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Introduction

• clustering: a collection of methods for grouping data based on
some measure of similarity

• technique for data exploration

• tries to identify some groupings of data: a partition of the
given data set into some subsets that are (more or less)
homogeneous in some sense

• different methods may lead to completely different partitions

• can be used as a starting point in a supervised analysis: the
cluster labels may guide classifier design



Why clustering?

Example: Eisen et al, PNAS 1998: "... statistical algorithms to
arrange genes according to similarity in pattern of gene
expression."



Why clustering?

Example: Adamic, Adar, 2005: the social network - email
communication within a corporation



Why clustering?

Example: Mignotte , PRL 2011: image segmentation



Why clustering?

Example: Li et al., IEEE Trans Inf Theory, 2004



Two classes of algorithms

• flat clustering the data space is partitioned into a number of
subsets (the most "meaningful"); requires the number of
partitions to be specified

• hierarchical clustering: build a nested hierarchy of partitions
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Assume a generative model:

• the observed data D = {xi |i = 1, . . . , n} originates from G
groups

• each group has a prior P(gk ), k = 1, . . . ,G

• the class-conditional probabilities are of some known
parametric form

p(x|gk , θk )

• the labels of the points x are unknown as are the parameters
θk



PDF:

p(x|{θ1, . . . , θG}) =
G∑

i=1

p(x|gi , θi)P(gi)

• this is a mixture density

• p(·) are the mixture components and P(·) are the mixing
parameters

• the goal is to estimate θ1, . . . , θG



Maximum likelihood estimates

Let T = {θ1, . . . , θG}. The likelihood of the observed data is

p(D|T) =
n∏

i=1

p(xi |T)

The maximum likelihood estimate T̂ is

T̂ = arg max
T

p(D|T)



The maximum likelihood estimate is usually obtained through an
iterative process: expectation maximization.
Repeat until convergence:

1 Expectation step (E-step) compute the expected
log-likelihood under current estimates T̂(t)

2 Maximization step (M-step) find T̂(t+1) that maximizes the
expectation



Gaussian Mixture Models

• depending on how constraint is the model, different forms can
be fitted

• usually, the constraints are on the form of the covariance
matrices: spherical, diagonal, full



Example (from scikit-learn):
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• given are n data points x1, . . . , xn ∈ R
d and the number K of

clusters

• in the Gaussian mixture model, assume the covariance
matrices to be identity matrices→ the Mahalanobis distance
becomes Euclidean distance

• goal: find the K cluster centres (based on Euclidean distance)



Overview of the algorithm:

1 choose randomly K cluster centres

2 assign all the points to the cluster defined by the closest
centre

3 re-compute the cluster centres

4 repeat 2-3 until no more changes (or some other convergence
criterion)



[DHS -Fig 10.3]



Example:



Application of K−means clustering:
vector quantization

Goal: find a limited number of levels to represent a (possibly
continuous) range of values.
Example: color quantization. Reduce the number of colors in an
image in an adaptive way. (From Wikipedia:)

"Rosa Gold Glow 2 small noblue color space". Licensed under Public domain via Wikimedia Commons
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Some definitions

• Graph: A (simple, unoriented) graph G is
a pair of sets G = (V ,E), where V is a
vertex set and E is an edge set.

• An edge (i, j) ∈ E is an unordered pair of
vertices i, j ∈ V .

• Oriented graph: A oriented graph G is a
pair of sets G = (V ,E), where V is a
vertex set and E is an arc set. An arc
(i, j) ∈ E is an ordered pair of vertices
i, j ∈ V , with i called tail and j called head.

Figure: A simple
graph.

Figure: An oriented
graph.



• A path of length r from i to j is a sequence
of r + 1 distinct and adjacent vertices
starting with i and ending with j.

• A connected graph is a graph where any
two vertices may be linked by a path.

• A connected component is an induced
subgraph maximal that is connected.

• The degree di of a vertex i is the number
of incident edges to i.

• The in–degree d(i)
i of a vertex i is the

number of arcs ending with i. The
out–degree d(o)

i of a vertex i is the
number of arcs starting with i.

Figure: A graph with
2 connected
components.



Graph isomorphism
Two graphs G1 and G2 are isomorphic if there exists a bijection
ϕ : VG1 → VG2 such that (i, j) ∈ EG1 iff (ϕ(i), ϕ(j)) ∈ EG2 .

Adjacency and incidence matrices
The adjacency matrix A(G) = [aij] of a graph G is a |V | × |V |
01−matrix, with aij = I(i,j)∈E . The incidence matrix B(G) = [bij] of a
graph G is a |V | × |E | matrix with bik = −1 and bjk = 1, where
k = (i, j) ∈ E.



Properties:

• for a graph G: BB t = diag(d1, ..., d|V |) − A

• let G1 and G2 be two isomorph graphs; then

det(xI − A(G1)) = det(xI − A(G2)),

so, they have the same spectrum.

• the number of paths of length r from i to j is given by (A r)ij .



Laplacian of a graph
The Laplacian of the graph G is the matrix L(G) = BB t , where B
is the incidence matrix of G.
Properties:

• Lij =


di if i = j

−1 if i , j and (i, j) ∈ E

0 otherwise
• L is symmetric (by construction) positive semi–definite

• L1|V | = 0 so the smallest eigenvalue is λ1 = 0 and the
corresponding eigenvector is 1|V |.

• the number of connected components of G equals the
number of null eigenvalues.

Warning: there are various other variants of L ’s definition (e.g.
admittance matrix, Kirchhoff matrix).



Generalizations:

• A is replaced by a weight/similarity matrix W (still symmetric)

• the degree of a vertex i becomes di =
∑|V |

j=1 wij

• the Laplacian becomes (see its properties): L = D −W ,
where D = diag(d1, ..., d|V |)

• the normalized Laplacian is defined as D−
1
2 (D −W)D−

1
2 .



Overview of spectral clustering
Spectral clustering: partitioning the similarity graph under some
constraints:

Figure: Where to cut??

• balance the size of the clusters?
• minimize the number of edges removed?
• . . .



Let A ,B be the two clusters/subgraphs and let
s(A ,B) =

∑
i∈A
∑

j∈B wij . Objective functions:

• ratio cut: J(A ,B) =
s(A ,B)
|A | +

s(A ,B)
|B | , i.e. minimize similarity

between A and B

• normalized cut: J(A ,B) =
s(A ,B)∑

i∈A di
+

s(A ,B)∑
i∈B di

• min–max–cut: J(A ,B) =
s(A ,B)
s(A ,A)

+
s(A ,B)
s(B ,B)

, i.e. minimize the
similarity between A and B and maximize the similarity within
A and B.

All these lead to finding the smallest eigenvectors/eigenvalues of
L = D −W .

Figure: Adjacency matrix and the 2nd eigenvector



Spectral clustering - main algorithm

• input: a similarity matrix S and the number of clusters k

• compute the Laplacian L

• compute the eigenvectors vi of L end order them in increasing
order of the corresponding eigenvalues

• build V ∈ Rn×k with eigenvectors as columns

• the rows of V are the new data points zi ∈ R
k to be clustered

• use k−means to cluster zi



Example:
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Hierarchical clustering
A nested set of partitions and the corresponding dendrogram:
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11

12 3 4

• the height of the descendent segments is proportional with
the distance/similarity between the partitions

• the ordering is irrelevant (i.e. you can swap left and right
sub-trees without altering the meaning)

• it can be seen as a density estimation method



There are two main approaches to construct a hierarchical
clustering:

• agglomerative: initially, each point is alone in a cluster; the
closest two clusters/groups are merged to form a new cluster

• divisive starts with all points in a single cluster, which is
iteratively split
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Linkage algorithms

• bottom-up/agglomerative strategy

• start with each point in its own cluster

• merge the two closest clusters

• continue until there is only one cluster

• Johnson: Hierarchical clustering schemes. Psychometrika,
2:241-254, 1967

• many applications, including phylogenetic trees

• the key is to define a distance over clusters space



• single linkage:

δ(C1,C2) = min
x∈C1,z∈C2

d(x, bz)

• average linkage:

δ(C1,C2) =
1

|C1||C2|

∑
x∈C1,z∈C2

d(x, z)

• complete linkage:

δ(C1,C2) = max
x∈C1,z∈C2

d(x, z)

• other variations...



Comments:

• single linkage tends to produce non-balanced trees, with long
"chains"

• complete linkage leads to more compact clusters

• single linkage: minimum spanning tree (cut the longest branch
in MST and get the first two clusters)

• sensitive to outliers

• does not need a pre-specified number of clusters - but often
you have to cut the dendrogram and to decide how many
clusters are in data

• the clustering tree is not unique



Example: discovery of molecular
subtypes in CRC

See Budinska et al, J Path. 2012
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Other methods: information-theoretic
methods

• idea: construct a clustering the preserves most of the
"information" in data

• hence, you need a cost function (distortion function)

• density estimates based on frequencies (counts)

• no notion of similarity

• example: Information Bottleneck



Other methods: iterative refinement

• Karypis, Kumar: multilevel partitioning of graphs, SIAM J Sci
Comp 1999

• start with a large graph

• merge nodes in "super-nodes" (coarsen the graph)

• cluster the coarse graph

• uncoarsen again: refine the clustering



Other methods: ensemble methods

• produce a series of clusterings based on perturbed versions
of the original data (resampling, different parameters, etc)

• use the ensemble of clusters to decide for the final clustering

• see Strehl, Ghosh: cluster ensembles, JMLR 2002



Other methods

• support vector clustering

• subspace clustering

• co-clustering (bi-clustering): obtain a clustering of rows and
columns of the data matrix

• etc. etc.
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Cluster quality

• some cluster methods (e.g. k -means) define an objective
function as the goal of the clustering

• there are quality functions that are algorithm independent
(many!)

• two quantities are usually accounted for:
• within-cluster similarity (cluster homogeneity): should be high
• between-cluster similarity: should be low

• while mathematically attractive, they usually lead to an
NP-hard problem

• the choice of quality function is rather ad-hoc



Cluster stability and optimal k

General idea:

• start with a data setD = {xi} and some clustering algorithmA
• for various number of clusters (e.g. k = 2, 3, . . . ,K :

• draw subsamples from D
• use A to cluster them into k clusters

• compare the resulting clusters by using a distance between
clusterings and compute a stability index describing how
variable/stable the clustering distances are

• choose k that gives the best stability



Distances between clusterings of the same data: let f (1) and f (2)

be two clusterings and define Nij as the number of pairs (x, z) for
which f (1)(x, z) = i and f (2)(x, z) = j, for i, j ∈ {0, 1}.
Similarity/distance functions (some of many):

• Rand index: (N00 + N11)/[n(n − 1)]

• Jaccard index: N11/(N11 + N01 + N10)

• Hamming distance: (N01 + N10)/[n(n − 1)]

• information theoretic distance: Entropy(f (1)) + Entropy(f (2)) -
Mutual information(f (1), f (2))



What if the clusterings are not defined on the same data?

• far from being trivial

• idea "extend" clustering f (1) to D2 and f (2) to D1

• some clustering algorithms are easily extended: k−means
just requires assignment of new data to the defined clusters,
etc.

• other clustering algorithms are not so flexible (e.g. spectral
clustering)

• use some classifiers for extension... what about classification
errors?

• what if the 2 datasets are not exactly "aligned"?



How many clusters?

• most flat clustering algorithms require k

• the hierarchical clustering usually is cut at some height to
yield the final number of clusters

• e.g. image segmentation k =?

• one way, use cluster quality to choose best k

• or use the stability approach

• or use "gap statistic" - see Tibshirani et al, J Royal Statist Soc
2001
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Cluster validation

• given a clustering, how confident are we that it represents
"real" groups of points

• if a new data set is available, would we obtain the same
clusters? and as many as before?

• complication: in real applications, data may not always come
from the same conditions (e.g. change of measurement
device, etc)

• maybe the original data set does not capture all the clusters
that could arise in data

• no clear method for validation, but the ideas are the same as
for cluster stability and quality



Example (Budinska et al, J Path 2012):
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