

HCI LAB

PA198 Augmented Reality Interfaces

Lecture 9

Evaluating Augmented Reality Interfaces

Fotis Liarokapis liarokap@fi.muni.cz

15th October 2019

-HCI LAB

Evaluating User Interfaces

- Assess effect of interface on user performance and satisfaction
- · Identify specific usability problems
- · Evaluate users' access to functionality of system
- Compare alternative systems/designs

Major Parameters

Introduction

- The major parameters in the user interface evaluation activities are:
 - Stage of the design
 - Inspection methods vs. usability testing
 - Formative vs. summative

http://www.tondesignmag.com/pavigate-usahility-evaluation

-HCI LAB

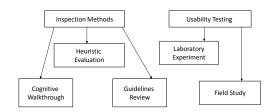
Influence of the Parameters

- These parameters influence:
 - How the design is represented to evaluators
 - Documents/deliverables required
 - Need for resources (personnel, equipment, lab)
 - Methodology
 - For data gathering
 - · For analysis of results

----HCI

Methodologies for Data Gathering

- · Structured inspection
- Interviews
- · Focus groups
- Questionnaires
- Field studies
- Controlled Experiments
 - Quantitative metrics
 - Thinking aloud, cooperative evaluation


-HCI

Evaluating User Interface Designs

- · Stage of the design process
 - Early design (prototype)
 - Intermediate
 - Full design
 - After deployment
- Evaluation should be done throughout the usability life cycle – not just at the end
 - Called iterative design
- Different evaluation methods appropriate at different stages of the cycle

---HCI

Evaluating User Interface Designs.

-HCI

Formative vs. Summative Evaluation

- Formative evaluation
 - Identify usability problems
 - Qualitative measures
 - Ethnographic methods
- Summative evaluation
 - Measure/compare user performance
 - Quantitative measures
 - Statistical methods

HCI

Participatory or User-centered Design

- · Users are active members of the design team
- Characteristics
 - Context and task oriented rather than system oriented
 - Collaborative
 - Iterative
- Methods
 - Brain-storming ("focus groups")
 - Storyboarding
 - Workshops
 - Pencil and paper exercises

—HCI LA

Cognitive Walkthrough

- Evaluates design on how well it supports user in learning task
- Usually performed by expert in cognitive psychology
- Expert 'walks though' design to identify potential problems using psychological principles
- · Scenarios may be used to guide analysis

—HCI LA

Cognitive Walkthrough.

- For each task, walkthrough considers:
 - What impact will interaction have on user?
 - What cognitive processes are required?
 - What learning problems may occur?
- Analysis focuses on users goals and knowledge
 - Does the design lead the user to generate the correct goals?

-HCI

Cognitive Walkthrough Video

https://www.youtube.com/watch?v=bzvQY68lm8c

—HCI LA

Heuristic Evaluation

- · Usability criteria (heuristics) are identified
- Design examined by experts to see if these are violated
- · Example heuristics
 - System behavior is consistent
 - Feedback is provided
- · Heuristic evaluation debugs design

—HCI

Heuristic Evaluation Video

https://www.youtube.com/watch?v=lkbBc4aF5F/

—HCI □

Guidelines Inspection

- A usability group should have a designated inspector!
- Written guidelines recommended for larger projects:
 - Screen layout
 - Appearance of objects
 - Terminology
 - Wording of prompts and error messages
 - Menu's
 - Direct manipulation actions and feedback
 - On-line help and other documentation

-HCI

---HCI

What is a Usability Experiment?

- · Usability testing in a controlled environment
 - There is a test set of users
 - They perform pre-specified tasks $\,$
 - Data is collected (quantitative and qualitative)
 - Take mean and/or median value of measured attributes
 - Compare to goal or another system
- Contrasted with <u>expert review</u> and <u>field study</u> evaluation methodologies
- Note the growth of usability groups and usability laboratories

Usability Experiment

Experimental Factors

- Subjects
 - Representative
 - Sufficient sample
- Variables
 - Independent variable (IV)
 - Characteristic changed to produce different conditions
 - i.e. Interface style, number of menu items
 - Dependent variable (DV)
 - · Characteristics measured in the experiment
 - i.e. Time to perform task, number of errors

Experimental Factors.

- Hypothesis
 - Prediction of outcome framed in terms of IV and DV
 - Null hypothesis: states no difference between conditions and the aim is to disprove this
- · Experimental design
 - Within groups design
 - Between groups design

—HCI LA

Independent Variables

- Hypothesis includes the <u>independent variables</u> that are to be altered
 - The things you manipulate independent of a subject's behaviour
 - Determines a modification to the conditions the subjects undergo
 - May arise from subjects being classified into different groups

-HCI -

Dependent Variables

- Hypothesis includes the <u>dependent variables</u> that will be measured
 - Variables dependent on the subject's behaviour / reaction to the independent variable
 - The specific things you set out to quantitatively measure / observe

-HCI LAI

Independent and Dependent Variables

—HCI™

Within Groups Design

- Each subject performs experiment under each condition
- Advantages
 - Fewer subjects needed
 - Less likely to suffer from user variation

- Transfer of learning possible

https://www.co.dube.com/co.tch2--och15-och25

—HCI □

Between Groups Design

- Each subject performs under only one condition
- Advantages
 - No transfer of learning
- Disadvantages
 - More subjects required (therefore more costly)
 - User variation can bias results

-HCI

How Many Test Users?

- Problems-found (i) = N (1 (1 I)i)
 - i = number of test users
 - N = number of existing problems
 - I = probability of finding a single problem with a single user

-HCI

Data Collection Techniques

- · Paper and pencil
 - Cheap, limited to writing speed
- Audic
 - Good for think aloud, difficult to match with other protocols
- Video
 - Accurate and realistic, needs special equipment, obtrusive
- · Computer logging
 - Automatic and unobtrusive
 - Large amounts of data difficult to analyze

-HCI

Data Collection Techniques.

- User notebooks
 - Coarse and subjective, useful insights
 - Good for longitudinal studies
- · Brain logging
 - More difficult technique

-HCI

Summative Evaluation

- · What to measure?
 - Total task time
 - User "think time" (dead time??)
 - Time spent not moving toward goal
 - Ratio of successful actions/errors
 - Commands used/not used
 - Frequency of user expression of:
 - Confusion, frustration, satisfaction
 - Frequency of reference to manuals/help system
 - Percent of time such reference provided the needed answer

—HCI LA

Measuring User Performance

- · Measuring learnability
 - Time to complete a set of tasks by novice
 - Learnability/efficiency trade-off
- Measuring efficiency
 - Time to complete a set of tasks by expert
 - How to define and locate 'experienced' users
- Measuring memorability
 - The most difficult, since 'casual' users are hard to find for experiments
 - Memory quizzes may be misleading

-HCI LA

Measuring User Performance.

- · Measuring user satisfaction
 - Likert scale (agree or disagree)
 - Semantic differential scale
 - Physiological measure of stress
 - EEG measures
- Measuring errors
 - Classification of minor vs. serious
 - Removing noise

-HCI

Formative Evaluation

- · What is a Usability Problem?
 - Unclear
 - The planned method for using the system is not readily understood or remembered (task, mechanism, visual)
 - Error-prone
 - The design leads users to stray from the correct operation of the system (task, mechanism, visual)

Formative Evaluation.

Reliability and Validity

- Statistical significance is a measure of reliability

- Difficult to achieve because of high variability in

Validity means will the results transfer into a

- Difficult to achieve because real-world users,

environment and tasks difficult to duplicate in

- Depends on matching the users, task, environment

· Reliability means repeatability

individual user performance

real-life situation

laboratory

- · What is a Usability Problem?
 - Mechanism overhead
 - The mechanism design creates awkward work flow patterns that slow down or distract users
 - Environment clash
 - The design of the system does not fit well with the users' overall work processes (task, mechanism, visual)
 - i.e. Incomplete transaction cannot be saved

-HCI LAE

Formative vs Summative

https://www.youtube.com/watch?v=bTGnJnuVNt8

Methods

-HCI

Qualitative Methods for Collecting Usability Problems

- Thinking aloud method and related alternatives:
 - Constructive interaction, coaching method, retrospective walkthrough
- · Output: Notes on what users did and expressed:
 - Goals, confusions or misunderstandings, errors, reactions expressed
- Questionnaires
 - Focus groups, interviews

.....

Observational Methods - Cooperative evaluation

- · Variation on think aloud
- User collaborates in evaluation
- Both user and evaluator can ask each other questions throughout
- · Additional advantages
 - Less constrained and easier to use
 - User is encouraged to criticize system
 - Clarification possible

Query Techniques - Interviews

- Analyst questions user on one to one basis
- Usually based on prepared questions
- Informal, subjective and relatively cheap
- Advantages
 - Can be varied to suit context
 - Issues can be explored more fully
 - Can elicit user views and identify unanticipated problems
- Disadvantages
 - Very subjective
 - Time consuming

-HCI

Observational Methods - Think Aloud

- · User observed performing task
 - User asked to describe what he is doing and why, what he thinks is happening etc.
- Advantages
 - Simplicity requires little expertise
 - Can provide useful insight
 - Can show how system is actually use
- Disadvantages
 - Subjective
 - Difficult to conduct
 - Act of describing may alter task performance

-HCI

Observational Methods

- · Post task walkthrough
 - User reacts on action after the event
 - Used to fill in intention
- Advantages
 - Analyst has time to focus on relevant incidents
 - Avoid excessive interruption of task
- Disadvantages
 - Lack of freshness
 - May be post-hoc interpretation of events

—HCI□

Query Techniques - Questionnaires

- Set of fixed questions given to users
- Advantages
 - Quick and reaches large user group
 - Can be analyzed quantitatively
- Disadvantages
 - Less flexible
 - Less probing

Query Techniques - Questionnaires .

- · Need careful design
 - What information is required?
 - How are answers to be analyzed?
- · Should be pilot tested for usability!
- · Styles of question
 - General
 - Open-ended
 - Scalar
 - Multi-choice
 - Ranked

Conducting A **Usability Experiment**

The Planning Phase

- · Who, what, where, when and how much?
 - Who are test users, and how will they be recruited?
 - Who are the experimenters?
 - When, where, and how long will the test take?
 - What equipment/software is needed?
 - How much will the experiment cost?
 - Outline of test protocol

Laboratory studies: Pros and Cons

- Advantages:
 - Specialist equipment available
 - Uninterrupted environment
- Disadvantages:
 - Lack of context
 - Difficult to observe several users cooperating
- Appropriate
 - If actual system location is dangerous or impractical for to allow controlled manipulation of use

Main Steps

- The planning phase
- · The execution phase
- · Data collection techniques
- Data analysis

Outline of Test Protocol

- · What tasks?
- Criteria for completion?
- User aids
- · What will users be asked to do
 - i.e. Thinking aloud studies
- · Interaction with experimenter
- · What data will be collected?

—HCI LA

Designing Test Tasks

- · Tasks:
 - Are representative
 - Cover most important parts of UI
 - Don't take too long to complete
 - Goal or result oriented (possibly with scenario)
- Tips:
 - First task should build confidence
 - Last task should create a sense of accomplishment

Pilot Studies

- · A small trial run of the main study
 - Can identify majority of issues with interface design
- · Pilot studies check:
 - That the evaluation plan is viable
 - You can conduct the procedure
 - That interview scripts, questionnaires, experiments, etc. work appropriately
- · Iron out problems before doing the main study

llinghurst, M. Evaluating AR Applications, HIT Lab NZ, University of Canterbury

Detailed Test Protocol

- All materials to be given to users as part of the test, including detailed description of the tasks
- Deliverables from detailed test protocol
 - What test tasks? (written task sheets)
 - What user aids? (written manual)
 - What data collected? (include questionnaire)
 - How will results be analyzed/evaluated? (sample tables/charts)
- · Then do a pilot with a few users

—HCI

The Execution Phase

- · Prepare environment, materials, software
- · Introduction should include:
 - Purpose (evaluating software)
 - Voluntary and confidential
 - Explain all procedures
 - i.e. Recording, question-handling
 - Invite questions
- During experiment
 - Give user written task description(s), one at a time only one experimenter should talk
- · De-briefing

-HCI LAB

Ethics of Human Experimentation

- Users feel exposed using unfamiliar tools and making errors
- Guidelines:
 - Re-assure that individual results not revealed
 - Re-assure that user can stop any time
 - Provide comfortable environment
 - Don't laugh or refer to users as subjects or guinea pigs
 - Don't volunteer help, but don't allow user to struggle too long
 - In de-briefing
 - Answer all questions
 - Reveal any deception
 - Thanks for helping

Data Collection

- Pad and paper the only absolutely necessary data collection tool!
- Observation areas (for other experimenters, developers, customer reps, etc.) - should be shown to users
- Videotape (may be overrated) users must sign a release
- Video display capture
- · Portable usability labs
- Usability kiosks

-HCI LAB

Data Analysis

- · Before you start to do any statistics:
 - Look at data
 - Save original data
- · Choice of statistical technique depends on
 - Type of data
 - Information required
- Type of data
 - Discrete finite number of values
 - Continuous any value

-HCI

Statistics

- The mean time to perform a task (or mean no. of errors or other event type)
- Measures of variance standard deviation
- For a normal distribution:
 - 1 standard deviation covers ~ 2/3 of the cases
 - In usability studies:
 - Expert time SD ~ 33% of mean
 - Novice time SD ~ 46% of mean
 - Error rate SD ~ 59% of mean

-HCI

Statistics.

- · Confidence intervals (the smaller the better)
 - The "true mean" is within N of the observed
 - Mean, with confidence level (probability) .95
- Since confidence interval gets smaller as the number of users grow:
 - How many test users required to get a given
 - Confidence interval and confidence level

-HCI

Testing Usability in the Field

- Direct observation in actual use
 - Discover new uses
 - Take notes, don't help, chat later
- · Logging actual use
 - Objective, not intrusive
 - Great for identifying errors
 - Which features are/are not used
 - Privacy concerns
- · Bulletin boards and user groups

-HCI

Testing Usability in the Field.

- · Questionnaires and interviews with real users
 - Ask users to recall critical incidents
- Questionnaires must be short and easy to return
- Focus groups
 - 6-9 users
 - Skilled moderator with pre-planned script
 - Computer conferencing
 - Virtual environments
- · On-line direct feedback mechanisms
 - Initiated by users
 - May signal change in user needs
 - Trust but verify

-HCI

Field Studies: Pros and Cons

- Advantages:
 - Natural environment
 - Context retained (though observation may alter it)
 - Longitudinal studies possible
- Disadvantages:
- Distractions
- Noise
- Appropriate:For beta testing
 - Where context is crucial for longitudinal studies

—HCI ™

Choosing an Evaluation Method

- When in process
 - Design vs. implementation
- Style of evaluation
 - Laboratory vs. field
- · How objective
 - Subjective vs. objective
- Type of measures
 - Qualitative vs. quantitative

-HCI

Choosing an Evaluation Method.

- · Level of information
 - High level vs. low level
- · Level of interference
 - Obtrusive vs. unobtrusive
- · Resources available
 - Time
 - Subjects
 - Equipment
 - Expertise

—HCI

Subjects

- The choice of subjects is critical to the validity of the results of an experiment
 - Subjects group should be representative of the expected user population
- In selecting the subjects it is important to consider things such as their
 - Age group, education, skills, culture
 - How does the sample influence the results?
- Report the selection criteria and give relevant demographic information in your publication

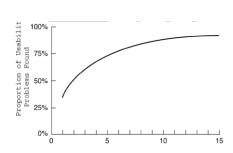
Billinghurst, M. Evaluating AR Applications, HIT Lab NZ, University of Canterbury

-HCI LA

Subjects.

- How many participants depends on how big is the effect you want to measure?
 - Large effects can be detected with smaller samples
 - i.e. Small n needed to discriminate speed between turtles and a rabbits
 - $\boldsymbol{-}$ The more participants the "smoother" the data
 - Central Limit Theorem as n increases (n>30) the sample mean approaches a normal distribution
 - Extreme data has less influence (e.g. one sleepy participants does not mess up the results that much)
- For quantitative analysis:
 - Min 15-20 or more per group/cell

Billinghurst, M. Evaluating AR Applications, HIT Lab NZ, University of Canterbu


-HCI LAB

Experimental Measures

Measure	What does it tell us?	How is it measured?
Timings	Performance	Via a stopwatch, or automatically by the device.
Errors	Performance, Particular sticking points in a task	By success in completing the task correctly. Through experimenter observation, examining the route walked.
Perceived Workload	Effort invested. User satisfaction	Through NASATLX scales and other questionnaires.
Distance traveled and route taken	Depending on the application, these can be used to pinpoint errors and to indicate performance	Using a pedometer, GPS or other location-sensing system. By experimenter observation.
Percentage preferred walking speed	Performance	By finding average walking speed, which is compared with normal walking speed.
Comfort	User satisfaction. Device acceptability	Comfort Rating Scale and other questionnaires.
User comments and preferences	User satisfaction and preferences. Particular sticking points in a task.	Through questionnaires, interviews and think-alouds.
Experimenter observations	Different aspects, depending on the experimenter and on the observations	Through observation and note-taking

Billinghurst, M. Evaluating AR Applications, HIT Lab NZ, University of Canterbury

Evaluators & Problems

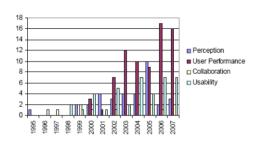
Billinghurst, M. Evaluating AR Applications, HIT Lab NZ, University of Canterbury

Evaluate AR Apps

Why Evaluate AR Applications

- To test and compare interfaces, new technologies, interaction techniques
- · Test Usability
 - Learnability, efficiency, satisfaction,...
- · Get user feedback
- Refine interface design
- · Better understand your end users

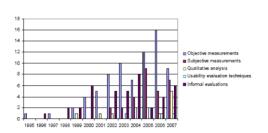
Billinghurst, M. Evaluating AR Applications, HIT Lab NZ, University of Canterbury


—HCI □

Types of User Studies in AR

- Perception
- User Performance
- Collaboration
- Usability of Complete Systems
- · Brain Analysis

-HCI LAB-


Types of AR User Studies

Billinghurst, M. Evaluating AR Applications, HIT Lab NZ, University of Canterbu

----HCI LAE

Types of Experimental Measures Used

Billinghurst, M. Evaluating AR Applications, HIT Lab NZ, University of Canterbury

Typical Hardware

- Eye Tracking
- HMDs
- Physiological devices

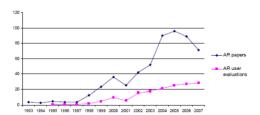
Eye Tracking

- Head or desk mounted equipment tracks the position of the eye
- Eye movement reflects the amount of cognitive processing a display requires
- · Measurements include
 - Fixations: eye maintains stable position. Number and duration indicate level of difficulty with display
 - Saccades: rapid eye movement from one point of interest to another
 - Scan paths: moving straight to a target with a short fixation at the target is optimal

Physiological Measurements

- · Emotional response linked to physical changes
 - May help determine a user's reaction to an interface
- · Measurements include:
 - heart activity, including blood pressure, volume and pulse
 - activity of sweat glands: Galvanic Skin Response (GSR)
 - electrical activity in muscle: electromyogram (EMG)
 - electrical activity in brain: electroencephalogram (EEG)
- Some difficulty in interpreting these physiological responses
 - More research needed

—HCI


Survey of AR Papers

- Edward Swan (2005)
 - Surveyed major conference/journals (1992-2004)
 - Presence, ISMAR, ISWC, IEEE VR
- Summary
 - 1104 total papers
 - 266 AR papers
 - 38 AR HCI papers (Interaction)
 - 21 AR user studies
- Only 21 from 266 AR papers had a formal user study
 - Less than 8% of all AR papers

Billinghurst, M. Evaluating AR Applications, HIT Lab NZ, University of Canterbury

CI ---

AR User Evaluations

—HCI LAB

Perceptual Evaluation of Photo-Realism AR

https://www.youtube.com/watch?v=lrtUZKl9v3

User Experiences with AR Mobile Navigation

https://www.youtube.com/watch?v=qoOMDP2uHq0

Some Questionnaires

Immersion

-HCI LAB-

-HCI LAB-

 In a virtual environment (VE), Immersion, defined in technical terms, is capable of producing a sensation of Presence, the sensation of being there (part of the VE), as regards the user (Ijsselsteijn & Riva, 2003)

ljsselstein, W., Riva, G. Being there: the experience of presence in mediated environments. In Being There: Concepts, effects and measurement of user presence in synthetic environments. G. Riva, F. Davide, W.A. Usselsteijn (Eds.) los Press, Amsterdam, The Netherlands, 1-14, 2003

---HCI

-HCI LAB-

Types of Immersion

- · Tactical immersion
 - Tactical immersion is experienced when performing tactile operations that involve skill
 - Players feel "in the zone" while perfecting actions that result in success
- Strategic immersion
 - Strategic immersion is more cerebral, and is associated with mental challenge
 - Chess players experience strategic immersion when choosing a correct solution among a broad array of possibilities
- Narrative immersion
 - Narrative immersion occurs when players become invested in a story, and is similar to what is experienced while reading a book or watching a movie

https://en.wikipedia.org/wiki/Immersion_(virtual_reality)

Presence

 Presence can be defined as a special case of situation awareness, in which self-orientation and self-location are defined with respect to a media environment, not the real environment

ljsselstein, W., Riva, G. Being there: the experience of presence in mediated environments. In Being There: Concepts, effects and measuremen of user presence in synthetic environments. G. Riva, F. Davide, W.A Usselsteijn (Eds.) los Press, Amsterdam, The Netherlands, 1-14, 2003

-HCI LAB

Immersion Requirements

- A wide field of view (80 degrees or better)
- · Adequate resolution (1080p or better)
- Low pixel persistence (3 ms or less)
- A high enough refresh rate (>60 Hz, 95 Hz is enough but less may be adequate)
- Global display where all pixels are illuminated simultaneously (rolling display may work with eye tracking)

https://en.wikipedia.org/wiki/Immersion (virtual reality)

Immersion Requirements.

- Optics (at most two lenses per eye with tradeoffs, ideal optics not practical using current technology)
- Optical calibration
- Rock-solid tracking translation with millimeter accuracy or better, orientation with quarter degree accuracy or better, and volume of 1.5 meter or more on a side
- Low latency (20 ms motion to last photon, 25 ms may be good enough)

https://en.wikipedia.org/wiki/Immersion (virtual reality)

Immersive Virtual Reality

- · Direct interaction of the nervous system
 - The most considered method would be to induce the sensations that made up the virtual reality in the nervous system directly
 - In functionalism/conventional biology we interact with consensus reality through the nervous system
 - Thus we receive all input from all the senses as nerve impulses
 - It gives your neurons a feeling of heightened sensation

ttps://en.wikipedia.org/wiki/Immersion_(virtual_reality)

VR Immersion Requirements

- · Understanding of the nervous system
 - A comprehensive understanding of which nerve impulses correspond to which sensations, and which motor impulses correspond to which muscle contractions will be required
- Ability to manipulate central nervous system (CNS)
 - Manipulation could occur at any stage of the nervous system the spinal cord is likely to be simplest; as all nerves pass through here, this could be the only site of manipulation.
- · Computer hardware/software to process inputs/outputs
 - A very powerful computer would be necessary for processing virtual reality complex enough to be nearly indistinguishable from consensus reality and interacting with central nervous system fast enough

https://en.wikipedia.org/wiki/Immersion (virtual realit

-HCI

Presence Questionnaire

PRESIDENCE OF STREET NAME AND ADDRESS OF STREET

http://w3.uqo.ca/cyberpsy/docs/qaires/pres/PO_va.pdl

.

FLOW

- In positive psychology, FLOW (also known as the zone), is the mental state of operation in which a person performing an activity is fully immersed in a feeling of energized focus, full involvement, and enjoyment in the process of the activity
 - Characterized by complete absorption in what one does
 - Named by Mihály Csíkszentmihályi, the concept has been widely referenced across a variety of fields (and has an especially big recognition in occupational therapy), though the concept has existed for thousands of years under other guises, notably in some Eastern religions

https://en.wikipedia.org/wiki/Flow_(psycholog

-HCI LAB

FLOW Model

nttps://en.wikipedia.org/wiki/Flow (psychology

-HCI LAB

FLOW Conditions

- One must be involved in an activity with a clear set of goals and progress
 - This adds direction and structure to the task
- The task at hand must have clear and immediate feedback
 - This helps the person negotiate any changing demands and allows them to adjust their performance to maintain the flow state
- One must have a good balance between the perceived challenges of the task at hand and their own perceived skills
 - One must have confidence in one's ability to complete the task at hand

https://en.wikipedia.org/wiki/Flow (psychologo

FLOW Example

 Development and validation of a scale to measure optimal experience: the FLOW state scale

ps://ess22012.files.wordpress.com/2012/09/flow-state-scale004.pdf

Virtual Reality Sickness

- Virtual reality sickness (also known as cybersickness) occurs when exposure to a virtual environment causes symptoms that are similar to motion sickness symptoms
- The most common symptoms are general discomfort, headache, stomach awareness, nausea, vomiting, pallor, sweating, fatigue, drowsiness, disorientation, and apathy
- Other symptoms include postural instability and retching

https://en.wikipedia.org/wiki/Virtual_reality_sickne

---HCI

Virtual Reality Sickness.

- Virtual reality sickness is different from motion sickness in that it can be caused by the visually-induced perception of self-motion; real self-motion is not needed
- It is also different from simulator sickness
 - Non-virtual reality simulator sickness tends to be characterized by oculomotor disturbances
 - Virtual reality sickness tends to be characterized by disorientation

https://en.wikipedia.org/wiki/Virtual_reality_sickness

.1

Simulator Sickness

- Simulator sickness is a subset of motion sickness that is typically experienced by pilots who undergo training for extended periods of time in flight simulators
- It is similar to motion sickness in many ways, but occurs in simulated environments and can be induced without actual motion
- Symptoms of simulator sickness include discomfort, apathy, drowsiness, disorientation, fatigue, vomiting, and many more

https://en.wikipedia.org/wiki/Simulator_sickne

—HCI

Simulator Sickness Questionnaire

| Section | Sect

http://w3.uqo.ca/cyberpsy/docs/gaires/ssq/SSQ_va.pdf

----HCI LAB-

Conclusions

- · Very extensive field
- Not easy to select the best approach
- · Biggest problems:
 - Understand the problem
 - Get a large sample
 - Analyse the data properly
- Still AR is not properly explored
 - Need for more research

HCI LAB

Questions

