional) margin, similar to SVM
- exponential loss is an upper bound of the 0-1 loss
- AdaBoost is a greedy procedure for loss minimization: α_t and h_t are chosen locally to minimize the current loss

Coordinate descent [Breiman]

- let $\{h_1, \ldots, h_m\}$ be the space of all weak classifiers
- the goal is to find β_1, \ldots, β_m (coordinates in the space of weak classifiers) where the loss

$$
L(\beta_1,\ldots,\beta_m)=\sum_i\exp(-y_i\sum_k\beta_kh(\mathbf{x}_i))
$$

is minimized

• coordinate descent procedure:

- start with $\beta_k = 0$
- at each step: choose coordinate β_k (on axis h_t) and update it by an increment α_t

KORKA EXTER I DAR

- α_t is chosen to maximize the decrease in loss
- this is the very procedure implemented by AdaBoost

Outline

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

3 [AdaBoost](#page-10-0)

[Introduction](#page-11-0) [Basic AdaBoost](#page-17-0) [Different views on AdaBoost](#page-40-0) [An additive logistic regression perspective](#page-44-0)

Gradient descent optimization (reminder)

- let Ω be a differentiable optimization criterion
- let $x_k = x_{k-1} \gamma \nabla \Omega(x_{k-1}),$ then for some small $\gamma > 0$ $\Omega(x_k) \leq \Omega(x_{k-1})$

Issues:

- slow convergence
- sensitive to initial point

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q @

Gradient descent in function space

- in the following, we will generalize from \pm 1-valued classifiers to real-valued functions
- change of notation: F becomes the generalized version of H and f the generalized version of h, respectively
- $F_M(\mathbf{x}) = \sum_{1}^{M} f_m(\mathbf{x})$ is evaluated at each **x**
- gradient (steepest) descent:

$$
f_m(\mathbf{x}) = -\rho_m g_m(\mathbf{x}) = -\rho_m \nabla_F \left[E_{y,\mathbf{x}} \left[L(y, F(\mathbf{x})) \right] \right]_{F=F_{m-1}} \n\rho_m = \arg \min_{\rho} E_{y,\mathbf{x}} \left[L(y, F_{m-1}(\mathbf{x}) - \rho g_m(\mathbf{x})) \right]
$$

KORKAPRASHASH SHOAC

Additive models

Friedman, Hastie, Tibshirani, Additive logistic regression: a statistical view of boosting, The Annals of Statistics, 2000.

• regression models: let $y \in \mathbb{R}$ and model the mean:

$$
\mathsf{E}\left[\mathsf{y}|\mathbf{x}\right] = \sum_{j=1}^p f_j(x_j),
$$

where $\mathbf{x} = (x_1, \dots, x_p) \in \mathbb{R}^p$
iteratively undets (bookfit) the

. • iteratively update (backfit) the current approximation until convergence:

$$
f_j(x_j) \leftarrow E\left[y - \sum_{k \neq j} f_k(x_k) \middle| x_j\right].
$$

• the final solution, $F(\mathbf{x}) = \sum_{1}^{p} f_j(x_j)$, is a minimizer of

$$
E\left[(y-F(\mathbf{x}))^2\right]
$$

KORKARYKERKE POLO

Extended additive models

KORK EXTERNE PROVIDE

• consider a family of functions

$$
f_m(\mathbf{x}) = \beta_m b(\mathbf{x}; \gamma_m).
$$

- $b(.)$: basis functions (linear, sigmoid, RBF, wavelets,...)
- Notes on basis functions:
	- span a function subspace
	- they need not be orthogonal, nor form a complete/minimal base
	- they can be chosen to form a *redundant dictionary*: matching pursuit
- applications in (statistical) signal processing; image compression; multi–scale data analysis;...

Fitting the model:

• generalized backfitting:

$$
\{\beta_m, \gamma_m\} \leftarrow \arg\min_{\beta, \gamma} \mathsf{E}\left[\left(\mathbf{y} - \left(\sum_{k \neq m} \beta_k b(\mathbf{x}; \gamma_k) + \beta b(\mathbf{x}; \gamma)\right)\right)^2\right]
$$

• greedy optimization: let $F_M(\mathbf{x}) = \sum_{1}^{M} \beta_m b(\mathbf{x}; \gamma_m)$ be the successive approximation solution after M iterations; the successive approximations are

$$
\{\beta_m, \gamma_m\} = \arg\min_{\beta, \gamma} \mathsf{E}\left[\left(\mathsf{y} - \left(F_{m-1}(\mathsf{x}) + \beta b(\mathsf{x}; \gamma) \right)^2 \right] \right]
$$

 \rightarrow matching pursuit; in classification: kernel matching pursuit

KORKA EXTER I DAR

Mallat, Zhang, Matching pursuit with time–frequency dictionaries, 1993 Vincent, Bengio, Kernel matching pursuit, 2002 Popovici, Thiran, Kernel matching pursuit for large datasets, 2005

From regression to classification

- goal (for binary problems): estimate $Pr(y = 1|\mathbf{x})$
- logistic regression:

$$
\ln \frac{\Pr(y=1|\mathbf{x})}{\Pr(y=-1|\mathbf{x})} = F_M(\mathbf{x})
$$

with $F_M(\mathbf{x}) \in \mathbb{R}$.

- ⇔ $p(\mathbf{x}) = Pr(y = 1|\mathbf{x}) = \frac{exp(F_M(\mathbf{x}))}{1+exp(F_M(\mathbf{x}))}$
- \bullet F_M is obtained by minimizing the expected loss:

$$
F_M(\mathbf{x}) = \arg\min_{F} E_{y,\mathbf{x}} [L(y, F(\mathbf{x}))] = \arg\min_{F} E_{\mathbf{x}} [E_y [L(y, F(\mathbf{x}))]] | \mathbf{x}]
$$

KORKA EXTER I DAR

Generalized boosting algorithm

- 1: given $\{({\bf x}_i, y_i)|i = 1, ..., N\}$, let $F_0({\bf x}) = f_0({\bf x})$
2: **for all** $m 1$ *M* do
- 2: **for all** $m = 1, ..., M$ **do**
3: compute the current r
- compute the current negative gradient:

$$
z_i = -\nabla_F L(F)|_{F=F_{m-1}} = -\frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F}|_{F=F_{m-1}(\mathbf{x}_i)}
$$

and fit f_m using the new set $\{(\mathbf{x}_i, z_i)|i = 1, \ldots, N\}$
find the step-size

4: find the step–size

$$
c_m = \arg\min_c \sum_{i=1}^N L(y_i, F_{m-1}(\mathbf{x}_i) + cf_m(\mathbf{x}_i))
$$

KORKA EXTER I DAR

- 5: let $F_m(x) = F_{m-1}(x) + c_m f_m(x)$
- 6: **end for**
- 7: **return** final classifier sign $[F_M(\mathbf{x})]$

Which loss function?

K ロ K K 레 K K ミ K K E K Y B K Y Q Q Q

Exponential loss

KORKAPRA ER ET AQO

$$
L(y, F) = E\left[e^{-yF(x)}\right]
$$

Notes:

• $L(y, F)$ is minimized at

$$
F(\mathbf{x}) = \frac{1}{2} \ln \frac{\Pr(y = 1|\mathbf{x})}{\Pr(y = -1|\mathbf{x})}
$$

- \bullet $\frac{yF(x)}{xF(x)}$ kFk is called margin of sample **^x** [⇒] ^L(y, ^F) forces margin maximization
- L is differentiable and an upper bound of $\mathbf{1}_{[y \in (\mathbf{x}) < 0]}$
- L has the same population minimizer as the binomial log–likelihood

AdaBoost builds an additive logistic regression model

- 1: let $w_i = 1/N$
- 2: **for all** $m = 1, ..., M$ **do**
3: **fit the weak classifier**
- fit the weak classifier $f_m(\mathbf{x}) \in \{\pm 1\}$ using the weights w_i on the training data
- 4: $\quad \textit{err}_{m} = \mathsf{E}_{\mathsf{w}} \left[\mathbf{1}_{\left[\mathsf{y} \neq \mathit{f}_{m}(\mathbf{x}) \right]} \right]$ { expectation with respect to weights! }
- 5: $c_m = \ln \frac{1 err_m}{err_m}$ (note: $c_m = 2 \arg \min_c L(\sum_1^{m-1} f_i + cf_m))$
- 6: update the weights

$$
w_i \leftarrow w_i \exp\left(c_m \mathbf{1}_{[y_i \neq f_m(\mathbf{x}_i)]}\right), i = 1, \ldots, N
$$

KORKA SERKER ORA

and normalize such that $\|w\| = 1$

- 7: **end for**
- 8: **return** final classifier sign $\left[\sum_{m=1}^{M} c_m f_m(\mathbf{x}) \right]$

Real AdaBoost: stagewise optimization of exponential loss

- 1: let $w_i = 1/N$
- 2: **for all** $m = 1, ..., M$ **do**
3: **fit the weak classifier**
- fit the weak classifier using the weights w_i on the training data and obtain the posteriors

$$
p_m(\mathbf{x}) = \hat{P}_w(y=1|\mathbf{x}) \in [0,1]
$$

- 4: let $f_m(\mathbf{x}) = \frac{1}{2} \ln \frac{p_m(\mathbf{x})}{1-p_m(\mathbf{x})}$ {note: this is the local minimizer of L}
- 5: update the weights

$$
w_i \leftarrow w_i \exp\left(-y_i f_m(\mathbf{x}_i)\right), i = 1, \ldots, N
$$

KELK KØLK VELKER I EL I DA O

and normalize such that $\|w\| = 1$

- 6: **end for**
- 7: **return** final classifier sign $\left[\sum_{m=1}^{M} f_m(\mathbf{x})\right]$

LogitBoost: stagewise opt. of binomial log–likelihood

Let $y^* = (1 + y)/2 \in \{0, 1\}$ and
Pr($y^* = 1 | \mathbf{x}$) – $p = \exp(F(\mathbf{x}))$ $Pr(y^* = 1 | \mathbf{x}) = p = exp(F(\mathbf{x}))/(exp(F(\mathbf{x})) + exp(-F(\mathbf{x})))$

- 1: let $w_i = 1/N$, $p_i = 1/2$, $\forall i = 1, ..., N$, $F(\mathbf{x}) = 0$
-
- 2: **for all** $m = 1, ..., M$ **do**
3: let $z_i = \frac{y_i^* p_i}{p_i}$ { new 3: let $z_i = \frac{y_i^* - p_i}{p_i(1-p_i)}$ $\frac{p_i-p_i}{p_i(1-p_i)}$ { new responses, instead of y}
- 4: let $w_i = p_i(1-p_i)$
- 5: fit f_m by weighted least–square regression of z_i to \mathbf{x}_i using weights w_i

KORKA EXTER I DAR

- 6: update $F \leftarrow F + 1/2f_m$
7: update $p \leftarrow \exp(F)/(\epsilon_2)$
- update $p \leftarrow \exp(F)/(\exp(F) + \exp(-F))$
- 8: **end for**
- 9: $\mathsf{return} \;$ final classifier sign $\left[\sum_{m=1}^M f_m(\mathbf{x})\right]$

Which weak learner?

KORK EXTERNE PROVIDE

- any classifier with an error rate < 0.5
- decision stumps (classification tree with 1 node)
- classical classification trees
- top scoring pairs classifier
- linear (logistic) regression (an example later)
- radial basis functions
- \bullet ...

Practical issues

KORK EXTERNE PROVIDE

- the weak classifier should not be too strong
- AdaBoost or LogitBoost are good first choices for classification problems
- stopping rules:
	- quit when the weak classifier cannot fit the data anymore
	- choose M by an inner cross-validation or independent data set
	- use AIC, BIC, MDL as criteria for choosing M