
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 6:

Formal Relational Query Languages

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan6.2Database System Concepts - 6th Edition

Chapter 6: Formal Relational Query Languages

 Relational Algebra

 Tuple Relational Calculus

 Domain Relational Calculus

©Silberschatz, Korth and Sudarshan6.3Database System Concepts - 6th Edition

Relational Algebra

 Procedural language

 Six basic operators

 select: 

 project: 

 union: 

 set difference: –

 Cartesian product: 

 rename: 

 The operators take one or two relations as inputs and produce a new

relation as a result.

 E.g. : r  s s = (r)

©Silberschatz, Korth and Sudarshan6.4Database System Concepts - 6th Edition

Select Operation – Example

 Relation r

 A=B  D > 5 (r)

©Silberschatz, Korth and Sudarshan6.5Database System Concepts - 6th Edition

Select Operation

 Notation: p(r)

 p is called the selection predicate

 Defined as:
p(r) = {t | t  r and p(t)}

Where p is a formula in propositional calculus consisting of terms connected
by conjunctions:  (and),  (or),  (not)

formula := term
term <conjunction> term
(term)

term := expr
expr <op> expr
(expr)

expr := attribute
constant

<op> is one of: =, , >, , <, 

 Example of selection:

 dept_name=‘Physics’ (instructor)

©Silberschatz, Korth and Sudarshan6.6Database System Concepts - 6th Edition

Project Operation – Example

 Relation r:

 A,C (r)

©Silberschatz, Korth and Sudarshan6.7Database System Concepts - 6th Edition

Project Operation

 Notation:

where A1, A2 are attribute names and r is a relation name.

 The result is defined as the relation of k columns obtained by erasing

the columns that are not listed

 Duplicate rows removed from result, since relations are sets

 Example: instructor(ID, name, salary, dept_name)

To eliminate the dept_name attribute of instructor write:

ID, name, salary (instructor)

)(,,
2

,
1

r
k

AAA 

©Silberschatz, Korth and Sudarshan6.8Database System Concepts - 6th Edition

Union Operation – Example

 Relations r, s:

 r  s:

©Silberschatz, Korth and Sudarshan6.9Database System Concepts - 6th Edition

Union Operation

 Notation: r  s

 Defined as:

r  s = {t | t  r or t  s}

 For r  s to be valid.

1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible

(e.g.: 2nd column of r deals with the same type of values

as does the 2nd column of s)

 Example: to find all courses taught in the Fall 2009 semester, or in the

Spring 2010 semester, or in both

course_id ( semester=“Fall” Λ year=2009 (section)) 

course_id ( semester=“Spring” Λ year=2010 (section))

©Silberschatz, Korth and Sudarshan6.10Database System Concepts - 6th Edition

Set difference of two relations

 Relations r, s:

 r – s:

©Silberschatz, Korth and Sudarshan6.11Database System Concepts - 6th Edition

Set Difference Operation

 Notation r – s

 Defined as:

r – s = {t | t  r and t  s}

 Set differences must be taken between compatible relations.

 r and s must have the same arity

 attribute domains of r and s must be compatible

 Example: to find all courses taught in the Fall 2009 semester, but not in

the Spring 2010 semester

course_id ( semester=“Fall” Λ year=2009 (section)) −

course_id ( semester=“Spring” Λ year=2010 (section))

©Silberschatz, Korth and Sudarshan6.12Database System Concepts - 6th Edition

Cartesian-Product Operation – Example

 Relations r, s:

 r  s:

©Silberschatz, Korth and Sudarshan6.13Database System Concepts - 6th Edition

Cartesian-Product Operation

 Notation r  s

 Defined as:

r  s = {t q | t  r and q  s}

 Assume that attributes of r(R) and s(S) are disjoint.

 That is, R  S = .

 If attributes of r(R) and s(S) are not disjoint, then renaming must be

used.

©Silberschatz, Korth and Sudarshan6.14Database System Concepts - 6th Edition

Composition of Operations
 Can build expressions using multiple operations

 Example: A=C(r  s)

 r  s

 A=C(r  s)

©Silberschatz, Korth and Sudarshan6.15Database System Concepts - 6th Edition

Rename Operation

 Allows us to name, and therefore to refer to, the results of relational-

algebra expressions.

 Allows us to refer to a relation by more than one name.

 Example:

 x (E)

returns the expression E under the name X

 If a relational-algebra expression E has arity n, then

returns the result of expression E under the name X, and with the

attributes renamed to A1 , A2 , …., An .

)(),...,
2

,
1

(E
n

AAAx

©Silberschatz, Korth and Sudarshan6.16Database System Concepts - 6th Edition

Example Query

 Find the largest salary in the university

 Step 1: find instructor salaries that are less than some other

instructor salary (i.e. not maximum)

– using a copy of instructor under a new name d

 instructor.salary ( instructor.salary < d.salary

(instructor  d (instructor)))

 Step 2: Find the largest salary

 salary (instructor) –

instructor.salary ( instructor.salary < d.salary

(instructor  d (instructor)))

©Silberschatz, Korth and Sudarshan6.17Database System Concepts - 6th Edition

Example Queries

 Find the names of all instructors in the Physics department, along with the

course_id of all courses they have taught

 Query 1

instructor.name,course_id (dept_name=‘ Physics’ (

 instructor.ID=teaches.ID (instructor  teaches)))

 Query 2

instructor.name,course_id (instructor.ID=teaches.ID (

 dept_name=‘ Physics’ (instructor)  teaches))

©Silberschatz, Korth and Sudarshan6.18Database System Concepts - 6th Edition

Formal Definition

 A basic expression in the relational algebra consists of either one of the

following:

 A relation in the database

 A constant relation

 Let E1 and E2 be relational-algebra expressions; the following are all

relational-algebra expressions:

 E1  E2

 E1 – E2

 E1  E2

 p (E1), P is a predicate on attributes in E1

 s(E1), S is a list consisting of some of the attributes in E1

 x (E1), x is the new name for the result of E1

©Silberschatz, Korth and Sudarshan6.19Database System Concepts - 6th Edition

Additional Operations

We define additional operations that do not add any power to the

relational algebra, but that simplify common queries.

 Set intersection

 Natural join

 Outer join

 Assignment

©Silberschatz, Korth and Sudarshan6.20Database System Concepts - 6th Edition

Set-Intersection Operation

 Notation: r  s

 Defined as:

 r  s = { t | t  r and t  s }

 Assume:

 r, s have the same arity

 attributes of r and s are compatible

 Note: r  s = r – (r – s) = s – (s – r)

©Silberschatz, Korth and Sudarshan6.21Database System Concepts - 6th Edition

Set-Intersection Operation – Example

 Relation r, s:

 r  s

©Silberschatz, Korth and Sudarshan6.22Database System Concepts - 6th Edition

 Notation: r s

Natural-Join Operation

 Let r and s be relations on schemas R and S respectively.

Then, r s is a relation on schema R  S obtained as follows:

 Consider each pair of tuples tr from r and ts from s.

 If tr and ts have the same value on each of the attributes in R  S, add

a tuple t to the result, where

 t has the same value as tr on r

 t has the same value as ts on s

 Example:

r(R), where R = (A, B, C, D)

s(S), where S = (E, B, D)

 Result schema of r s is (A, B, C, D, E)

 r s is defined as:

r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r  s))

©Silberschatz, Korth and Sudarshan6.23Database System Concepts - 6th Edition

Natural Join Example

 Relations r, s:

 r s

©Silberschatz, Korth and Sudarshan6.24Database System Concepts - 6th Edition

Natural Join and Theta Join

 Find the names of all instructors in the Comp. Sci. department together with

the course titles of all the courses that the instructors teach

  name, title ( dept_name=‘Comp. Sci.’ (instructor teaches course))

 Natural join is associative

 (instructor teaches) course is equivalent to

instructor (teaches course)

 Natural join is commutative

 instructor teaches is equivalent to

teaches instructor

 The theta join operation r  s is defined as

 r  s =  (r  s)

©Silberschatz, Korth and Sudarshan6.25Database System Concepts - 6th Edition

Outer Join

 An extension of the join operation that avoids loss of information.

 Computes the join and then adds tuples form one relation that does not

match tuples in the other relation to the result of the join.

 Uses null values:

 null signifies that the value is unknown or does not exist

 All comparisons involving null are (roughly speaking) false by

definition.

 We shall study precise meaning of comparisons with nulls later

©Silberschatz, Korth and Sudarshan6.26Database System Concepts - 6th Edition

Outer Join – Example

 Relation instructor1

 Relation teaches1

ID course_id

10101

12121

76766

CS-101

FIN-201

BIO-101

Comp. Sci.

Finance

Music

ID dept_name

10101

12121

15151

name

Srinivasan

Wu

Mozart

©Silberschatz, Korth and Sudarshan6.27Database System Concepts - 6th Edition

 Left Outer Join

instructor teaches

Outer Join – Example

 Join

instructor teaches

ID dept_name

10101

12121

Comp. Sci.

Finance

course_id

CS-101

FIN-201

name

Srinivasan

Wu

ID dept_name

10101

12121

15151

Comp. Sci.

Finance

Music

course_id

CS-101

FIN-201

null

name

Srinivasan

Wu

Mozart

©Silberschatz, Korth and Sudarshan6.28Database System Concepts - 6th Edition

Outer Join – Example

 Full Outer Join

instructor teaches

 Right Outer Join

instructor teaches

ID dept_name

10101

12121

76766

Comp. Sci.

Finance

null

course_id

CS-101

FIN-201

BIO-101

name

Srinivasan

Wu

null

ID dept_name

10101

12121

15151

76766

Comp. Sci.

Finance

Music

null

course_id

CS-101

FIN-201

null

BIO-101

name

Srinivasan

Wu

Mozart

null

©Silberschatz, Korth and Sudarshan6.29Database System Concepts - 6th Edition

Outer Join using Joins

 Outer join can be expressed using basic operations

 e.g. r s can be written as

(r s) U (r – ∏R(r s))  {(null, …, null)}

©Silberschatz, Korth and Sudarshan6.30Database System Concepts - 6th Edition

Null Values

 It is possible for tuples to have a null value, denoted by null, for some

of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null.

 Aggregate functions simply ignore null values (as in SQL)

 For duplicate elimination and grouping, null is treated like any other

value, and two nulls are assumed to be the same (as in SQL)

©Silberschatz, Korth and Sudarshan6.31Database System Concepts - 6th Edition

Null Values

 Comparisons with null values return the special truth value: unknown

 If false was used instead of unknown, then not (A < 5)

would not be equivalent to A >= 5

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true,

(unknown or false) = unknown

(unknown or unknown) = unknown

 AND: (true and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 In SQL there is a special operator “is null”, so “P is null” evaluates

to true if predicate P evaluates to unknown

 Result of select predicate is treated as false if it evaluates to unknown

©Silberschatz, Korth and Sudarshan6.32Database System Concepts - 6th Edition

Extended Relational-Algebra-Operations

 Generalized Projection

 Aggregate Functions

©Silberschatz, Korth and Sudarshan6.33Database System Concepts - 6th Edition

Generalized Projection

 Extends the projection operation by allowing arithmetic functions to be

used in the projection list.

 E is any relational-algebra expression

 Each of F1, F2, …, Fn are are arithmetic expressions involving constants

and attributes in the schema of E.

 Given relation instructor(ID, name, dept_name, salary) where salary is

annual salary, get the same information but with monthly salary

ID, name, dept_name, salary/12 (instructor)

)(,...,,
21

E
nFFF

©Silberschatz, Korth and Sudarshan6.34Database System Concepts - 6th Edition

Aggregate Functions and Operations

 Aggregation function takes a collection of values and returns a single

value as a result.

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

 Aggregate operation in relational algebra

E is any relational-algebra expression

 G1, G2 …, Gn is a list of attributes on which to group (can be empty)

 Each Fi is an aggregate function

 Each Ai is an attribute name

 Note: Some books/articles use  instead of (Calligraphic G)

)()(,),(),(,,, 221121
E

mmn AFAFAFGGG 

©Silberschatz, Korth and Sudarshan6.35Database System Concepts - 6th Edition

Aggregate Operation – Example

 Relation r:

A B

















C

7

7

3

10

 sum(c) (r)
sum(c)

27

©Silberschatz, Korth and Sudarshan6.36Database System Concepts - 6th Edition

Aggregate Operation – Example

 Find the average salary in each department

dept_name avg(salary) (instructor)

avg

©Silberschatz, Korth and Sudarshan6.37Database System Concepts - 6th Edition

Aggregate Functions (Cont.)

 Result of aggregation does not have a name

 Can use rename operation to give it a name

 For convenience, we permit renaming as part of aggregate

operation

dept_name avg(salary) as avg_sal (instructor)

©Silberschatz, Korth and Sudarshan6.38Database System Concepts - 6th Edition

Modification of the Database

 The content of the database may be modified using the following

operations:

 Deletion

 Insertion

 Updating

 All these operations can be expressed using the assignment

operator ()

 Assignment operator r  E

 E is any relational algebra expression

 The schema of result of E must be the same as of r

 Principle:

 E is evaluated first

 The result replaces the whole content of r

©Silberschatz, Korth and Sudarshan6.39Database System Concepts - 6th Edition

Deletion

 A delete request is expressed similarly to a query, except

instead of displaying tuples to the user, the selected tuples are

removed from the database.

 Can delete only whole tuples; cannot delete values on only

particular attributes

 A deletion is expressed in relational algebra by:

r  r – E

where r is a relation and E is a relational algebra query.

 Example:

 Delete all account records in the Perryridge branch.

account  account – branch_name = “Perryridge” (account)

©Silberschatz, Korth and Sudarshan6.40Database System Concepts - 6th Edition

Insertion

 To insert data into a relation, we either:

 specify a tuple to be inserted

 write a query whose result is a set of tuples to be inserted

 in relational algebra, an insertion is expressed by:

r  r  E

where r is a relation and E is a relational algebra expression.

 The insertion of a single tuple is expressed by letting E be a constant

relation containing one tuple.

 Example:

 Insert information in the database specifying that Smith has $1200

in account A-973 at the Perryridge branch.

account  account  {(“A-973”, “Perryridge”, 1200)}

depositor  depositor  {(“Smith”, “A-973”)}

©Silberschatz, Korth and Sudarshan6.41Database System Concepts - 6th Edition

Updating

 A mechanism to change a value in a tuple without changing all values in

the tuple

 Use the generalized projection operator to do this task

 Each Fi is either

 the i th attribute of r, if the i th attribute is not updated, or,

 if the attribute is to be updated Fi is an expression, involving only

constants and the attributes of r, which gives the new value for the

attribute

 Example:

 Make interest payments by increasing all balances by 5 percent.

)(,,, 21
rr

lFFF 

account  account_number, branch_name, balance * 1.05 (account)

©Silberschatz, Korth and Sudarshan6.44Database System Concepts - 6th Edition

Multi-set Relational Algebra

 Pure relational algebra removes all duplicates

 e.g. after projection

 Multi-set relational algebra retains duplicates, to match SQL semantics

 SQL duplicate retention was initially for efficiency, but is now a

feature

 Multi-set relational algebra is defined as follows

 selection: has as many duplicates of a tuple as in the input, if the

tuple satisfies the selection

 projection: one tuple per input tuple, even if it is a duplicate

 cross product: If there are m copies of t1 in r, and n copies of t2

in s, there are m  n copies of t1.t2 in r  s

 Other operators similarly defined

 E.g. union: m + n copies, intersection: min(m, n) copies

difference: max(0, m – n) copies

©Silberschatz, Korth and Sudarshan6.45Database System Concepts - 6th Edition

Relational Algebra and SQL

 Assume the following expressions in multi-set relational algebra:

  A1, .., An ( P (r1  r2  …  rm))

is equivalent to the following expression in SQL

 select A1, A2, .. An

from r1, r2, …, rm

where P

 A1, A2 sum(A3) ( P (r1  r2  …  rm)))

is equivalent to the following expression in SQL

 select A1, A2, sum(A3)

from r1, r2, …, rm

where P

group by A1, A2

©Silberschatz, Korth and Sudarshan6.46Database System Concepts - 6th Edition

SQL and Relational Algebra

 More generally, the non-aggregated attributes in the select clause

may be a subset of the group by attributes, in which case the

equivalence is as follows:

select A1, sum(A3)

from r1, r2, …, rm

where P

group by A1, A2

is equivalent to the following expression in multiset relational algebra

 A1,sumA3(A1,A2 sum(A3) as sumA3( P (r1  r2  …  rm)))

©Silberschatz, Korth and Sudarshan6.47Database System Concepts - 6th Edition

Tuple Relational Calculus

©Silberschatz, Korth and Sudarshan6.48Database System Concepts - 6th Edition

Tuple Relational Calculus

 A nonprocedural query language, where each query is of the form

{t | P (t) }

 It is the set of all tuples t such that predicate P is true for t

 t is a tuple variable, t [A] denotes the value of tuple t on attribute A

 t  r denotes that tuple t is in relation r

 P is a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan6.49Database System Concepts - 6th Edition

Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators: (e.g., , , , , , )

3. Set of connectives: and (), or ()‚ not ()

4. Implication (): x  y, if x if true, then y is true

x  y x  y

5. Set of quantifiers:

  t  r (Q (t))  ”there exists” a tuple t in relation r

such that predicate Q (t) is true

 t r (Q (t)) Q is true “for all” tuples t in relation r

©Silberschatz, Korth and Sudarshan6.50Database System Concepts - 6th Edition

Example Queries

 Find the ID, name, dept_name, salary for instructors whose salary is

greater than $80,000

 As in the previous query, but output only the ID attribute value

{t |  s instructor (t [ID] = s [ID]  s [salary]  80000)}

Notice that a relation on schema (ID) is implicitly defined by

the query

{t | t  instructor  t [salary]  80000}

©Silberschatz, Korth and Sudarshan6.51Database System Concepts - 6th Edition

Example Queries

 Find the names of all instructors whose department is in the Watson

building

{t | s  section (t [course_id] = s [course_id] 

s [semester] = “Fall”  s [year] = 2009

 u  section (t [course_id] = u [course_id] 

u [semester] = “Spring”  u [year] = 2010)) }

 Find the set of all courses taught in the Fall 2009 semester, or in

the Spring 2010 semester, or both

{t | s  instructor (t [name] = s [name]

 u  department (u [dept_name] = s[dept_name] “

 u [building] = “Watson”))}

©Silberschatz, Korth and Sudarshan6.52Database System Concepts - 6th Edition

Safety of Expressions

 It is possible to write tuple calculus expressions that generate infinite

relations.

 For example, { t |  t r } results in an infinite relation if the domain of

any attribute of relation r is infinite

 To guard against the problem, we restrict the set of allowable

expressions to safe expressions.

 An expression {t | P (t)} in the tuple relational calculus is safe if every

component of t appears in one of the relations, tuples, or constants that

appear in P

 NOTE: this is more than just a syntax condition.

 E.g. { t | t [A] = 5  true } is not safe --- it defines an infinite set

with attribute values that do not appear in any relation or tuples

or constants in P.

©Silberschatz, Korth and Sudarshan6.53Database System Concepts - 6th Edition

Universal Quantification

 Find all students who have taken all courses offered in the

Biology department

 {t |  r  student (t [ID] = r [ID]) 

( u  course (u [dept_name]=“Biology” 

 s  takes (t [ID] = s [ID] 

s [course_id] = u [course_id])))) }

 Note that without the existential quantification on student,

the above query would be unsafe if the Biology department

has not offered any courses.

©Silberschatz, Korth and Sudarshan6.54Database System Concepts - 6th Edition

Domain Relational Calculus

©Silberschatz, Korth and Sudarshan6.55Database System Concepts - 6th Edition

Domain Relational Calculus

 A nonprocedural query language equivalent in power to the tuple

relational calculus

 Each query is an expression of the form:

{  x1, x2, …, xn  | P (x1, x2, …, xn)}

 x1, x2, …, xn represent domain variables

 P represents a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan6.56Database System Concepts - 6th Edition

Example Queries

 Find the ID, name, dept_name, salary for instructors whose salary is

greater than $80,000

 {< i, n, d, s> | < i, n, d, s>  instructor  s  80000}

 As in the previous query, but output only the ID attribute value

 {< i > |  n, d, s (< i, n, d, s>  instructor  s  80000) }

 Find the names of all instructors whose department is in the Watson

building

{< n > |  i, d, s (< i, n, d, s >  instructor

  b, a (< d, b, a>  department  b = “Watson”))}

©Silberschatz, Korth and Sudarshan6.57Database System Concepts - 6th Edition

Example Queries

{<c> |  a, s, y, b, r, t (<c, a, s, y, b, r, t >  section 

s = “Fall”  y = 2009)

  a, s, y, b, r, t (<c, a, s, y, b, r, t >  section] 
s = “Spring”  y = 2010)}

 Find the set of all courses taught in the Fall 2009 semester, or in

the Spring 2010 semester, or both

This case can also be written as

{<c> |  a, s, y, b, r, t (<c, a, s, y, b, r, t >  section 

((s = “Fall”  y = 2009)  (s = “Spring”  y = 2010))) }

 Find the set of all courses taught in the Fall 2009 semester, and in

the Spring 2010 semester

{<c> |  a, s, y, b, r, t (<c, a, s, y, b, r, t >  section 

s = “Fall”  y = 2009)

  a, s, y, b, r, t (<c, a, s, y, b, r, t >  section] 

s = “Spring”  y = 2010) }

©Silberschatz, Korth and Sudarshan6.58Database System Concepts - 6th Edition

Safety of Expressions

The expression:

{  x1, x2, …, xn  | P (x1, x2, …, xn)}

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values

from dom (P) (that is, the values appear either in P or in a tuple of a

relation mentioned in P).

2. For every “there exists” subformula of the form  x (P1(x)), the

subformula is true if and only if there is a value of x in dom (P1)

such that P1(x) is true.

3. For every “for all” subformula of the form x (P1 (x)), the subformula is

true if and only if P1(x) is true for all values x from dom (P1).

©Silberschatz, Korth and Sudarshan6.59Database System Concepts - 6th Edition

Universal Quantification

 Find all students who have taken all courses offered in the Biology

department

 {< i > |  n, d, tc (< i, n, d, tc >  student 

( ci, ti, dn, cr (< ci, ti, dn, cr >  course  dn =“Biology”

  si, se, y, g (<i, ci, si, se, y, g>  takes))))

}

 Note that without the existential quantification on student, the

above query would be unsafe if the Biology department has not

offered any courses.

* Above query fixes bug in page 246, last query

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 6

http://www.db-book.com/

