
PV021: Neural networks

Tomáš Brázdil

1

Course organization

Course materials:

I Main: The lecture

I Neural Networks and Deep Learning by Michael Nielsen
http://neuralnetworksanddeeplearning.com/

(Extremely well written modern online textbook.)

I Deep learning by Ian Goodfellow, Yoshua Bengio and Aaron
Courville
http://www.deeplearningbook.org/

(A very good overview of the state-of-the-art in neural networks.)

2

http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/

Course organization

Evaluation:

I Project

I teams of two students
I implementation of a selected model + analysis of given data
I implementation either in C, C++, or in Java without use of

any specialized libraries for data analysis and machine
learning

I need to get over a given accuracy threshold (a gentle one,
just to eliminate non-functional implementations)

I Oral exam

I I may ask about anything from the lecture including some
proofs that occur only on the whiteboard!

I Application of any deep learning toolset on given (difficult) data.
We prefer TensorFlow but you may use another library (CNTK,
Caffe, DeepLearning4j, ...) The goal is to get the best results on
increasingly more difficult datasets.

3

Course organization

Evaluation:

I Project

I teams of two students
I implementation of a selected model + analysis of given data
I implementation either in C, C++, or in Java without use of

any specialized libraries for data analysis and machine
learning

I need to get over a given accuracy threshold (a gentle one,
just to eliminate non-functional implementations)

I Oral exam

I I may ask about anything from the lecture including some
proofs that occur only on the whiteboard!

I Application of any deep learning toolset on given (difficult) data.
We prefer TensorFlow but you may use another library (CNTK,
Caffe, DeepLearning4j, ...) The goal is to get the best results on
increasingly more difficult datasets.

3

Course organization

Evaluation:

I Project

I teams of two students
I implementation of a selected model + analysis of given data
I implementation either in C, C++, or in Java without use of

any specialized libraries for data analysis and machine
learning

I need to get over a given accuracy threshold (a gentle one,
just to eliminate non-functional implementations)

I Oral exam

I I may ask about anything from the lecture including some
proofs that occur only on the whiteboard!

I Application of any deep learning toolset on given (difficult) data.
We prefer TensorFlow but you may use another library (CNTK,
Caffe, DeepLearning4j, ...) The goal is to get the best results on
increasingly more difficult datasets.

3

FAQ

Q: Why English?

A: Couple of reasons. First, all resources about modern neural nets
are in English, it is rather cumbersome to translate everything to
Czech (combination of Czech and English is ugly). Second, to
attract non-Czech speaking students to the course.

Q: Why we cannot use specialized libraries in projects?

A: In order to "touch" the low level implementation details of the
algorithms. You should not even use libraries for linear algebra
and numerical methods, so that you will be confronted with
rounding errors and numerical instabilities.

4

FAQ

Q: Why English?

A: Couple of reasons. First, all resources about modern neural nets
are in English, it is rather cumbersome to translate everything to
Czech (combination of Czech and English is ugly). Second, to
attract non-Czech speaking students to the course.

Q: Why we cannot use specialized libraries in projects?

A: In order to "touch" the low level implementation details of the
algorithms. You should not even use libraries for linear algebra
and numerical methods, so that you will be confronted with
rounding errors and numerical instabilities.

4

FAQ

Q: Why English?

A: Couple of reasons. First, all resources about modern neural nets
are in English, it is rather cumbersome to translate everything to
Czech (combination of Czech and English is ugly). Second, to
attract non-Czech speaking students to the course.

Q: Why we cannot use specialized libraries in projects?

A: In order to "touch" the low level implementation details of the
algorithms. You should not even use libraries for linear algebra
and numerical methods, so that you will be confronted with
rounding errors and numerical instabilities.

4

FAQ

Q: Why English?

A: Couple of reasons. First, all resources about modern neural nets
are in English, it is rather cumbersome to translate everything to
Czech (combination of Czech and English is ugly). Second, to
attract non-Czech speaking students to the course.

Q: Why we cannot use specialized libraries in projects?

A: In order to "touch" the low level implementation details of the
algorithms. You should not even use libraries for linear algebra
and numerical methods, so that you will be confronted with
rounding errors and numerical instabilities.

4

Machine learning in general

I Machine learning = construction of systems that may learn their
functionality from data
(... and thus do not need to be programmed.)

I spam filter
I learns to recognize spam from a database of "labelled"

emails
I consequently is able to distinguish spam from ham

I handwritten text reader
I learns from a database of handwritten

letters (or text) labelled by their correct
meaning

I consequently is able to recognize text
I · · ·
I and lots of much much more sophisticated applications ...

I Basic attributes of learning algorithms:
I representation: ability to capture the inner structure of

training data
I generalization: ability to work properly on new data

5

Machine learning in general

I Machine learning = construction of systems that may learn their
functionality from data
(... and thus do not need to be programmed.)
I spam filter

I learns to recognize spam from a database of "labelled"
emails

I consequently is able to distinguish spam from ham

I handwritten text reader
I learns from a database of handwritten

letters (or text) labelled by their correct
meaning

I consequently is able to recognize text
I · · ·
I and lots of much much more sophisticated applications ...

I Basic attributes of learning algorithms:
I representation: ability to capture the inner structure of

training data
I generalization: ability to work properly on new data

5

Machine learning in general

I Machine learning = construction of systems that may learn their
functionality from data
(... and thus do not need to be programmed.)
I spam filter

I learns to recognize spam from a database of "labelled"
emails

I consequently is able to distinguish spam from ham
I handwritten text reader

I learns from a database of handwritten
letters (or text) labelled by their correct
meaning

I consequently is able to recognize text

I · · ·
I and lots of much much more sophisticated applications ...

I Basic attributes of learning algorithms:
I representation: ability to capture the inner structure of

training data
I generalization: ability to work properly on new data

5

Machine learning in general

I Machine learning = construction of systems that may learn their
functionality from data
(... and thus do not need to be programmed.)
I spam filter

I learns to recognize spam from a database of "labelled"
emails

I consequently is able to distinguish spam from ham
I handwritten text reader

I learns from a database of handwritten
letters (or text) labelled by their correct
meaning

I consequently is able to recognize text
I · · ·
I and lots of much much more sophisticated applications ...

I Basic attributes of learning algorithms:
I representation: ability to capture the inner structure of

training data
I generalization: ability to work properly on new data

5

Machine learning in general

I Machine learning = construction of systems that may learn their
functionality from data
(... and thus do not need to be programmed.)
I spam filter

I learns to recognize spam from a database of "labelled"
emails

I consequently is able to distinguish spam from ham
I handwritten text reader

I learns from a database of handwritten
letters (or text) labelled by their correct
meaning

I consequently is able to recognize text
I · · ·
I and lots of much much more sophisticated applications ...

I Basic attributes of learning algorithms:
I representation: ability to capture the inner structure of

training data
I generalization: ability to work properly on new data

5

Machine learning in general

Machine learning algorithms typically construct mathematical
models of given data. The models may be subsequently
applied to fresh data.

There are many types of models:

I decision trees
I support vector machines
I hidden Markov models
I Bayes networks and other graphical models
I neural networks
I · · ·

Neural networks, based on models of a (human) brain, form
a natural basis for learning algorithms!

6

Machine learning in general

Machine learning algorithms typically construct mathematical
models of given data. The models may be subsequently
applied to fresh data.

There are many types of models:

I decision trees
I support vector machines
I hidden Markov models
I Bayes networks and other graphical models
I neural networks
I · · ·

Neural networks, based on models of a (human) brain, form
a natural basis for learning algorithms!

6

Artificial neural networks

I Artificial neuron is a rough mathematical approximation
of a biological neuron.

I (Aritificial) neural network (NN) consists of a number of
interconnected artificial neurons. "Behavior" of the network
is encoded in connections between neurons.

σ
ξ

x1 x2 xn

y

Zdroj obrázku: http://tulane.edu/sse/cmb/people/schrader/ 7

http://tulane.edu/sse/cmb/people/schrader/

Why artificial neural networks?

Modelling of biological neural networks (computational
neuroscience).
I simplified mathematical models help to identify important

mechanisms
I How a brain receives information?
I How the information is stored?
I How a brain develops?
I · · ·

I neuroscience is strongly multidisciplinary; precise
mathematical descriptions help in communication among
experts and in design of new experiments.

I will not spend much time on this area!

8

Why artificial neural networks?

Modelling of biological neural networks (computational
neuroscience).
I simplified mathematical models help to identify important

mechanisms
I How a brain receives information?
I How the information is stored?
I How a brain develops?
I · · ·

I neuroscience is strongly multidisciplinary; precise
mathematical descriptions help in communication among
experts and in design of new experiments.

I will not spend much time on this area!

8

Why artificial neural networks?

Neural networks in machine learning.

I Typically primitive models, far from their biological
counterparts (but often inspired by biology).

I Strongly oriented towards concrete application domains:
I decision making and control - autonomous vehicles,

manufacturing processes, control of natural resources
I games - backgammon, poker, GO
I finance - stock prices, risk analysis
I medicine - diagnosis, signal processing (EKG, EEG, ...), image

processing (MRI, roentgen, ...)
I text and speech processing - automatic translation, text

generation, speech recognition
I other signal processing - filtering, radar tracking, noise

reduction
I · · ·

I will concentrate on this area!

9

Why artificial neural networks?

Neural networks in machine learning.

I Typically primitive models, far from their biological
counterparts (but often inspired by biology).

I Strongly oriented towards concrete application domains:
I decision making and control - autonomous vehicles,

manufacturing processes, control of natural resources
I games - backgammon, poker, GO
I finance - stock prices, risk analysis
I medicine - diagnosis, signal processing (EKG, EEG, ...), image

processing (MRI, roentgen, ...)
I text and speech processing - automatic translation, text

generation, speech recognition
I other signal processing - filtering, radar tracking, noise

reduction
I · · ·

I will concentrate on this area!
9

Important features of neural networks

I Massive parallelism
I many slow (and "dumb") computational elements work in

parallel on several levels of abstraction

I Learning
I a kid learns to recognize a rabbit after seeing several

rabbits
I Generalization
I a kid is able to recognize a new rabbit after seeing several

(old) rabbits
I Robustness
I a blurred photo of a rabbit may still be classified as a

picture of a rabbit
I Graceful degradation
I Experiments have shown that damaged neural network is

still able to work quite well
I Damaged network may re-adapt, remaining neurons may

take on functionality of the damaged ones

10

Important features of neural networks

I Massive parallelism
I many slow (and "dumb") computational elements work in

parallel on several levels of abstraction
I Learning
I a kid learns to recognize a rabbit after seeing several

rabbits

I Generalization
I a kid is able to recognize a new rabbit after seeing several

(old) rabbits
I Robustness
I a blurred photo of a rabbit may still be classified as a

picture of a rabbit
I Graceful degradation
I Experiments have shown that damaged neural network is

still able to work quite well
I Damaged network may re-adapt, remaining neurons may

take on functionality of the damaged ones

10

Important features of neural networks

I Massive parallelism
I many slow (and "dumb") computational elements work in

parallel on several levels of abstraction
I Learning
I a kid learns to recognize a rabbit after seeing several

rabbits
I Generalization
I a kid is able to recognize a new rabbit after seeing several

(old) rabbits

I Robustness
I a blurred photo of a rabbit may still be classified as a

picture of a rabbit
I Graceful degradation
I Experiments have shown that damaged neural network is

still able to work quite well
I Damaged network may re-adapt, remaining neurons may

take on functionality of the damaged ones

10

Important features of neural networks

I Massive parallelism
I many slow (and "dumb") computational elements work in

parallel on several levels of abstraction
I Learning
I a kid learns to recognize a rabbit after seeing several

rabbits
I Generalization
I a kid is able to recognize a new rabbit after seeing several

(old) rabbits
I Robustness
I a blurred photo of a rabbit may still be classified as a

picture of a rabbit

I Graceful degradation
I Experiments have shown that damaged neural network is

still able to work quite well
I Damaged network may re-adapt, remaining neurons may

take on functionality of the damaged ones

10

Important features of neural networks

I Massive parallelism
I many slow (and "dumb") computational elements work in

parallel on several levels of abstraction
I Learning
I a kid learns to recognize a rabbit after seeing several

rabbits
I Generalization
I a kid is able to recognize a new rabbit after seeing several

(old) rabbits
I Robustness
I a blurred photo of a rabbit may still be classified as a

picture of a rabbit
I Graceful degradation
I Experiments have shown that damaged neural network is

still able to work quite well
I Damaged network may re-adapt, remaining neurons may

take on functionality of the damaged ones

10

The aim of the course

I We will concentrate on
I basic techniques and principles of neural networks,
I fundamental models of neural networks and their

applications.
I You should learn
I basic models

(multilayer perceptron, convolutional networks, recurent network
(LSTM), Hopfield and Boltzmann machines and their use in
pre-training of deep nets)

I Standard applications of these models
(image processing, speech and text processing)

I Basic learning algorithms
(gradient descent & backpropagation, Hebb’s rule)

I Basic practical training techniques
(data preparation, setting various parameters, control of learning)

I Basic information about current implementations
(TensorFlow, Keras)

11

The aim of the course

I We will concentrate on
I basic techniques and principles of neural networks,
I fundamental models of neural networks and their

applications.
I You should learn
I basic models

(multilayer perceptron, convolutional networks, recurent network
(LSTM), Hopfield and Boltzmann machines and their use in
pre-training of deep nets)

I Standard applications of these models
(image processing, speech and text processing)

I Basic learning algorithms
(gradient descent & backpropagation, Hebb’s rule)

I Basic practical training techniques
(data preparation, setting various parameters, control of learning)

I Basic information about current implementations
(TensorFlow, Keras)

11

The aim of the course

I We will concentrate on
I basic techniques and principles of neural networks,
I fundamental models of neural networks and their

applications.
I You should learn
I basic models

(multilayer perceptron, convolutional networks, recurent network
(LSTM), Hopfield and Boltzmann machines and their use in
pre-training of deep nets)

I Standard applications of these models
(image processing, speech and text processing)

I Basic learning algorithms
(gradient descent & backpropagation, Hebb’s rule)

I Basic practical training techniques
(data preparation, setting various parameters, control of learning)

I Basic information about current implementations
(TensorFlow, Keras)

11

The aim of the course

I We will concentrate on
I basic techniques and principles of neural networks,
I fundamental models of neural networks and their

applications.
I You should learn
I basic models

(multilayer perceptron, convolutional networks, recurent network
(LSTM), Hopfield and Boltzmann machines and their use in
pre-training of deep nets)

I Standard applications of these models
(image processing, speech and text processing)

I Basic learning algorithms
(gradient descent & backpropagation, Hebb’s rule)

I Basic practical training techniques
(data preparation, setting various parameters, control of learning)

I Basic information about current implementations
(TensorFlow, Keras)

11

The aim of the course

I We will concentrate on
I basic techniques and principles of neural networks,
I fundamental models of neural networks and their

applications.
I You should learn
I basic models

(multilayer perceptron, convolutional networks, recurent network
(LSTM), Hopfield and Boltzmann machines and their use in
pre-training of deep nets)

I Standard applications of these models
(image processing, speech and text processing)

I Basic learning algorithms
(gradient descent & backpropagation, Hebb’s rule)

I Basic practical training techniques
(data preparation, setting various parameters, control of learning)

I Basic information about current implementations
(TensorFlow, Keras)

11

Biological neural network

I Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

I Each neuron is connected with approx. 104 neurons.
I Neurons themselves are very complex systems.

Rough description of nervous system:
I External stimulus is received by sensory receptors (e.g.

eye cells).
I Information is futher transfered via peripheral nervous

system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

I Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).

12

Biological neural network

I Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

I Each neuron is connected with approx. 104 neurons.
I Neurons themselves are very complex systems.

Rough description of nervous system:
I External stimulus is received by sensory receptors (e.g.

eye cells).

I Information is futher transfered via peripheral nervous
system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

I Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).

12

Biological neural network

I Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

I Each neuron is connected with approx. 104 neurons.
I Neurons themselves are very complex systems.

Rough description of nervous system:
I External stimulus is received by sensory receptors (e.g.

eye cells).
I Information is futher transfered via peripheral nervous

system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

I Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).

12

Biological neural network

I Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

I Each neuron is connected with approx. 104 neurons.
I Neurons themselves are very complex systems.

Rough description of nervous system:
I External stimulus is received by sensory receptors (e.g.

eye cells).
I Information is futher transfered via peripheral nervous

system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

I Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).

12

Biological neural network

Zdroj: N. Campbell and J. Reece; Biology, 7th Edition; ISBN: 080537146X 13

Summation

14

Biological and Mathematical neurons

15

Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

I x1, . . . , xn ∈ R are inputs

I w1, . . . ,wn ∈ R are weights
I ξ is an inner potential;

almost always ξ =
∑n

i=1 wixi

I y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.

16

Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

I x1, . . . , xn ∈ R are inputs
I w1, . . . ,wn ∈ R are weights

I ξ is an inner potential;
almost always ξ =

∑n
i=1 wixi

I y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.

16

Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

I x1, . . . , xn ∈ R are inputs
I w1, . . . ,wn ∈ R are weights
I ξ is an inner potential;

almost always ξ =
∑n

i=1 wixi

I y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.

16

Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

I x1, . . . , xn ∈ R are inputs
I w1, . . . ,wn ∈ R are weights
I ξ is an inner potential;

almost always ξ =
∑n

i=1 wixi

I y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.

16

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

I x0 = 1, x1, . . . , xn ∈ R are inputs

I w0,w1, . . . ,wn ∈ R are weights
I ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

I y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)

17

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

I x0 = 1, x1, . . . , xn ∈ R are inputs
I w0,w1, . . . ,wn ∈ R are weights

I ξ is an inner potential;
almost always ξ = w0 +

∑n
i=1 wixi

I y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)

17

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

I x0 = 1, x1, . . . , xn ∈ R are inputs
I w0,w1, . . . ,wn ∈ R are weights
I ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

I y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)

17

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

I x0 = 1, x1, . . . , xn ∈ R are inputs
I w0,w1, . . . ,wn ∈ R are weights
I ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

I y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)

17

Neuron and linear separation

ξ = 0

ξ > 0

ξ > 0

ξ < 0

ξ < 0

I inner potential

ξ = w0 +

n∑
i=1

wixi

determines a separation
hyperplane in
the n-dimensional input space
I in 2d line
I in 3d plane
I · · ·

18

Neuron and linear separation

σ σ(
∑

wixi)

x1 xn

· · ·

1/0 by A/B

w1 wn

n = 8 · 8, i.e. the number of pixels in the images. Inputs are
binary vectors of dimension n (black pixel ≈ 1, white pixel ≈ 0).

19

Neuron and linear separation

σ

x1 xn

· · ·

x0 = 1

1/0 pro A/B

w1 wn

w0

n = 8 · 8, i.e. the number of pixels in the images. Inputs are
binary vectors of dimension n (black pixel ≈ 1, white pixel ≈ 0).

20

Neuron and linear separation

w̄0 +
∑n

i=1 w̄ixi = 0
w0 +

∑n
i=1 wixi = 0

A

A

A A

B

B

B

I Red line classifies incorrectly
I Green line classifies correctly

(may be a result of
a correction by a learning
algorithm)

21

Neuron and linear separation (XOR)

0
(0,0)

1

(0,1)

1
(0,1)

0

(1,1)

x1

x2

I No line separates ones from
zeros.

22

Neural networks

Neural network consists of formal neurons interconnected in
such a way that the output of one neuron is an input of several
other neurons.

In order to describe a particular type of neural networks we
need to specify:
I Architecture

How the neurons are connected.

I Activity
How the network transforms inputs to outputs.

I Learning
How the weights are changed during training.

23

Architecture

Network architecture is given as a digraph whose nodes are
neurons and edges are connections.

We distinguish several categories of
neurons:
I Output neurons
I Hidden neurons
I Input neurons

(In general, a neuron may be both input and
output; a neuron is hidden if it is neither input,
nor output.)

24

Architecture – Cycles

I A network is cyclic (recurrent) if its architecture contains a
directed cycle.

I Otherwise it is acyclic (feed-forward)

25

Architecture – Cycles

I A network is cyclic (recurrent) if its architecture contains a
directed cycle.

I Otherwise it is acyclic (feed-forward)

25

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
I Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

I layers numbered from 0; the
input layer has number 0
I E.g. three-layer network has

two hidden layers and one
output layer

I Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

I Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

26

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
I Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

I layers numbered from 0; the
input layer has number 0
I E.g. three-layer network has

two hidden layers and one
output layer

I Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

I Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

26

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
I Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

I layers numbered from 0; the
input layer has number 0
I E.g. three-layer network has

two hidden layers and one
output layer

I Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

I Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

26

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
I Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

I layers numbered from 0; the
input layer has number 0
I E.g. three-layer network has

two hidden layers and one
output layer

I Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

I Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

26

Activity

Consider a network with n neurons, k input and ` output.

I State of a network is a vector of output values of all
neurons.
(States of a network with n neurons are vectors of Rn)

I State-space of a network is a set of all states.

I Network input is a vector of k real numbers, i.e.
an element of Rk .

I Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk)

I Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.

27

Activity

Consider a network with n neurons, k input and ` output.
I State of a network is a vector of output values of all

neurons.
(States of a network with n neurons are vectors of Rn)

I State-space of a network is a set of all states.

I Network input is a vector of k real numbers, i.e.
an element of Rk .

I Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk)

I Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.

27

Activity

Consider a network with n neurons, k input and ` output.
I State of a network is a vector of output values of all

neurons.
(States of a network with n neurons are vectors of Rn)

I State-space of a network is a set of all states.

I Network input is a vector of k real numbers, i.e.
an element of Rk .

I Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk)

I Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.

27

Activity

Consider a network with n neurons, k input and ` output.
I State of a network is a vector of output values of all

neurons.
(States of a network with n neurons are vectors of Rn)

I State-space of a network is a set of all states.

I Network input is a vector of k real numbers, i.e.
an element of Rk .

I Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk)

I Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.
27

Activity – computation of a network

I Computation (typically) proceeds in discrete steps.

In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input ~x if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on ~x.

I Network output is a vector of values of all output neurons
in the network (i.e. an element of R`).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

28

Activity – computation of a network

I Computation (typically) proceeds in discrete steps.
In every step the following happens:

1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input ~x if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on ~x.

I Network output is a vector of values of all output neurons
in the network (i.e. an element of R`).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

28

Activity – computation of a network

I Computation (typically) proceeds in discrete steps.
In every step the following happens:

1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input ~x if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on ~x.

I Network output is a vector of values of all output neurons
in the network (i.e. an element of R`).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

28

Activity – computation of a network

I Computation (typically) proceeds in discrete steps.
In every step the following happens:

1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input ~x if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on ~x.

I Network output is a vector of values of all output neurons
in the network (i.e. an element of R`).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

28

Activity – computation of a network

I Computation (typically) proceeds in discrete steps.
In every step the following happens:

1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input ~x if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on ~x.

I Network output is a vector of values of all output neurons
in the network (i.e. an element of R`).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

28

Activity – computation of a network

I Computation (typically) proceeds in discrete steps.
In every step the following happens:

1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input ~x if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on ~x.

I Network output is a vector of values of all output neurons
in the network (i.e. an element of R`).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.
28

Activity – semantics of a network

Definition
Consider a network with n neurons, k input, ` output.
Let A ⊆ Rk and B ⊆ R`. Suppose that the network stops on
every input of A.
Then we say that the network computes a function F : A → B if
for every network input ~x the vector F(~x) ∈ B is the output of
the network after the computation on ~x stops.

Example 1

This network computes a function
from R2 to R.

29

Activity – semantics of a network

Definition
Consider a network with n neurons, k input, ` output.
Let A ⊆ Rk and B ⊆ R`. Suppose that the network stops on
every input of A.
Then we say that the network computes a function F : A → B if
for every network input ~x the vector F(~x) ∈ B is the output of
the network after the computation on ~x stops.

Example 1

This network computes a function
from R2 to R.

29

Activity – semantics of a network

Definition
Consider a network with n neurons, k input, ` output.
Let A ⊆ Rk and B ⊆ R`. Suppose that the network stops on
every input of A.
Then we say that the network computes a function F : A → B if
for every network input ~x the vector F(~x) ∈ B is the output of
the network after the computation on ~x stops.

Example 1

This network computes a function
from R2 to R.

29

Activity – inner potential and activation functions

In order to specify activity of the network, we need to specify
how the inner potentials ξ are computed and what are
the activation functions σ.

We assume (unless otherwise specified) that

ξ = w0 +

n∑
i=1

wi · xi

here ~x = (x1, . . . , xn) are inputs of the neuron and
~w = (w1, . . . ,wn) are weights.

There are special types of neural network where the inner
potential is computed differently, e.g. as a "distance" of an input
from the weight vector:

ξ =
∣∣∣∣∣∣~x − ~w ∣∣∣∣∣∣

here ||·|| is a vector norm, typically Euclidean.

30

Activity – inner potential and activation functions

In order to specify activity of the network, we need to specify
how the inner potentials ξ are computed and what are
the activation functions σ.

We assume (unless otherwise specified) that

ξ = w0 +

n∑
i=1

wi · xi

here ~x = (x1, . . . , xn) are inputs of the neuron and
~w = (w1, . . . ,wn) are weights.

There are special types of neural network where the inner
potential is computed differently, e.g. as a "distance" of an input
from the weight vector:

ξ =
∣∣∣∣∣∣~x − ~w ∣∣∣∣∣∣

here ||·|| is a vector norm, typically Euclidean.

30

Activity – inner potential and activation functions

In order to specify activity of the network, we need to specify
how the inner potentials ξ are computed and what are
the activation functions σ.

We assume (unless otherwise specified) that

ξ = w0 +

n∑
i=1

wi · xi

here ~x = (x1, . . . , xn) are inputs of the neuron and
~w = (w1, . . . ,wn) are weights.

There are special types of neural network where the inner
potential is computed differently, e.g. as a "distance" of an input
from the weight vector:

ξ =
∣∣∣∣∣∣~x − ~w ∣∣∣∣∣∣

here ||·|| is a vector norm, typically Euclidean.
30

Activity – inner potential and activation functions

There are many activation functions, typical examples:
I Unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

I (Logistic) sigmoid

σ(ξ) =
1

1 + e−λ·ξ
here λ ∈ R is a steepness parameter.

I Hyperbolic tangens

σ(ξ) =
1 − e−ξ

1 + e−ξ

31

Activity – inner potential and activation functions

There are many activation functions, typical examples:
I Unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

I (Logistic) sigmoid

σ(ξ) =
1

1 + e−λ·ξ
here λ ∈ R is a steepness parameter.

I Hyperbolic tangens

σ(ξ) =
1 − e−ξ

1 + e−ξ

31

Activity – XOR

1 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

I The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

32

Activity – XOR

1 1

σ 11 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

I The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

32

Activity – XOR

0 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

I The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

32

Activity – XOR

0 0

σ 01 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

I The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

32

Activity – XOR

1 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

I The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

32

Activity – XOR

1 0

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

I The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

32

Activity – XOR

1 0

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

I Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

I The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

32

Activity – XOR

0 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

I The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

32

Activity – XOR

0 1

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

I The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

32

Activity – XOR

0 1

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

I Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

I The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

32

Activity – MLP and linear separation

0
(0,0)

1

(0,1)

1
(0,1)

0

(1,1)

P1 P2

x1

x2

σ1 σ 1

σ1

−22 2 −2

1

−1

1

3

−2

I The line P1 is given by
−1 + 2x1 + 2x2 = 0

I The line P2 is given by
3 − 2x1 − 2x2 = 0

33

Activity – example

x1
1

σ

0
1

σ0 1

σ

0
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

34

Activity – example

x1
1

σ

1
1

σ0 1

σ

0
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

34

Activity – example

x1
1

σ

1
1

σ1 1

σ

0
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

34

Activity – example

x1
1

σ

1
1

σ1 1

σ

1
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

34

Activity – example

x1
1

σ

0
1

σ1 1

σ

1
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

34

Learning

Consider a network with n neurons, k input and ` output.

I Configuration of a network is a vector of all values of
weights.
(Configurations of a network with m connections are elements of Rm)

I Weight-space of a network is a set of all configurations.

I initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

35

Learning

Consider a network with n neurons, k input and ` output.
I Configuration of a network is a vector of all values of

weights.
(Configurations of a network with m connections are elements of Rm)

I Weight-space of a network is a set of all configurations.

I initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

35

Learning

Consider a network with n neurons, k input and ` output.
I Configuration of a network is a vector of all values of

weights.
(Configurations of a network with m connections are elements of Rm)

I Weight-space of a network is a set of all configurations.

I initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

35

Learning algorithms

Learning rule for weight adaptation.
(the goal is to find a configuration in which the network computes
a desired function)

I Supervised learning
I The desired function is described using training examples

that are pairs of the form (input, output).
I Learning algorithm searches for a configuration which

"corresponds" to the training examples, typically by
minimizing an error function.

I Unsupervised learning
I The training set contains only inputs.
I The goal is to determine distribution of the inputs

(clustering, deep belief networks, etc.)

36

Learning algorithms

Learning rule for weight adaptation.
(the goal is to find a configuration in which the network computes
a desired function)

I Supervised learning
I The desired function is described using training examples

that are pairs of the form (input, output).
I Learning algorithm searches for a configuration which

"corresponds" to the training examples, typically by
minimizing an error function.

I Unsupervised learning
I The training set contains only inputs.
I The goal is to determine distribution of the inputs

(clustering, deep belief networks, etc.)

36

Learning algorithms

Learning rule for weight adaptation.
(the goal is to find a configuration in which the network computes
a desired function)

I Supervised learning
I The desired function is described using training examples

that are pairs of the form (input, output).
I Learning algorithm searches for a configuration which

"corresponds" to the training examples, typically by
minimizing an error function.

I Unsupervised learning
I The training set contains only inputs.
I The goal is to determine distribution of the inputs

(clustering, deep belief networks, etc.)

36

Supervised learning – illustration

A

A

A A

B

B

B

I classification in the plane using
a single neuron

I training examples are of the form
(point, value) where the value is
either 1, or 0 depending on whether
the point is either A , or B

I the algorithm considers examples
one after another

I whenever an incorrectly classified
point is considered, the learning
algorithm turns the line in
the direction of the point

37

Supervised learning – illustration

A

A

A A

B

B

B

I classification in the plane using
a single neuron

I training examples are of the form
(point, value) where the value is
either 1, or 0 depending on whether
the point is either A , or B

I the algorithm considers examples
one after another

I whenever an incorrectly classified
point is considered, the learning
algorithm turns the line in
the direction of the point

37

Supervised learning – illustration

A

A

A A

B

B

B

I classification in the plane using
a single neuron

I training examples are of the form
(point, value) where the value is
either 1, or 0 depending on whether
the point is either A , or B

I the algorithm considers examples
one after another

I whenever an incorrectly classified
point is considered, the learning
algorithm turns the line in
the direction of the point

37

Summary – Advantages of neural networks

I Massive parallelism
I neurons can be evaluated in parallel

I Learning
I many sophisticated learning algorithms used to "program"

neural networks
I generalization and robustness
I information is encoded in a distributed manned in weights
I "close" inputs typicaly get similar values

I Graceful degradation
I damage typically causes only a decrease in precision of

results

38

Summary – Advantages of neural networks

I Massive parallelism
I neurons can be evaluated in parallel

I Learning
I many sophisticated learning algorithms used to "program"

neural networks

I generalization and robustness
I information is encoded in a distributed manned in weights
I "close" inputs typicaly get similar values

I Graceful degradation
I damage typically causes only a decrease in precision of

results

38

Summary – Advantages of neural networks

I Massive parallelism
I neurons can be evaluated in parallel

I Learning
I many sophisticated learning algorithms used to "program"

neural networks
I generalization and robustness
I information is encoded in a distributed manned in weights
I "close" inputs typicaly get similar values

I Graceful degradation
I damage typically causes only a decrease in precision of

results

38

Summary – Advantages of neural networks

I Massive parallelism
I neurons can be evaluated in parallel

I Learning
I many sophisticated learning algorithms used to "program"

neural networks
I generalization and robustness
I information is encoded in a distributed manned in weights
I "close" inputs typicaly get similar values

I Graceful degradation
I damage typically causes only a decrease in precision of

results

38

Expressive power of neural networks

39

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

I x0 = 1, x1, . . . , xn ∈ R are inputs
I w0,w1, . . . ,wn ∈ R are weights
I ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

I y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

40

Boolean functions

Activation function: unit step function σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

σ

x1 x2 xn

x0 = 1

y = AND(x1, . . . , xn)

1 1
· · ·

1

−n
σ

x1 x2 xn

x0 = 1

y = OR(x1, . . . , xn)

1 1
· · ·

1

−1

σ

x1

x0 = 1

y = NOT(x1)

−1

0

41

Boolean functions

Activation function: unit step function σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

σ

x1 x2 xn

x0 = 1

y = AND(x1, . . . , xn)

1 1
· · ·

1

−n
σ

x1 x2 xn

x0 = 1

y = OR(x1, . . . , xn)

1 1
· · ·

1

−1

σ

x1

x0 = 1

y = NOT(x1)

−1

0

41

Boolean functions
Theorem
Let σ be the unit step function. Two layer MLPs, where each
neuron has σ as the activation function, are able to compute all
functions of the form F : {0,1}n → {0,1}.

Proof.

I Given a vector ~v = (v1, . . . , vn) ∈ {0,1}n, consider a neuron
N~v whose output is 1 iff the input is ~v:

σ

y

x1 xi xn

x0 = 1

w1 wi
· · ·· · ·

wn

w0
w0 = −

∑n
i=1 vi

wi =

1 vi = 1
−1 vi = 0

I Now let us connect all outputs of all neurons N~v satisfying
F(~v) = 1 using a neuron implementing OR. �

42

Boolean functions
Theorem
Let σ be the unit step function. Two layer MLPs, where each
neuron has σ as the activation function, are able to compute all
functions of the form F : {0,1}n → {0,1}.

Proof.

I Given a vector ~v = (v1, . . . , vn) ∈ {0,1}n, consider a neuron
N~v whose output is 1 iff the input is ~v:

σ

y

x1 xi xn

x0 = 1

w1 wi
· · ·· · ·

wn

w0
w0 = −

∑n
i=1 vi

wi =

1 vi = 1
−1 vi = 0

I Now let us connect all outputs of all neurons N~v satisfying
F(~v) = 1 using a neuron implementing OR. �

42

Non-linear separation

x1 x2

y
I Consider a three layer network; each neuron

has the unit step activation function.

I The network divides the input space in two
subspaces according to the output (0 or 1).

I The first (hidden) layer divides the input
space into half-spaces.

I The second layer may e.g. make
intersections of the half-spaces⇒ convex
sets.

I The third layer may e.g. make unions of some
convex sets.

43

Non-linear separation

x1 x2

y
I Consider a three layer network; each neuron

has the unit step activation function.

I The network divides the input space in two
subspaces according to the output (0 or 1).
I The first (hidden) layer divides the input

space into half-spaces.

I The second layer may e.g. make
intersections of the half-spaces⇒ convex
sets.

I The third layer may e.g. make unions of some
convex sets.

43

Non-linear separation

x1 x2

y
I Consider a three layer network; each neuron

has the unit step activation function.

I The network divides the input space in two
subspaces according to the output (0 or 1).
I The first (hidden) layer divides the input

space into half-spaces.
I The second layer may e.g. make

intersections of the half-spaces⇒ convex
sets.

I The third layer may e.g. make unions of some
convex sets.

43

Non-linear separation

x1 x2

y
I Consider a three layer network; each neuron

has the unit step activation function.

I The network divides the input space in two
subspaces according to the output (0 or 1).
I The first (hidden) layer divides the input

space into half-spaces.
I The second layer may e.g. make

intersections of the half-spaces⇒ convex
sets.

I The third layer may e.g. make unions of some
convex sets.

43

Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y I Consider three layer networks; each neuron
has the unit step activation function.

I Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .

I Cover A with hypercubes (in 2D squares, in
3D cubes, ...)

I Each hypercube K can be separated using
a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

I Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.

44

Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y I Consider three layer networks; each neuron
has the unit step activation function.

I Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .
I Cover A with hypercubes (in 2D squares, in

3D cubes, ...)

I Each hypercube K can be separated using
a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

I Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.

44

Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y I Consider three layer networks; each neuron
has the unit step activation function.

I Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .
I Cover A with hypercubes (in 2D squares, in

3D cubes, ...)
I Each hypercube K can be separated using

a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

I Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.

44

Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y I Consider three layer networks; each neuron
has the unit step activation function.

I Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .
I Cover A with hypercubes (in 2D squares, in

3D cubes, ...)
I Each hypercube K can be separated using

a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

I Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.

44

Non-linear separation - sigmoid

Theorem (Cybenko 1989 - informal version)
Let σ be a continuous function which is sigmoidal, i.e. satisfies

σ(x) =

1 pro x → +∞

0 pro x → −∞

For every "reasonable" set A ⊆ [0,1]n, there is a two layer
network where each hidden neuron has the activation function
σ (output neurons are linear), that satisfies the following:
For "most" vectors ~v ∈ [0,1]n we have that ~v ∈ A iff the network
output is > 0 for the input ~v.
For mathematically oriented:
I "reasonable" means Lebesgue measurable
I "most" means that the set of incorrectly classified vectors has

the Lebesgue measure smaller than a given ε > 0

45

Non-linear separation - practical illustration

I ALVINN drives a car

I The net has 30×32 = 960 inputs
(the input space is thus R960)

I Input values correspond to
shades of gray of pixels.

I Output neurons "classify" images
of the road based on their
"curvature".

Zdroj obrázku: http://jmvidal.cse.sc.edu/talks/ann/alvin.html

46

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Non-linear separation - practical illustration

I ALVINN drives a car
I The net has 30×32 = 960 inputs

(the input space is thus R960)

I Input values correspond to
shades of gray of pixels.

I Output neurons "classify" images
of the road based on their
"curvature".

Zdroj obrázku: http://jmvidal.cse.sc.edu/talks/ann/alvin.html

46

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Non-linear separation - practical illustration

I ALVINN drives a car
I The net has 30×32 = 960 inputs

(the input space is thus R960)
I Input values correspond to

shades of gray of pixels.

I Output neurons "classify" images
of the road based on their
"curvature".

Zdroj obrázku: http://jmvidal.cse.sc.edu/talks/ann/alvin.html

46

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Non-linear separation - practical illustration

I ALVINN drives a car
I The net has 30×32 = 960 inputs

(the input space is thus R960)
I Input values correspond to

shades of gray of pixels.
I Output neurons "classify" images

of the road based on their
"curvature".

Zdroj obrázku: http://jmvidal.cse.sc.edu/talks/ann/alvin.html 46

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Function approximation - three layers

Let σ be a logistic sigmoid, i.e.

σ(ξ) =
1

1 + e−ξ

For every continuous function f : [0,1]n → [0,1] and ε > 0 there
is a three-layer network computing a function F : [0,1]n → [0,1]
such that
I there is a linear activation in the output layer, i.e. the value

of the output neuron is its inner potential ξ,

I the remaining neurons have the logistic sigmoid σ as their
activation,

I for every ~v ∈ [0,1]n we have that |F(~v) − f(~v)| < ε.

47

Function approximation - three layers

Let σ be a logistic sigmoid, i.e.

σ(ξ) =
1

1 + e−ξ

For every continuous function f : [0,1]n → [0,1] and ε > 0 there
is a three-layer network computing a function F : [0,1]n → [0,1]
such that
I there is a linear activation in the output layer, i.e. the value

of the output neuron is its inner potential ξ,
I the remaining neurons have the logistic sigmoid σ as their

activation,

I for every ~v ∈ [0,1]n we have that |F(~v) − f(~v)| < ε.

47

Function approximation - three layers

Let σ be a logistic sigmoid, i.e.

σ(ξ) =
1

1 + e−ξ

For every continuous function f : [0,1]n → [0,1] and ε > 0 there
is a three-layer network computing a function F : [0,1]n → [0,1]
such that
I there is a linear activation in the output layer, i.e. the value

of the output neuron is its inner potential ξ,
I the remaining neurons have the logistic sigmoid σ as their

activation,
I for every ~v ∈ [0,1]n we have that |F(~v) − f(~v)| < ε.

47

Function approximation – three layer networks

x1 x2

σ σ σ σ

σ· · ·

· · · · · ·

ζ

y weighted sum of "spikes"

... + the other two 90 degree rotations

a "spike"

inner potential

the value of the neuron

48

Function approximation - two-layer networks

Theorem (Cybenko 1989)
Let σ be a continuous function which is sigmoidal, i.e. is
increasing and satisfies

σ(x) =

1 pro x → +∞

0 pro x → −∞

For every continuous function f : [0,1]n → [0,1] and every ε > 0
there is a function F : [0,1]n → [0,1] computed by a two layer
network where each hidden neuron has the activation function
σ (output neurons are linear), that satisfies the following

|f(~v) − F(~v)| < ε pro každé ~v ∈ [0,1]n.

49

Neural networks and computability
I Consider recurrent networks (i.e. containing cycles)

I with real weights (in general);
I one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

I parallel activity rule (output values of all neurons are
recomputed in every step);

I activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

I We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =

|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

50

Neural networks and computability
I Consider recurrent networks (i.e. containing cycles)
I with real weights (in general);

I one input neuron and one output neuron (the network
computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

I parallel activity rule (output values of all neurons are
recomputed in every step);

I activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

I We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =

|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

50

Neural networks and computability
I Consider recurrent networks (i.e. containing cycles)
I with real weights (in general);
I one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

I parallel activity rule (output values of all neurons are
recomputed in every step);

I activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

I We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =

|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

50

Neural networks and computability
I Consider recurrent networks (i.e. containing cycles)
I with real weights (in general);
I one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

I parallel activity rule (output values of all neurons are
recomputed in every step);

I activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

I We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =

|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

50

Neural networks and computability
I Consider recurrent networks (i.e. containing cycles)
I with real weights (in general);
I one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

I parallel activity rule (output values of all neurons are
recomputed in every step);

I activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

I We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =

|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

50

Neural networks and computability
I Consider recurrent networks (i.e. containing cycles)
I with real weights (in general);
I one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

I parallel activity rule (output values of all neurons are
recomputed in every step);

I activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

I We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =

|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).
50

Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

I Recurrent networks with rational weights are equivalent to
Turing machines
I For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

I The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

I There is "universal" network (equivalent of the universal
Turing machine)

I Recurrent networks are super-Turing powerful
I For every language L ⊆ {0,1}+ there is a recurrent network

with less than 1000 nerons which recognizes L .

51

Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

I Recurrent networks with rational weights are equivalent to
Turing machines
I For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

I The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

I There is "universal" network (equivalent of the universal
Turing machine)

I Recurrent networks are super-Turing powerful
I For every language L ⊆ {0,1}+ there is a recurrent network

with less than 1000 nerons which recognizes L .

51

Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

I Recurrent networks with rational weights are equivalent to
Turing machines
I For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

I The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

I There is "universal" network (equivalent of the universal
Turing machine)

I Recurrent networks are super-Turing powerful

I For every language L ⊆ {0,1}+ there is a recurrent network
with less than 1000 nerons which recognizes L .

51

Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

I Recurrent networks with rational weights are equivalent to
Turing machines
I For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

I The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

I There is "universal" network (equivalent of the universal
Turing machine)

I Recurrent networks are super-Turing powerful
I For every language L ⊆ {0,1}+ there is a recurrent network

with less than 1000 nerons which recognizes L .

51

Summary of theoretical results

I Neural networks are very strong from the point of view of
theory:
I All Boolean functions can be expressed using two-layer

networks.
I Two-layer networks may approximate any continuous

function.
I Recurrent networks are at least as strong as Turing

machines.

I These results are purely theoretical!
I "Theoretical" networks are extremely huge.
I It is very difficult to handcraft them even for simplest

problems.

I From practical point of view, the most important advantage
of neural networks are: learning, generalization,
robustness.

52

Summary of theoretical results

I Neural networks are very strong from the point of view of
theory:
I All Boolean functions can be expressed using two-layer

networks.
I Two-layer networks may approximate any continuous

function.
I Recurrent networks are at least as strong as Turing

machines.

I These results are purely theoretical!
I "Theoretical" networks are extremely huge.
I It is very difficult to handcraft them even for simplest

problems.

I From practical point of view, the most important advantage
of neural networks are: learning, generalization,
robustness.

52

Neural networks vs classical computers

Neural networks "Classical" computers

Data implicitly in weights explicitly

Computation naturally parallel sequential, localized

Robustness robust w.r.t. input corruption
& damage

changing one bit may
completely crash the
computation

Precision imprecise, network recalls a
training example "similar" to
the input

(typically) precise

Programming learning manual

53

History & implementations

54

History of neurocomputers

I 1951: SNARC (Minski et al)
I the first implementation of neural network
I a rat strives to exit a maze
I 40 artificial neurons (300 vacuum tubes, engines, etc.)

55

History of neurocomputers

I 1957: Mark I Perceptron (Rosenblatt et al) - the first
successful network for image recognition

I single layer network
I image represented by 20 × 20 photocells
I intensity of pixels was treated as the input to a perceptron

(basically the formal neuron), which recognized figures
I weights were implemented using potentiometers, each set

by its own engine
I it was possible to arbitrarily reconnect inputs to neurons to

demonstrate adaptability

56

History of neurocomputers
I 1960: ADALINE (Widrow & Hof)

I single layer neural network
I weights stored in a newly invented electronic component

memistor, which remembers history of electric current in
the form of resistance.

I Widrow founded a company Memistor Corporation, which
sold implementations of neural networks.

I 1960-66: several companies concerned with neural
networks were founded.

57

History of neurocomputers

I 1967-82: dead still after publication of a book by Minski &
Papert (published 1969, title Perceptrons)

I 1983-end of 90s: revival of neural networks
I many attempts at hardware implementations

I application specific chips (ASIC)
I programmable hardware (FPGA)

I hw implementations typically not better than "software"
implementations on universal computers (problems with
weight storage, size, speed, cost of production etc.)

I end of 90s-cca 2005: NN suppressed by other machine
learning methods (support vector machines (SVM))

I 2006-now: The boom of neural networks!
I deep networks – often better than any other method
I GPU implementations
I ... some specialized hw implementations (Google’s TPU)

58

History of neurocomputers

I 1967-82: dead still after publication of a book by Minski &
Papert (published 1969, title Perceptrons)

I 1983-end of 90s: revival of neural networks
I many attempts at hardware implementations

I application specific chips (ASIC)
I programmable hardware (FPGA)

I hw implementations typically not better than "software"
implementations on universal computers (problems with
weight storage, size, speed, cost of production etc.)

I end of 90s-cca 2005: NN suppressed by other machine
learning methods (support vector machines (SVM))

I 2006-now: The boom of neural networks!
I deep networks – often better than any other method
I GPU implementations
I ... some specialized hw implementations (Google’s TPU)

58

History in waves ...

Figure: The figure shows two of the three historical waves of artificial
neural nets research, as measured by the frequency of the phrases
"cybernetics" and "connectionism" or "neural networks" according to
Google Books (the third wave is too recent to appear).

59

Current hardware – What do we face?

Increasing dataset size ...

60

Current hardware – What do we face?

... and thus increasing size of neural networks ...

2. ADALINE
4. Early back-propagation network (Rumelhart et al., 1986b)
8. Image recognition: LeNet-5 (LeCun et al., 1998b)

10. Dimensionality reduction: Deep belief network (Hinton et al., 2006)
... here the third "wave" of neural networks started

15. Digit recognition: GPU-accelerated multilayer perceptron (Ciresan et al., 2010)
18. Image recognition (AlexNet): Multi-GPU convolutional network (Krizhevsky et al., 2012)
20. Image recognition: GoogLeNet (Szegedy et al., 2014a)

61

Current hardware – What do we face?

... as a reward we get this ...

Figure: Since deep networks reached the scale necessary to
compete in the ImageNetLarge Scale Visual Recognition Challenge,
they have consistently won the competition every year, and yielded
lower and lower error rates each time. Data from Russakovsky et al.
(2014b) and He et al. (2015).

62

Current hardware

In 2012, Google trained a large network of 1.7
billion weights and 9 layers

The task was image recognition (10 million
youtube video frames)

The hw comprised a 1000 computer network
(16 000 cores), computation took three days.

63

Current hardware

In 2012, Google trained a large network of 1.7
billion weights and 9 layers

The task was image recognition (10 million
youtube video frames)

The hw comprised a 1000 computer network
(16 000 cores), computation took three days.

In 2014, similar task performed on Commodity
Off-The-Shelf High Performance Computing
(COTS HPC) technology: a cluster of GPU
servers with Infiniband interconnects and MPI.

Able to train 1 billion parameter networks on
just 3 machines in a couple of days.
Able to scale to 11 billion weights (approx. 6.5
times larger than the Google model) on 16
GPUs. 63

Current hardware – NVIDIA DGX Station

I 4x GPU (Tesla V100)

I TFLOPS = 480

I GPU memory 64GB total

I NVIDIA Tensor Cores: 2,560

I NVIDIA CUDA Cores: 20,480

I System memory: 256 GB

I Network: Dual 10 Gb LAN

I NVIDIA Deep Learning SDK

64

Current software

I TensorFlow (Google)
I open source software library for numerical computation

using data flow graphs
I allows implementation of most current neural networks
I allows computation on multiple devices (CPUs, GPUs, ...)
I Python API
I Keras: a library on top of TensorFlow that allows easy

description of most modern neural networks
I CNTK (Microsoft)
I functionality similar to TensorFlow
I special input language called BrainScript

I Theano (dead):
I The "academic" grand-daddy of deep-learning frameworks,

written in Python. Strongly inspired TensorFlow (some
people developing Theano moved on to develop
TensorFlow).

I There are others: Caffe, Torch (Facebook),
Deeplearning4j, ...

65

Current software – Keras

66

Other software implementations

Most "mathematical" software packages contain some support
of neural networks:
I MATLAB
I R
I STATISTICA
I Weka
I ...

The implementations are typically not on par with the previously
mentioned dedicated deep-learning libraries.

67

Training linear models

68

Linear regression (ADALINE)

Architecture:

x1 x2 xn

· · ·

y

~x0 = 1
w0

w1 w2 wn

~w = (w0,w1, . . . ,wn) and ~x = (x0, x1, . . . , xn) where x0 = 1.

Activity:
I inner potential: ξ = w0 +

∑n
i=1 wixi =

∑n
i=0 wixi = ~w · ~x

I activation function: σ(ξ) = ξ

I network function: y[~w](~x) = σ(ξ) = ~w · ~x

69

Linear regression (ADALINE)

Learning:

I Given a training dataset

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th
input, and dk ∈ R is the expected output.

Intuition: The network is supposed to compute an affine approximation of the
function (some of) whose values are given in the training set.

70

Oaks in Wisconsin

71

Linear regression (ADALINE)

I Error function:

E(~w) =
1
2

p∑
k=1

(
~w · ~xk − dk

)2
=

1
2

p∑
k=1

 n∑
i=0

wixki − dk


2

I The goal is to find ~w which minimizes E(~w). 72

Error function

73

Gradient of the error function

Consider gradient of the error function:

∇E(~w) =

(
∂E
∂w0

(~w), . . . ,
∂E
∂wn

(~w)

)

Intuition: ∇E(~w) is a vector in the weight space which points in
the direction of the steepest ascent of the error function.
Note that the vectors ~xk are just parameters of the function E, and are thus
fixed!

Fact
If ∇E(~w) = ~0 = (0, . . . ,0), then ~w is a global minimum of E.
For ADALINE, the error function E(~w) is a convex paraboloid and thus has
the unique global minimum.

74

Gradient of the error function

Consider gradient of the error function:

∇E(~w) =

(
∂E
∂w0

(~w), . . . ,
∂E
∂wn

(~w)

)

Intuition: ∇E(~w) is a vector in the weight space which points in
the direction of the steepest ascent of the error function.
Note that the vectors ~xk are just parameters of the function E, and are thus
fixed!

Fact
If ∇E(~w) = ~0 = (0, . . . ,0), then ~w is a global minimum of E.
For ADALINE, the error function E(~w) is a convex paraboloid and thus has
the unique global minimum.

74

Gradient - illustration

Caution! This picture just illustrates the notion of gradient ... it is not
the convex paraboloid E(~w) !

75

Gradient of the error function

First, consider n = 1.

Then the model is y = w0 + w1 · x.

Consider a concrete training set:

T = {((1,2),1), ((1,3),2), ((1,4),5)}

= ((x10, x11),d1), ((x20, x21),d2), ((x30, x31),d3)

E(w0,w1) = 1
2 [(w0+w1·2−1)2+(w0+w1·3−2)2+(w0+w1·4−5)2]

δE
δw0

= (w0 +w1 ·2−1) ·1+ (w0 +w1 ·3−2) ·1+ (w0 +w1 ·4−5) ·1

δE
δw1

= (w0 +w1 ·2−1) ·2+ (w0 +w1 ·3−2) ·3+ (w0 +w1 ·4−5) ·4

76

Gradient of the error function

First, consider n = 1.

Then the model is y = w0 + w1 · x.

Consider a concrete training set:

T = {((1,2),1), ((1,3),2), ((1,4),5)}

= ((x10, x11),d1), ((x20, x21),d2), ((x30, x31),d3)

E(w0,w1) = 1
2 [(w0+w1·2−1)2+(w0+w1·3−2)2+(w0+w1·4−5)2]

δE
δw0

= (w0 +w1 ·2−1) ·1+ (w0 +w1 ·3−2) ·1+ (w0 +w1 ·4−5) ·1

δE
δw1

= (w0 +w1 ·2−1) ·2+ (w0 +w1 ·3−2) ·3+ (w0 +w1 ·4−5) ·4

76

Gradient of the error function

First, consider n = 1.

Then the model is y = w0 + w1 · x.

Consider a concrete training set:

T = {((1,2),1), ((1,3),2), ((1,4),5)}

= ((x10, x11),d1), ((x20, x21),d2), ((x30, x31),d3)

E(w0,w1) = 1
2 [(w0+w1·2−1)2+(w0+w1·3−2)2+(w0+w1·4−5)2]

δE
δw0

= (w0 +w1 ·2−1) ·1+ (w0 +w1 ·3−2) ·1+ (w0 +w1 ·4−5) ·1

δE
δw1

= (w0 +w1 ·2−1) ·2+ (w0 +w1 ·3−2) ·3+ (w0 +w1 ·4−5) ·4

76

Gradient of the error function

First, consider n = 1.

Then the model is y = w0 + w1 · x.

Consider a concrete training set:

T = {((1,2),1), ((1,3),2), ((1,4),5)}

= ((x10, x11),d1), ((x20, x21),d2), ((x30, x31),d3)

E(w0,w1) = 1
2 [(w0+w1·2−1)2+(w0+w1·3−2)2+(w0+w1·4−5)2]

δE
δw0

= (w0 +w1 ·2−1) ·1+ (w0 +w1 ·3−2) ·1+ (w0 +w1 ·4−5) ·1

δE
δw1

= (w0 +w1 ·2−1) ·2+ (w0 +w1 ·3−2) ·3+ (w0 +w1 ·4−5) ·4

76

Gradient of the error function

First, consider n = 1.

Then the model is y = w0 + w1 · x.

Consider a concrete training set:

T = {((1,2),1), ((1,3),2), ((1,4),5)}

= ((x10, x11),d1), ((x20, x21),d2), ((x30, x31),d3)

E(w0,w1) = 1
2 [(w0+w1·2−1)2+(w0+w1·3−2)2+(w0+w1·4−5)2]

δE
δw0

= (w0 +w1 ·2−1) ·1+ (w0 +w1 ·3−2) ·1+ (w0 +w1 ·4−5) ·1

δE
δw1

= (w0 +w1 ·2−1) ·2+ (w0 +w1 ·3−2) ·3+ (w0 +w1 ·4−5) ·4

76

Gradient of the error function

First, consider n = 1.

Then the model is y = w0 + w1 · x.

Consider a concrete training set:

T = {((1,2),1), ((1,3),2), ((1,4),5)}

= ((x10, x11),d1), ((x20, x21),d2), ((x30, x31),d3)

E(w0,w1) = 1
2 [(w0+w1·2−1)2+(w0+w1·3−2)2+(w0+w1·4−5)2]

δE
δw0

= (w0 +w1 ·2−1) ·1+ (w0 +w1 ·3−2) ·1+ (w0 +w1 ·4−5) ·1

δE
δw1

= (w0 +w1 ·2−1) ·2+ (w0 +w1 ·3−2) ·3+ (w0 +w1 ·4−5) ·4

76

Gradient of the error function

First, consider n = 1.

Then the model is y = w0 + w1 · x.

Consider a concrete training set:

T = {((1,2),1), ((1,3),2), ((1,4),5)}

= ((x10, x11),d1), ((x20, x21),d2), ((x30, x31),d3)

E(w0,w1) = 1
2 [(w0+w1·2−1)2+(w0+w1·3−2)2+(w0+w1·4−5)2]

δE
δw0

= (w0 +w1 ·2−1) ·1+ (w0 +w1 ·3−2) ·1+ (w0 +w1 ·4−5) ·1

δE
δw1

= (w0 +w1 ·2−1) ·2+ (w0 +w1 ·3−2) ·3+ (w0 +w1 ·4−5) ·4

76

Gradient of the error function

∂E
∂w`

(~w) =
1
2

p∑
k=1

δ
δw`

 n∑
i=0

wixki − dk


2

=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk

 δ
δw`

 n∑
i=0

wixki − dk


=

1
2

p∑
k=1

2

 n∑
i=0

wixki − dk


 n∑

i=0

(
δ
δw`

wixki

)
−
δE
δw`

dk


=

p∑
k=1

(
~w · ~xk − dk

)
xk`

Thus

∇E(~w) =

(
∂E
∂w0

(~w), . . . ,
∂E
∂wn

(~w)

)
=

p∑
k=1

(
~w · ~xk − dk

)
~xk

77

Gradient of the error function

∂E
∂w`

(~w) =
1
2

p∑
k=1

δ
δw`

 n∑
i=0

wixki − dk


2

=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk

 δ
δw`

 n∑
i=0

wixki − dk



=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk


 n∑

i=0

(
δ
δw`

wixki

)
−
δE
δw`

dk


=

p∑
k=1

(
~w · ~xk − dk

)
xk`

Thus

∇E(~w) =

(
∂E
∂w0

(~w), . . . ,
∂E
∂wn

(~w)

)
=

p∑
k=1

(
~w · ~xk − dk

)
~xk

77

Gradient of the error function

∂E
∂w`

(~w) =
1
2

p∑
k=1

δ
δw`

 n∑
i=0

wixki − dk


2

=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk

 δ
δw`

 n∑
i=0

wixki − dk


=

1
2

p∑
k=1

2

 n∑
i=0

wixki − dk


 n∑

i=0

(
δ
δw`

wixki

)
−
δE
δw`

dk



=

p∑
k=1

(
~w · ~xk − dk

)
xk`

Thus

∇E(~w) =

(
∂E
∂w0

(~w), . . . ,
∂E
∂wn

(~w)

)
=

p∑
k=1

(
~w · ~xk − dk

)
~xk

77

Gradient of the error function

∂E
∂w`

(~w) =
1
2

p∑
k=1

δ
δw`

 n∑
i=0

wixki − dk


2

=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk

 δ
δw`

 n∑
i=0

wixki − dk


=

1
2

p∑
k=1

2

 n∑
i=0

wixki − dk


 n∑

i=0

(
δ
δw`

wixki

)
−
δE
δw`

dk


=

p∑
k=1

(
~w · ~xk − dk

)
xk`

Thus

∇E(~w) =

(
∂E
∂w0

(~w), . . . ,
∂E
∂wn

(~w)

)
=

p∑
k=1

(
~w · ~xk − dk

)
~xk

77

Gradient of the error function

∂E
∂w`

(~w) =
1
2

p∑
k=1

δ
δw`

 n∑
i=0

wixki − dk


2

=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk

 δ
δw`

 n∑
i=0

wixki − dk


=

1
2

p∑
k=1

2

 n∑
i=0

wixki − dk


 n∑

i=0

(
δ
δw`

wixki

)
−
δE
δw`

dk


=

p∑
k=1

(
~w · ~xk − dk

)
xk`

Thus

∇E(~w) =

(
∂E
∂w0

(~w), . . . ,
∂E
∂wn

(~w)

)
=

p∑
k=1

(
~w · ~xk − dk

)
~xk

77

Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1, weights ~w(t+1) are computed as follows:

~w(t+1) = ~w(t)
− ε · ∇E(~w(t))

= ~w(t)
− ε ·

p∑
k=1

(
~w(t)
· ~xk − dk

)
· ~xk

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence ~w(0), ~w(1), ~w(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector ~w satisfying ∇E(~w) = ~0).

78

Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0

I in the step t + 1, weights ~w(t+1) are computed as follows:
~w(t+1) = ~w(t)

− ε · ∇E(~w(t))

= ~w(t)
− ε ·

p∑
k=1

(
~w(t)
· ~xk − dk

)
· ~xk

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence ~w(0), ~w(1), ~w(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector ~w satisfying ∇E(~w) = ~0).

78

Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1, weights ~w(t+1) are computed as follows:

~w(t+1) = ~w(t)
− ε · ∇E(~w(t))

= ~w(t)
− ε ·

p∑
k=1

(
~w(t)
· ~xk − dk

)
· ~xk

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence ~w(0), ~w(1), ~w(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector ~w satisfying ∇E(~w) = ~0).

78

Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1, weights ~w(t+1) are computed as follows:

~w(t+1) = ~w(t)
− ε · ∇E(~w(t))

= ~w(t)
− ε ·

p∑
k=1

(
~w(t)
· ~xk − dk

)
· ~xk

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence ~w(0), ~w(1), ~w(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector ~w satisfying ∇E(~w) = ~0).

78

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

Linear regression - animation

79

ADALINE - learning

Online algorithm (Delta-rule, Widrow-Hoff rule):
I weights in ~w(0) initialized randomly close to 0
I in the step t + 1, weights ~w(t+1) are computed as follows:

~w(t+1) = ~w(t)
− ε(t) ·

(
~w(t)
· ~xk − dk

)
· ~xk

Here k = t mod p + 1 and 0 < ε(t) ≤ 1 is a learning rate in
the step t + 1.

Note that the algorithm does not work with the complete gradient but
only with its part determined by the currently considered training
example.

Theorem (Widrow & Hoff)
If ε(t) = 1

t , then ~w(0), ~w(1), ~w(2), . . . converges to the global
minimum of E.

80

ADALINE - learning

Online algorithm (Delta-rule, Widrow-Hoff rule):
I weights in ~w(0) initialized randomly close to 0
I in the step t + 1, weights ~w(t+1) are computed as follows:

~w(t+1) = ~w(t)
− ε(t) ·

(
~w(t)
· ~xk − dk

)
· ~xk

Here k = t mod p + 1 and 0 < ε(t) ≤ 1 is a learning rate in
the step t + 1.

Note that the algorithm does not work with the complete gradient but
only with its part determined by the currently considered training
example.

Theorem (Widrow & Hoff)
If ε(t) = 1

t , then ~w(0), ~w(1), ~w(2), . . . converges to the global
minimum of E.

80

What about classification?

Binary classification: Desired outputs 0 and 1.

Ideally, capture the probability distribution of classes.
81

What about classification?

Binary classification: Desired outputs 0 and 1.

... does not capture probability well (it is not a probability at all)
81

What about classification?

Binary classification: Desired outputs 0 and 1.

... logistic sigmoid 1
1+e−(~w·~x)

is much better!
81

Logistic regression

x1 x2 xn

· · ·

y

~x0 = 1
w0

w1 w2 wn

~w = (w0,w1, . . . ,wn) and ~x = (x0, x1, . . . , xn) where x0 = 1.

Activity:
I inner potential: ξ = w0 +

∑n
i=1 wixi =

∑n
i=0 wixi = ~w · ~x

I activation function: σ(ξ) = 1
1+e−ξ

I network function: y[~w](~x) = σ(ξ) = 1
1+e−(~w·~x)

Intuition: The output y is now the probability of the class 1 given the input ~x.

82

But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input ~x.
But why we model such a probability using 1/(1 + e−~w·~x) ??

83

But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input ~x.
But why we model such a probability using 1/(1 + e−~w·~x) ??

What about odds of the class 1?

odds(y) =
y

1 − y

Resembles an exponential function ...
83

But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input ~x.
But why we model such a probability using 1/(1 + e−~w·~x) ??

What about log odds (aka logit) of the class 1?

logit(y) = log(y/(1 − y))

Looks almost linear ...
83

But what is the meaning of the sigmoid?

Put

log(y/(1 − y)) = ~w · ~x

Then

log((1 − y)/y) = −~w · ~x

and

(1 − y)/y = e−~w·~x

and

y =
1

1 + e−~w·~x

That is, if we model log odds using a linear function, the probability is
obtained by applying the logistic sigmoid on the result of the linear function.

84

But what is the meaning of the sigmoid?

Put

log(y/(1 − y)) = ~w · ~x

Then

log((1 − y)/y) = −~w · ~x

and

(1 − y)/y = e−~w·~x

and

y =
1

1 + e−~w·~x

That is, if we model log odds using a linear function, the probability is
obtained by applying the logistic sigmoid on the result of the linear function.

84

But what is the meaning of the sigmoid?

Put

log(y/(1 − y)) = ~w · ~x

Then

log((1 − y)/y) = −~w · ~x

and

(1 − y)/y = e−~w·~x

and

y =
1

1 + e−~w·~x

That is, if we model log odds using a linear function, the probability is
obtained by applying the logistic sigmoid on the result of the linear function.

84

But what is the meaning of the sigmoid?

Put

log(y/(1 − y)) = ~w · ~x

Then

log((1 − y)/y) = −~w · ~x

and

(1 − y)/y = e−~w·~x

and

y =
1

1 + e−~w·~x

That is, if we model log odds using a linear function, the probability is
obtained by applying the logistic sigmoid on the result of the linear function.

84

Logistic regression

Learning:

I Given a training dataset

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th
input, and dk ∈ {0,1} is the expected output.

What error function?

(Binary) cross-entropy:

E(~w) =

p∑
k=1

−(dk log(yk) + (1 − dk) log(1 − yk))

What?!?

85

Logistic regression

Learning:

I Given a training dataset

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th
input, and dk ∈ {0,1} is the expected output.

What error function?

(Binary) cross-entropy:

E(~w) =

p∑
k=1

−(dk log(yk) + (1 − dk) log(1 − yk))

What?!?

85

Log likelihood is your friend!

I Let’s have a "coin" (sides 0 and 1).

I The probability of 1 is p and is unknown!
I You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

I What is the best model y of p based on the data?

Answer: The one that generates the data with maximum
probability!

86

Log likelihood is your friend!

I Let’s have a "coin" (sides 0 and 1).
I The probability of 1 is p and is unknown!

I You have tossed the coin 5 times and got a training
dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

I What is the best model y of p based on the data?

Answer: The one that generates the data with maximum
probability!

86

Log likelihood is your friend!

I Let’s have a "coin" (sides 0 and 1).
I The probability of 1 is p and is unknown!
I You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

I What is the best model y of p based on the data?

Answer: The one that generates the data with maximum
probability!

86

Log likelihood is your friend!

I Let’s have a "coin" (sides 0 and 1).
I The probability of 1 is p and is unknown!
I You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

I What is the best model y of p based on the data?

Answer: The one that generates the data with maximum
probability!

86

Log likelihood is your friend!

I Let’s have a "coin" (sides 0 and 1).
I The probability of 1 is p and is unknown!
I You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

I What is the best model y of p based on the data?

Answer: The one that generates the data with maximum
probability!

86

Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

and thus −LL is the cross-entropy.

87

Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

and thus −LL is the cross-entropy.

87

Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

and thus −LL is the cross-entropy.

87

Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

and thus −LL is the cross-entropy.
87

Let the coin depend on the input

Consider our model:

y =
1

1 + e−(~w·~x)

The training dataset is now standard:

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L =

p∏
k=1

ydk
k · (1 − yk)(1−dk)

and LL = log(L) =
∑p

k=1(dk log(yk) + (1 − dk) log(1 − yk))
and thus −LL = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood
(and vice versa).

88

Let the coin depend on the input

Consider our model:

y =
1

1 + e−(~w·~x)

The training dataset is now standard:

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L =

p∏
k=1

ydk
k · (1 − yk)(1−dk)

and LL = log(L) =
∑p

k=1(dk log(yk) + (1 − dk) log(1 − yk))
and thus −LL = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood
(and vice versa).

88

Let the coin depend on the input

Consider our model:

y =
1

1 + e−(~w·~x)

The training dataset is now standard:

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L =

p∏
k=1

ydk
k · (1 − yk)(1−dk)

and LL = log(L) =
∑p

k=1(dk log(yk) + (1 − dk) log(1 − yk))
and thus −LL = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood
(and vice versa). 88

Normal Distribution

Distribution of continuous random variables.

Density (one dimensional, that is over R):

p(x) =
1

σ
√

2π
exp

{
−

(x − µ)2

2σ2

}
=: N[µ, σ2](x)

µ is the expected value (the mean), σ2 is the variance.

89

Maximum Likelihood vs Least Squares (Dim 1)
Fix a training set D =

{
(x1,d1) , (x2,d2) , . . . ,

(
xp ,dp

)}

Assume that each dk has been generated randomly by

dk = (w0 + w1 · xk) + εk

I w0,w1 are unknown numbers
I εk are normally distributed with mean 0 and an unknown

variance σ2

90

Maximum Likelihood vs Least Squares (Dim 1)
Fix a training set D =

{
(x1,d1) , (x2,d2) , . . . ,

(
xp ,dp

)}
Assume that each dk has been generated randomly by

dk = (w0 + w1 · xk) + εk

I w0,w1 are unknown numbers
I εk are normally distributed with mean 0 and an unknown

variance σ2

90

Maximum Likelihood vs Least Squares (Dim 1)

Keep in mind:

dk = (w0 + w1 · xk) + εk

Assume that ε1, . . . , εp were generated independently.

Denote by p(d1, . . . ,dp | w0,w1, σ2) the probability density
according to which the values d1, . . . ,dn were generated
assuming fixed w0,w1, σ2, x1, . . . , xp.
The independence and normality imply

p(d1, . . . ,dp | w0,w1, σ
2) =

p∏
k=1

N[w0 + w1xk , σ
2](dk)

=

p∏
k=1

1

σ
√

2π
exp

{
−
(dk − w0 − w1xk)

2

2σ2

}

91

Maximum Likelihood vs Least Squares (Dim 1)

Keep in mind:

dk = (w0 + w1 · xk) + εk

Assume that ε1, . . . , εp were generated independently.

Denote by p(d1, . . . ,dp | w0,w1, σ2) the probability density
according to which the values d1, . . . ,dn were generated
assuming fixed w0,w1, σ2, x1, . . . , xp.

The independence and normality imply

p(d1, . . . ,dp | w0,w1, σ
2) =

p∏
k=1

N[w0 + w1xk , σ
2](dk)

=

p∏
k=1

1

σ
√

2π
exp

{
−
(dk − w0 − w1xk)

2

2σ2

}

91

Maximum Likelihood vs Least Squares (Dim 1)

Keep in mind:

dk = (w0 + w1 · xk) + εk

Assume that ε1, . . . , εp were generated independently.

Denote by p(d1, . . . ,dp | w0,w1, σ2) the probability density
according to which the values d1, . . . ,dn were generated
assuming fixed w0,w1, σ2, x1, . . . , xp.
The independence and normality imply

p(d1, . . . ,dp | w0,w1, σ
2) =

p∏
k=1

N[w0 + w1xk , σ
2](dk)

=

p∏
k=1

1

σ
√

2π
exp

{
−
(dk − w0 − w1xk)

2

2σ2

}

91

Maximum Likelihood vs Least Squares

Our goal is to find (w0,w1) that maximizes the likelihood that the
training set D with fixed values d1, . . . ,dn has been generated:

L(w0,w1, σ
2) := p(d1, . . . ,dp | w0,w1, σ

2)

Theorem
(w0,w1) maximizes L(w0,w1, σ2) for arbitrary σ2 iff (w0,w1)
minimizes E(w0,w1), i.e. the least squares error function.

Note that the maximizing/minimizing (w0,w1) does not depend
on σ2.

Maximizing σ2 satisfies σ2 = 1
p
∑p

k=1(dk − w0 − w1 · xk)2.

92

Maximum Likelihood vs Least Squares

Our goal is to find (w0,w1) that maximizes the likelihood that the
training set D with fixed values d1, . . . ,dn has been generated:

L(w0,w1, σ
2) := p(d1, . . . ,dp | w0,w1, σ

2)

Theorem
(w0,w1) maximizes L(w0,w1, σ2) for arbitrary σ2 iff (w0,w1)
minimizes E(w0,w1), i.e. the least squares error function.

Note that the maximizing/minimizing (w0,w1) does not depend
on σ2.

Maximizing σ2 satisfies σ2 = 1
p
∑p

k=1(dk − w0 − w1 · xk)2.

92

Maximum Likelihood vs Least Squares

Our goal is to find (w0,w1) that maximizes the likelihood that the
training set D with fixed values d1, . . . ,dn has been generated:

L(w0,w1, σ
2) := p(d1, . . . ,dp | w0,w1, σ

2)

Theorem
(w0,w1) maximizes L(w0,w1, σ2) for arbitrary σ2 iff (w0,w1)
minimizes E(w0,w1), i.e. the least squares error function.

Note that the maximizing/minimizing (w0,w1) does not depend
on σ2.

Maximizing σ2 satisfies σ2 = 1
p
∑p

k=1(dk − w0 − w1 · xk)2.

92

Maximum Likelihood vs Least Squares

Our goal is to find (w0,w1) that maximizes the likelihood that the
training set D with fixed values d1, . . . ,dn has been generated:

L(w0,w1, σ
2) := p(d1, . . . ,dp | w0,w1, σ

2)

Theorem
(w0,w1) maximizes L(w0,w1, σ2) for arbitrary σ2 iff (w0,w1)
minimizes E(w0,w1), i.e. the least squares error function.

Note that the maximizing/minimizing (w0,w1) does not depend
on σ2.

Maximizing σ2 satisfies σ2 = 1
p
∑p

k=1(dk − w0 − w1 · xk)2.

92

MLP training – theory

93

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
I Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

I layers numbered from 0; the
input layer has number 0
I E.g. three-layer network has

two hidden layers and one
output layer

I Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

I Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

94

MLP – architecture

Notation:
I Denote
I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

95

MLP – architecture

Notation:
I Denote
I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops

I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

95

MLP – architecture

Notation:
I Denote
I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)

I wji is the weight of the connection from i to j
(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

95

MLP – architecture

Notation:
I Denote
I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

95

MLP – architecture

Notation:
I Denote
I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

95

MLP – architecture

Notation:
I Denote
I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

95

MLP – activity

Activity:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid σj(ξ) = 1

1+e−λjξ
]

I State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration ~w and the input ~x, so we sometimes
write yj(~w, ~x))

I The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the `-th step,
all neurons of the `-th layer are evaluated.

96

MLP – activity

Activity:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid σj(ξ) = 1

1+e−λjξ
]

I State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration ~w and the input ~x, so we sometimes
write yj(~w, ~x))

I The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the `-th step,
all neurons of the `-th layer are evaluated.

96

MLP – activity

Activity:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid σj(ξ) = 1

1+e−λjξ
]

I State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration ~w and the input ~x, so we sometimes
write yj(~w, ~x))

I The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the `-th step,
all neurons of the `-th layer are evaluated.

96

MLP – activity

Activity:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid σj(ξ) = 1

1+e−λjξ
]

I State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration ~w and the input ~x, so we sometimes
write yj(~w, ~x))

I The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the `-th step,
all neurons of the `-th layer are evaluated.

96

MLP – learning

Learning:
I Given a training set T of the form{ (

~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function:

E(~w) =

p∑
k=1

Ek (~w)

where

Ek (~w) =
1
2

∑
j∈Y

(
yj(~w, ~xk) − dkj

)2

97

MLP – learning

Learning:
I Given a training set T of the form{ (

~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function:

E(~w) =

p∑
k=1

Ek (~w)

where

Ek (~w) =
1
2

∑
j∈Y

(
yj(~w, ~xk) − dkj

)2

97

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(~w(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E
∂wji

(~w(t)) is a component of the gradient ∇E, i.e. the weight update
can be written as ~w(t+1) = ~w(t)

− ε(t) · ∇E(~w(t)).

98

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(~w(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E
∂wji

(~w(t)) is a component of the gradient ∇E, i.e. the weight update
can be written as ~w(t+1) = ~w(t)

− ε(t) · ∇E(~w(t)).

98

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(~w(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E
∂wji

(~w(t)) is a component of the gradient ∇E, i.e. the weight update
can be written as ~w(t+1) = ~w(t)

− ε(t) · ∇E(~w(t)).
98

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk)).

99

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk)).

99

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk)).

99

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk)).
99

MLP – error function gradient

I If σj(ξ) = 1
1+e−λjξ

for all j ∈ Z , then

σ′j (ξj) = λjyj(1 − yj)

and thus for all j ∈ Z r X :

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· λryr (1 − yr) · wrj for j ∈ Z r (Y ∪ X)

I If σj(ξ) = a · tanh(b · ξj) for all j ∈ Z , then

σ′j (ξj) =
b
a

(a − yj)(a + yj)

100

MLP – error function gradient

I If σj(ξ) = 1
1+e−λjξ

for all j ∈ Z , then

σ′j (ξj) = λjyj(1 − yj)

and thus for all j ∈ Z r X :

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· λryr (1 − yr) · wrj for j ∈ Z r (Y ∪ X)

I If σj(ξ) = a · tanh(b · ξj) for all j ∈ Z , then

σ′j (ξj) =
b
a

(a − yj)(a + yj)

100

MLP – error function gradient

I If σj(ξ) = 1
1+e−λjξ

for all j ∈ Z , then

σ′j (ξj) = λjyj(1 − yj)

and thus for all j ∈ Z r X :

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· λryr (1 − yr) · wrj for j ∈ Z r (Y ∪ X)

I If σj(ξ) = a · tanh(b · ξj) for all j ∈ Z , then

σ′j (ξj) =
b
a

(a − yj)(a + yj)

100

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

101

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

101

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

101

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

101

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

101

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

101

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.
101

MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

I if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

I if j ∈ Z r Y ∪ X , then assuming that j is in the `-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ` + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

(This works because all neurons of r ∈ j→ belong to the `+ 1-st layer.)

102

MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

I if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

I if j ∈ Z r Y ∪ X , then assuming that j is in the `-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ` + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

(This works because all neurons of r ∈ j→ belong to the `+ 1-st layer.)

102

MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

I if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

I if j ∈ Z r Y ∪ X , then assuming that j is in the `-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ` + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

(This works because all neurons of r ∈ j→ belong to the `+ 1-st layer.)

102

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

103

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

103

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

103

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

103

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

103

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

103

Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

103

Illustration of the gradient descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork
104

MLP – learning algorithm

Online algorithm:

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂Ek

∂wji
(w(t)

ji)

is the weight update of wji in the step t + 1 and 0 < ε(t) ≤ 1
is the learning rate in the step t + 1.

There are other variants determined by selection of the training examples
used for the error computation (more on this later).

105

SGD

I weights in ~w(0) are randomly initialized to values close to 0

I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are
computed as follows:
I Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
I Compute

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) ·
∑
k∈T

∇Ek (~w(t))

I 0 < ε(t) ≤ 1 is a learning rate in step t + 1

I ∇Ek (~w(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

106

MLP training – practical issues

107

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
I Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

I layers numbered from 0; the
input layer has number 0
I E.g. three-layer network has

two hidden layers and one
output layer

I Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

I Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

108

MLP – architecture

Notation:
I Denote
I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

109

MLP – learning

Learning:
I Given a training set T of the form{ (

~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function: (for example)

E(~w) =

p∑
k=1

Ek (~w)

where

Ek (~w) =
1
2

∑
j∈Y

(
yj(~w, ~xk) − dkj

)2

110

SGD

I weights in ~w(0) are randomly initialized to values close to 0

I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are
computed as follows:
I Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
I Compute

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) ·
∑
k∈T

∇Ek (~w(t))

I 0 < ε(t) ≤ 1 is a learning rate in step t + 1

I ∇Ek (~w(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

111

MLP – mse gradient

For every wji we have

∂E
∂wji

=
1
p

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get (for squared error)

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk)).

112

MLP – mse gradient

For every wji we have

∂E
∂wji

=
1
p

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get (for squared error)

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk)).
112

(Some) error functions

I squared error:

E(~w) =

p∑
k=1

Ek (~w)

where Ek (~w) = 1
2
∑

j∈Y

(
yj(~w, ~xk) − dkj

)2

I mean squared error (mse):

E(~w) =
1
p

p∑
k=1

Ek (~w)

I (categorical) cross entropy:

E(~w) = −
1
p

p∑
k=1

∑
j∈Y

dkj ln(yj)

113

Practical issues of gradient descent

I Training efficiency:
I What size of a minibatch?
I How to choose the learning rate ε(t) and control SGD ?
I How to pre-process the inputs?
I How to initialize weights?
I How to choose desired output values of the network?

I Quality of the resulting model:
I When to stop training?
I Regularization techniques.
I How large network?

For simplicity, I will illustrate the reasoning on MLP + mse.
Later we will see other topologies and error functions with
different but always somewhat related issues.

114

Practical issues of gradient descent

I Training efficiency:
I What size of a minibatch?
I How to choose the learning rate ε(t) and control SGD ?
I How to pre-process the inputs?
I How to initialize weights?
I How to choose desired output values of the network?

I Quality of the resulting model:
I When to stop training?
I Regularization techniques.
I How large network?

For simplicity, I will illustrate the reasoning on MLP + mse.
Later we will see other topologies and error functions with
different but always somewhat related issues.

114

Issues in gradient descent

Lots of local minima where the descent gets stuck:
I The model identifiability problem: Swapping incoming

weights of neurons i and j leaves the same network
topology – weight space symmetry

I Recent studies show that for sufficiently large networks all
local minima have low values of the error function.

Saddle points
One can show (by a combinatorial
argument) that larger networks
have exponentially more saddle
points than local minima.

115

Issues in gradient descent

Lots of local minima where the descent gets stuck:
I The model identifiability problem: Swapping incoming

weights of neurons i and j leaves the same network
topology – weight space symmetry

I Recent studies show that for sufficiently large networks all
local minima have low values of the error function.

Saddle points
One can show (by a combinatorial
argument) that larger networks
have exponentially more saddle
points than local minima.

115

Issues in gradient descent – too slow descent

I flat regions
E.g. if the inner potentials are too large (in abs. value), then their
derivative is extremely small.

116

Issues in gradient descent – too fast descent

I steep cliffs: the gradient is extremely large, descent skips
important weight vectors

117

Issues in gradient descent – local vs global
structure

What if we initialize on the left?

118

Issues in computing the gradient

I vanishing and exploding gradients

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

I inexact gradient computation:
I Minibatch gradient is only an estimate of the true gradient.
I Note that the variance of the estimate is (roughly) σ/

√
m

where m is the size of the minibatch and σ is the variance
of the gradient estimate for a single training example.
(E.g. minibatch size 10 000 means 100 times more computation
than the size 100 but gives only 10 times less variance.)

119

Issues in computing the gradient

I vanishing and exploding gradients

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj for j ∈ Z r (Y ∪ X)

I inexact gradient computation:
I Minibatch gradient is only an estimate of the true gradient.
I Note that the variance of the estimate is (roughly) σ/

√
m

where m is the size of the minibatch and σ is the variance
of the gradient estimate for a single training example.
(E.g. minibatch size 10 000 means 100 times more computation
than the size 100 but gives only 10 times less variance.)

119

Minibatch size

I Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

I Multicore architectures are usually underutilized by extremely
small batches.

I If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

I It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

I Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger
batch there is a degradation in the quality of the model, as
measured by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)

120

Minibatch size

I Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

I Multicore architectures are usually underutilized by extremely
small batches.

I If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

I It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

I Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger
batch there is a degradation in the quality of the model, as
measured by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)

120

Minibatch size

I Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

I Multicore architectures are usually underutilized by extremely
small batches.

I If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

I It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

I Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger
batch there is a degradation in the quality of the model, as
measured by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)

120

Minibatch size

I Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

I Multicore architectures are usually underutilized by extremely
small batches.

I If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

I It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

I Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger
batch there is a degradation in the quality of the model, as
measured by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)

120

Minibatch size

I Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

I Multicore architectures are usually underutilized by extremely
small batches.

I If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

I It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

I Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger
batch there is a degradation in the quality of the model, as
measured by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17) 120

Moment

Issue in the gradient descent:
I ∇E(~w(t)) constantly changes direction (but the error

steadily decreases).

Solution: In every step add the change made in the previous
step (weighted by a factor α):

∆~w(t) = −ε(t) ·
∑
k∈T

∇Ek (~w(t)) + α ·∆w(t−1)
ji

where 0 < α < 1.

121

Moment

Issue in the gradient descent:
I ∇E(~w(t)) constantly changes direction (but the error

steadily decreases).

Solution: In every step add the change made in the previous
step (weighted by a factor α):

∆~w(t) = −ε(t) ·
∑
k∈T

∇Ek (~w(t)) + α ·∆w(t−1)
ji

where 0 < α < 1.
121

Momentum – illustration

122

SGD with momentum

I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:
I Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
I Compute

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) ·
∑
k∈T

∇Ek (~w(t)) + α∆~w(t−1)

I 0 < ε(t) ≤ 1 is a learning rate in step t + 1
I 0 < α < 1 measures the "influence" of the moment
I ∇Ek (~w(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

123

Learning rate

124

Learning rate

Generic rules for adaptation of ε(t)

I Start with a larger learning rate (e.g. ε = 0.1).
Later decrease as the descent is supposed to settle in
a minimum of E.
Some tools allow to set a list of learning rates, each rate for one epoch
of the descent.

In case you may observe the error
evolving:

I If the error decreases, increase
slightly the rate.

I If the error increases, decrease the
rate.

I Note that the error may increase for
the short period without any harm to
convergence of the learning process.

125

Learning rate

Generic rules for adaptation of ε(t)

I Start with a larger learning rate (e.g. ε = 0.1).
Later decrease as the descent is supposed to settle in
a minimum of E.
Some tools allow to set a list of learning rates, each rate for one epoch
of the descent.

In case you may observe the error
evolving:

I If the error decreases, increase
slightly the rate.

I If the error increases, decrease the
rate.

I Note that the error may increase for
the short period without any harm to
convergence of the learning process.

125

Learning rate

Generic rules for adaptation of ε(t)

I Start with a larger learning rate (e.g. ε = 0.1).
Later decrease as the descent is supposed to settle in
a minimum of E.
Some tools allow to set a list of learning rates, each rate for one epoch
of the descent.

In case you may observe the error
evolving:

I If the error decreases, increase
slightly the rate.

I If the error increases, decrease the
rate.

I Note that the error may increase for
the short period without any harm to
convergence of the learning process.

125

AdaGrad

So far we have considered a uniform learning rate.

It is better to have
I larger rates for weights with smaller updates,
I smaller rates for weights with larger updates.

AdaGrad uses individually adapting learning rate for each
weight.

126

SGD with AdaGrad

I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), compute ~w(t+1) :
I Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
I Compute

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(~w(t))

and

r (t)ji = r (t−1)
ji +

∑
k∈T

∂Ek

∂wji
(~w(t))


2

I η is a constant expressing the influence of the learning rate,
typically 0.01.

I δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.

127

SGD with AdaGrad

I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), compute ~w(t+1) :
I Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
I Compute

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(~w(t))

and

r (t)ji = r (t−1)
ji +

∑
k∈T

∂Ek

∂wji
(~w(t))


2

I η is a constant expressing the influence of the learning rate,
typically 0.01.

I δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.
127

RMSProp

The main disadvantage of AdaGrad is the accumulation of the
gradient throughout the whole learning process.

In case the learning needs to get over several "hills" before
settling in a deep "valley", the weight updates get far too small
before getting to it.

RMSProp uses an exponentially decaying average to discard
history from the extreme past so that it can converge rapidly
after finding a convex bowl, as if it were an instance of the
AdaGrad algorithm initialized within that bowl.

128

SGD with RMSProp
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), compute ~w(t+1) :
I Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
I Compute

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(~w(t))

and

r (t)ji = ρr (t−1)
ji + (1 − ρ)

∑
k∈T

∂Ek

∂wji
(~w(t))


2

I η is a constant expressing the influence of the learning rate
(Hinton suggests ρ = 0.9 and η = 0.001).

I δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.

129

SGD with RMSProp
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), compute ~w(t+1) :
I Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
I Compute

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(~w(t))

and

r (t)ji = ρr (t−1)
ji + (1 − ρ)

∑
k∈T

∂Ek

∂wji
(~w(t))


2

I η is a constant expressing the influence of the learning rate
(Hinton suggests ρ = 0.9 and η = 0.001).

I δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.
129

Other optimization methods

There are more methods such as AdaDelta, Adam (roughly
RMSProp combined with momentum), etc.

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with
adaptive learning rates (represented by RMSProp and
AdaDelta) performed fairly robustly, no single best algorithm
has emerged.

Currently, the most popular optimization algorithms actively in
use include SGD, SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta and Adam.

The choice of which algorithm to use, at this point, seems to
depend largely on the user’s familiarity with the algorithm.

130

Other optimization methods

There are more methods such as AdaDelta, Adam (roughly
RMSProp combined with momentum), etc.

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with
adaptive learning rates (represented by RMSProp and
AdaDelta) performed fairly robustly, no single best algorithm
has emerged.

Currently, the most popular optimization algorithms actively in
use include SGD, SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta and Adam.

The choice of which algorithm to use, at this point, seems to
depend largely on the user’s familiarity with the algorithm.

130

Other optimization methods

There are more methods such as AdaDelta, Adam (roughly
RMSProp combined with momentum), etc.

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with
adaptive learning rates (represented by RMSProp and
AdaDelta) performed fairly robustly, no single best algorithm
has emerged.

Currently, the most popular optimization algorithms actively in
use include SGD, SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta and Adam.

The choice of which algorithm to use, at this point, seems to
depend largely on the user’s familiarity with the algorithm.

130

Choice of (hidden) activations

Generic requirements imposed on activation functions:

1. differentiability
(to do gradient descent)

2. non-linearity
(linear multi-layer networks are equivalent to single-layer)

3. monotonicity
(local extrema of activation functions induce local extrema of the error
function)

4. "linearity"
(i.e. preserve as much linearity as possible; linear models are easiest to
fit; find the "minimum" non-linearity needed to solve a given task)

The choice of activation functions is closely related to input
preprocessing and the initial choice of weights. I will illustrate the
reasoning on sigmoidal functions; say few words about other
activation functions later.

131

Activation functions – tanh

σ(ξ) = 1.7159 · tanh(2
3 · ξ), we have limξ→∞ σ(ξ) = 1.7159 and

limξ→−∞ σ(ξ) = −1.7159
132

Activation functions – tanh

σ(ξ) = 1.7159 · tanh(2
3 · ξ) is almost linear on [−1,1]

133

Activation functions – tanh

first derivative: σ(ξ) = 1.7159 · tanh(2
3 · ξ)

134

Input preprocessing

I Some inputs may be much larger than others.

E.g..: Height vs weight of a person, maximum speed of
a car (in km/h) vs its price (in CZK), etc.

I Large inputs have greater influence on the training than the
small ones. In addition, too large inputs may slow down
learning (saturation of activation functions).

I Typical standardization:
I average = 0 (subtract the mean)
I variance = 1 (divide by the standard deviation)

Here the mean and standard deviation may be estimated
from data (the training set).

(illustration of standard deviation)

135

Input preprocessing

I Some inputs may be much larger than others.

E.g..: Height vs weight of a person, maximum speed of
a car (in km/h) vs its price (in CZK), etc.

I Large inputs have greater influence on the training than the
small ones. In addition, too large inputs may slow down
learning (saturation of activation functions).

I Typical standardization:
I average = 0 (subtract the mean)
I variance = 1 (divide by the standard deviation)

Here the mean and standard deviation may be estimated
from data (the training set).

(illustration of standard deviation)

135

Input preprocessing

I Some inputs may be much larger than others.

E.g..: Height vs weight of a person, maximum speed of
a car (in km/h) vs its price (in CZK), etc.

I Large inputs have greater influence on the training than the
small ones. In addition, too large inputs may slow down
learning (saturation of activation functions).

I Typical standardization:
I average = 0 (subtract the mean)
I variance = 1 (divide by the standard deviation)

Here the mean and standard deviation may be estimated
from data (the training set).

(illustration of standard deviation) 135

Initial weights (for tanh)

I Typically, the weights are chosen randomly from an interval
[−w,w] where w depends on the number of inputs of a
given neuron.

I Consider the activation function σ(ξ) = 1.7159 · tanh(2
3 · ξ)

for all neurons.
I σ is almost linear on [−1,1],
I σ saturates out of the interval [−4,4] (i.e. it is close to its

limit values and its derivative is close to 0.
Thus
I for too small w we may get (almost) linear model.
I for too large w (i.e. much larger than 1) the activations may

get saturated and the learning will be very slow.

Hence, we want to choose w so that the inner potentials of
neurons will be roughly in the interval [−1,1].

136

Initial weights (for tanh)

I Typically, the weights are chosen randomly from an interval
[−w,w] where w depends on the number of inputs of a
given neuron.

I Consider the activation function σ(ξ) = 1.7159 · tanh(2
3 · ξ)

for all neurons.
I σ is almost linear on [−1,1],
I σ saturates out of the interval [−4,4] (i.e. it is close to its

limit values and its derivative is close to 0.

Thus
I for too small w we may get (almost) linear model.
I for too large w (i.e. much larger than 1) the activations may

get saturated and the learning will be very slow.

Hence, we want to choose w so that the inner potentials of
neurons will be roughly in the interval [−1,1].

136

Initial weights (for tanh)

I Typically, the weights are chosen randomly from an interval
[−w,w] where w depends on the number of inputs of a
given neuron.

I Consider the activation function σ(ξ) = 1.7159 · tanh(2
3 · ξ)

for all neurons.
I σ is almost linear on [−1,1],
I σ saturates out of the interval [−4,4] (i.e. it is close to its

limit values and its derivative is close to 0.
Thus
I for too small w we may get (almost) linear model.
I for too large w (i.e. much larger than 1) the activations may

get saturated and the learning will be very slow.

Hence, we want to choose w so that the inner potentials of
neurons will be roughly in the interval [−1,1].

136

Initial weights (for tanh)

I Standardization gives mean = 0 and variance = 1 of the input
data.

I Consider a neuron j from the first layer with d inputs. Assume
that its weights are chosen uniformly from [−w,w].

I The rule: choose w so that the standard deviation of ξj (denote
by oj) is close to the border of the interval on which σj is linear.
In our case: oj ≈ 1.

I Our assumptions imply: oj =
√

d
3 · w.

Thus we put w =
√

3
√

d
.

I The same works for higher layers, d corresponds to the number
of neurons in the layer one level lower.

137

Initial weights (for tanh)

I Standardization gives mean = 0 and variance = 1 of the input
data.

I Consider a neuron j from the first layer with d inputs. Assume
that its weights are chosen uniformly from [−w,w].

I The rule: choose w so that the standard deviation of ξj (denote
by oj) is close to the border of the interval on which σj is linear.
In our case: oj ≈ 1.

I Our assumptions imply: oj =
√

d
3 · w.

Thus we put w =
√

3
√

d
.

I The same works for higher layers, d corresponds to the number
of neurons in the layer one level lower.

137

Initial weights (for tanh)

I Standardization gives mean = 0 and variance = 1 of the input
data.

I Consider a neuron j from the first layer with d inputs. Assume
that its weights are chosen uniformly from [−w,w].

I The rule: choose w so that the standard deviation of ξj (denote
by oj) is close to the border of the interval on which σj is linear.
In our case: oj ≈ 1.

I Our assumptions imply: oj =
√

d
3 · w.

Thus we put w =
√

3
√

d
.

I The same works for higher layers, d corresponds to the number
of neurons in the layer one level lower.

137

Initial weights (for tanh)

I Standardization gives mean = 0 and variance = 1 of the input
data.

I Consider a neuron j from the first layer with d inputs. Assume
that its weights are chosen uniformly from [−w,w].

I The rule: choose w so that the standard deviation of ξj (denote
by oj) is close to the border of the interval on which σj is linear.
In our case: oj ≈ 1.

I Our assumptions imply: oj =
√

d
3 · w.

Thus we put w =
√

3
√

d
.

I The same works for higher layers, d corresponds to the number
of neurons in the layer one level lower.

137

Initial weights (for tanh)

I Standardization gives mean = 0 and variance = 1 of the input
data.

I Consider a neuron j from the first layer with d inputs. Assume
that its weights are chosen uniformly from [−w,w].

I The rule: choose w so that the standard deviation of ξj (denote
by oj) is close to the border of the interval on which σj is linear.
In our case: oj ≈ 1.

I Our assumptions imply: oj =
√

d
3 · w.

Thus we put w =
√

3
√

d
.

I The same works for higher layers, d corresponds to the number
of neurons in the layer one level lower.

137

Glorot & Bengio initialization
The previous heuristics for weight initialization ignores variance of the
gradient (i.e. it is concerned only with the "size" of activations in the
forward pass).

Glorot & Bengio (2010) presented a normalized initialization by
choosing w uniformly from the interval:−√

6
m + n

,

√
6

m + n


Here n is the number of inputs to the layer, m is the number of
outputs of the layer (i.e. the number of neurons in the layer).

This is designed to compromise between the goal of initializing all
layers to have the same activation variance and the goal of initializing
all layers to have the same gradient variance.

The formula is derived using the assumption that the network consists only of
a chain of matrix multiplications, with no non-linearities. Real neural networks
obviously violate this assumption, but many strategies designed for the linear
model perform reasonably well on its non-linear counterparts.

138

Glorot & Bengio initialization
The previous heuristics for weight initialization ignores variance of the
gradient (i.e. it is concerned only with the "size" of activations in the
forward pass).

Glorot & Bengio (2010) presented a normalized initialization by
choosing w uniformly from the interval:−√

6
m + n

,

√
6

m + n


Here n is the number of inputs to the layer, m is the number of
outputs of the layer (i.e. the number of neurons in the layer).

This is designed to compromise between the goal of initializing all
layers to have the same activation variance and the goal of initializing
all layers to have the same gradient variance.

The formula is derived using the assumption that the network consists only of
a chain of matrix multiplications, with no non-linearities. Real neural networks
obviously violate this assumption, but many strategies designed for the linear
model perform reasonably well on its non-linear counterparts.

138

Glorot & Bengio initialization
The previous heuristics for weight initialization ignores variance of the
gradient (i.e. it is concerned only with the "size" of activations in the
forward pass).

Glorot & Bengio (2010) presented a normalized initialization by
choosing w uniformly from the interval:−√

6
m + n

,

√
6

m + n


Here n is the number of inputs to the layer, m is the number of
outputs of the layer (i.e. the number of neurons in the layer).

This is designed to compromise between the goal of initializing all
layers to have the same activation variance and the goal of initializing
all layers to have the same gradient variance.

The formula is derived using the assumption that the network consists only of
a chain of matrix multiplications, with no non-linearities. Real neural networks
obviously violate this assumption, but many strategies designed for the linear
model perform reasonably well on its non-linear counterparts.

138

Modern activation functions
For hidden neurons sigmoidal functions are often substituted with
piece-wise linear activations functions. Most prominent is ReLU:

σ(ξ) = max{0, ξ}

I THE default activation function recommended for use with most
feedforward neural networks.

I As close to linear function as possible; very simple; does not
saturate for large potentials.

139

Output neurons
The choice of activation functions for output units depends on the
concrete applications.

For regression (function approximation) the output is typically linear
(or sigmoidal).

For classification, the current activation functions of choice are
I logistic sigmoid or tanh – binary classification
I softmax: Given an output neuron j ∈ Y

yj = σj(ξj) =
eξj∑

i∈Y eξi

for multi-class classification.

For some reasons the error function used with softmax (assuming
that the target values dkj are from {0,1}) is typically cross-entropy:

−
1
p

p∑
k=1

∑
j∈Y

dkj ln(yj)

... which somewhat corresponds to the maximum likelihood principle.

140

Output neurons
The choice of activation functions for output units depends on the
concrete applications.

For regression (function approximation) the output is typically linear
(or sigmoidal).

For classification, the current activation functions of choice are
I logistic sigmoid or tanh – binary classification
I softmax: Given an output neuron j ∈ Y

yj = σj(ξj) =
eξj∑

i∈Y eξi

for multi-class classification.

For some reasons the error function used with softmax (assuming
that the target values dkj are from {0,1}) is typically cross-entropy:

−
1
p

p∑
k=1

∑
j∈Y

dkj ln(yj)

... which somewhat corresponds to the maximum likelihood principle.

140

Output neurons
The choice of activation functions for output units depends on the
concrete applications.

For regression (function approximation) the output is typically linear
(or sigmoidal).

For classification, the current activation functions of choice are
I logistic sigmoid or tanh – binary classification
I softmax: Given an output neuron j ∈ Y

yj = σj(ξj) =
eξj∑

i∈Y eξi

for multi-class classification.

For some reasons the error function used with softmax (assuming
that the target values dkj are from {0,1}) is typically cross-entropy:

−
1
p

p∑
k=1

∑
j∈Y

dkj ln(yj)

... which somewhat corresponds to the maximum likelihood principle.
140

Sigmoidal outputs with cross-entropy – in detail

Consider
I Binary classification, two classes {0,1}
I One output neuron j, its activation logistic sigmoid

σj(ξj) =
1

1 + e−ξj

The output of the network is y = σj(ξj).

I For a training set

T =
{ (
~xk ,dk

) ∣∣∣ k = 1, . . . ,p
}

(here ~xk ∈ R
|X | and dk ∈ R), the cross-entropy looks like

this:

Ecross = −
1
p

p∑
k=1

[dk ln(yk) + (1 − dk) ln(1 − yk)]

where yk is the output of the network for the k -th training
input ~xk , and dk is the k -th desired output.

141

Sigmoidal outputs with cross-entropy – in detail

Consider
I Binary classification, two classes {0,1}
I One output neuron j, its activation logistic sigmoid

σj(ξj) =
1

1 + e−ξj

The output of the network is y = σj(ξj).
I For a training set

T =
{ (
~xk ,dk

) ∣∣∣ k = 1, . . . ,p
}

(here ~xk ∈ R
|X | and dk ∈ R), the cross-entropy looks like

this:

Ecross = −
1
p

p∑
k=1

[dk ln(yk) + (1 − dk) ln(1 − yk)]

where yk is the output of the network for the k -th training
input ~xk , and dk is the k -th desired output.

141

Generalization

Intuition: Generalization = ability to cope with new unseen
instances.

Data are mostly noisy, so it is not good idea to fit exactly.

In case of function approximation, the network should not
return exact results as in the training set.

More formally: It is typically assumed that the training set has
been generated as follows:

dkj = gj(~xk) + Θkj

where gj is the "underlying" function corresponding to
the output neuron j ∈ Y and Θkj is random noise.
The network should fit gj not the noise.

Methods improving generalization are called regularization
methods.

142

Generalization

Intuition: Generalization = ability to cope with new unseen
instances.

Data are mostly noisy, so it is not good idea to fit exactly.

In case of function approximation, the network should not
return exact results as in the training set.

More formally: It is typically assumed that the training set has
been generated as follows:

dkj = gj(~xk) + Θkj

where gj is the "underlying" function corresponding to
the output neuron j ∈ Y and Θkj is random noise.
The network should fit gj not the noise.

Methods improving generalization are called regularization
methods.

142

Regularization

Regularization is a big issue in neural networks, as they
typically use a huge amount of parameters and thus are very
susceptible to overfitting.

von Neumann: "With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk."

... and I ask you prof. Neumann:

What can you fit with 40GB of parameters??

143

Regularization

Regularization is a big issue in neural networks, as they
typically use a huge amount of parameters and thus are very
susceptible to overfitting.

von Neumann: "With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk."

... and I ask you prof. Neumann:

What can you fit with 40GB of parameters??

143

Early stopping

Early stopping means that we stop learning before it reaches
a minimum of the error E.

When to stop?

In many applications the error function is not the main thing we
want to optimize.
E.g. in the case of a trading system, we typically want to maximize our profit
not to minimize (strange) error functions designed to be easily differentiable.

Also, as noted before, minimizing E completely is not good for
generalization.

For start: We may employ standard approach of training on one
set and stopping on another one.

144

Early stopping

Early stopping means that we stop learning before it reaches
a minimum of the error E.

When to stop?

In many applications the error function is not the main thing we
want to optimize.
E.g. in the case of a trading system, we typically want to maximize our profit
not to minimize (strange) error functions designed to be easily differentiable.

Also, as noted before, minimizing E completely is not good for
generalization.

For start: We may employ standard approach of training on one
set and stopping on another one.

144

Early stopping

Divide your dataset into several subsets:
I training set (e.g. 60%) – train the network here
I validation set (e.g. 20%) – use to stop the training
I (possibly) test set (e.g. 20%) – use to compare trained

models
What to use as a stopping rule?

You may observe E (or any other function of interest) on the
validation set, if it does not improve for last k steps, stop.

Alternatively, you may observe the gradient, if it is small for
some time, stop.
(recent studies shown that this traditional rule is not too good: it may happen
that the gradient is larger close to minimum values; on the other hand, E
does not have to be evaluated which saves time.

To compare models you may use ML techniques such as
cross-validation etc.

145

Early stopping

Divide your dataset into several subsets:
I training set (e.g. 60%) – train the network here
I validation set (e.g. 20%) – use to stop the training
I (possibly) test set (e.g. 20%) – use to compare trained

models
What to use as a stopping rule?

You may observe E (or any other function of interest) on the
validation set, if it does not improve for last k steps, stop.

Alternatively, you may observe the gradient, if it is small for
some time, stop.
(recent studies shown that this traditional rule is not too good: it may happen
that the gradient is larger close to minimum values; on the other hand, E
does not have to be evaluated which saves time.

To compare models you may use ML techniques such as
cross-validation etc.

145

Size of the network

Similar problem as in the case of the training duration:
I Too small network is not able to capture intrinsic properties

of the training set.
I Large networks overfit faster – bad generalization.

Solution: Optimal number of neurons :-)

I there are some (useless) theoretical bounds
I there are algorithms dynamically adding/removing neurons

(not much use nowadays)
I In practice:
I start using a rule of thumb: the number of neurons ≈ ten

times less than the number of training instances.
I experiment, experiment, experiment.

146

Size of the network

Similar problem as in the case of the training duration:
I Too small network is not able to capture intrinsic properties

of the training set.
I Large networks overfit faster – bad generalization.

Solution: Optimal number of neurons :-)
I there are some (useless) theoretical bounds
I there are algorithms dynamically adding/removing neurons

(not much use nowadays)
I In practice:
I start using a rule of thumb: the number of neurons ≈ ten

times less than the number of training instances.
I experiment, experiment, experiment.

146

Feature extraction

Consider a two layer network. Hidden neurons are supposed to
represent "patterns" in the inputs.

Example: Network 64-2-3 for letter classification:

147

Ensemble methods

Techniques for reducing generalization error by combining
several models.
The reason that ensemble methods work is that different models will usually
not make all the same errors on the test set.

Idea: Train several different models separately, then have all of
the models vote on the output for test examples.

Bagging:
I Generate k training sets T1, ...,Tk by sampling from T

uniformly with replacement.
If the number of samples is |T |, then on average |Ti | = (1 − 1/e)|T |.

I For each i, train a model Mi on Ti .
I Combine outputs of the models: for regression by

averaging, for classification by (majority) voting.

148

Ensemble methods

Techniques for reducing generalization error by combining
several models.
The reason that ensemble methods work is that different models will usually
not make all the same errors on the test set.

Idea: Train several different models separately, then have all of
the models vote on the output for test examples.

Bagging:
I Generate k training sets T1, ...,Tk by sampling from T

uniformly with replacement.
If the number of samples is |T |, then on average |Ti | = (1 − 1/e)|T |.

I For each i, train a model Mi on Ti .
I Combine outputs of the models: for regression by

averaging, for classification by (majority) voting.

148

Dropout

The algorithm: In every step of the gradient descent

I choose randomly a set N of neurons, each neuron is included in
N independently with probability 1/2,
(in practice, different probabilities are used as well).

I do forward and backward propagations only using the selected
neurons
(i.e. leave weights of the other neurons unchanged)

Dropout resembles bagging: Large ensemble of neural networks is
trained "at once" on parts of the data.

Dropout is not exactly the same as bagging: The models share
parameters, with each model inheriting a different subset of
parameters from the parent neural network. This parameter sharing
makes it possible to represent an exponential number of models with
a tractable amount of memory.
In the case of bagging, each model is trained to convergence on its respective
training set. This would be infeasible for large networks/training sets.

149

Dropout

The algorithm: In every step of the gradient descent

I choose randomly a set N of neurons, each neuron is included in
N independently with probability 1/2,
(in practice, different probabilities are used as well).

I do forward and backward propagations only using the selected
neurons
(i.e. leave weights of the other neurons unchanged)

Dropout resembles bagging: Large ensemble of neural networks is
trained "at once" on parts of the data.

Dropout is not exactly the same as bagging: The models share
parameters, with each model inheriting a different subset of
parameters from the parent neural network. This parameter sharing
makes it possible to represent an exponential number of models with
a tractable amount of memory.
In the case of bagging, each model is trained to convergence on its respective
training set. This would be infeasible for large networks/training sets.

149

Weight decay and L2 regularization

Generalization can be improved by removing "unimportant"
weights.

Penalising large weights gives stronger indication about their
importance.

In every step we decrease weights (multiplicatively) as follows:

w(t+1)
ji = (1 − ζ)(w(t)

ji + ∆w(t)
ji)

Intuition: Unimportant weights will be pushed to 0, important
weights will survive the decay.

Weight decay is equivalent to the gradient descent with a
constant learning rate ε and the following error function:

E′(~w) = E(~w) +
2ζ
ε

(~w · ~w)

Here 2ζ
ε (~w · ~w) is the L2 regularization that penalizes large

weights.

150

Weight decay and L2 regularization

Generalization can be improved by removing "unimportant"
weights.

Penalising large weights gives stronger indication about their
importance.

In every step we decrease weights (multiplicatively) as follows:

w(t+1)
ji = (1 − ζ)(w(t)

ji + ∆w(t)
ji)

Intuition: Unimportant weights will be pushed to 0, important
weights will survive the decay.

Weight decay is equivalent to the gradient descent with a
constant learning rate ε and the following error function:

E′(~w) = E(~w) +
2ζ
ε

(~w · ~w)

Here 2ζ
ε (~w · ~w) is the L2 regularization that penalizes large

weights.

150

Weight decay and L2 regularization

Generalization can be improved by removing "unimportant"
weights.

Penalising large weights gives stronger indication about their
importance.

In every step we decrease weights (multiplicatively) as follows:

w(t+1)
ji = (1 − ζ)(w(t)

ji + ∆w(t)
ji)

Intuition: Unimportant weights will be pushed to 0, important
weights will survive the decay.

Weight decay is equivalent to the gradient descent with a
constant learning rate ε and the following error function:

E′(~w) = E(~w) +
2ζ
ε

(~w · ~w)

Here 2ζ
ε (~w · ~w) is the L2 regularization that penalizes large

weights.
150

More optimization, regularization ...

There are many more practical tips, optimization methods,
regularization methods, etc.

For a very nice survey see

http://www.deeplearningbook.org/

... and also all other infinitely many urls concerned with deep
learning.

151

http://www.deeplearningbook.org/

Some applications

152

ALVINN (history)

153

ALVINN

Architecture:
I MLP, 960 − 4 − 30 (also 960 − 5 − 30)
I inputs correspond to pixels

Activity:
I activation functions: logistic sigmoid
I Steering wheel position determined by "center of mass" of

neuron values.

154

ALVINN

Architecture:
I MLP, 960 − 4 − 30 (also 960 − 5 − 30)
I inputs correspond to pixels

Activity:
I activation functions: logistic sigmoid
I Steering wheel position determined by "center of mass" of

neuron values.

154

ALVINN

Learning: Trained during (live) drive.
I Front window view captured by a camera, 25 images per

second.
I Training samples of the form (~xk , ~dk) where
I ~xk = image of the road
I ~dk = corresponding position of the steering wheel

I position of the steering wheel "blurred" by Gaussian
distribution:

dki = e−D2
i /10

where Di is the distance of the i-th output from the one
which corresponds to the correct position of the wheel.

(The authors claim that this was better than the binary
output.)

155

ALVINN – Selection of training samples

Naive approach: take images directly from the camera and
adapt accordingly.

Problems:
I If the driver is gentle enough, the car never learns how to

get out of dangerous situations. A solution may be
I turn off learning for a moment, then suddenly switch on,

and let the net catch on,
I let the driver drive as if being insane (dangerous, possibly

expensive).
I The real view out of the front window is repetitive and

boring, the net would overfit on few examples.

156

ALVINN – Selection of training samples

Naive approach: take images directly from the camera and
adapt accordingly.

Problems:
I If the driver is gentle enough, the car never learns how to

get out of dangerous situations. A solution may be
I turn off learning for a moment, then suddenly switch on,

and let the net catch on,
I let the driver drive as if being insane (dangerous, possibly

expensive).
I The real view out of the front window is repetitive and

boring, the net would overfit on few examples.

156

ALVINN – Selection of training examples
Problem with a "good" driver is solved as follows:

I 15 distorted copies of each image:

I desired output generated for each copy

"Boring" images solved as follows:
I a buffer of 200 images (including 15 copies of the original), in

every step the system trains on the buffer
I after several updates a new image is captured, 15 copies are

made and they will substitute 15 images in the buffer (5 chosen
randomly, 10 with the smallest error).

157

ALVINN – Selection of training examples
Problem with a "good" driver is solved as follows:
I 15 distorted copies of each image:

I desired output generated for each copy

"Boring" images solved as follows:
I a buffer of 200 images (including 15 copies of the original), in

every step the system trains on the buffer
I after several updates a new image is captured, 15 copies are

made and they will substitute 15 images in the buffer (5 chosen
randomly, 10 with the smallest error).

157

ALVINN – Selection of training examples
Problem with a "good" driver is solved as follows:
I 15 distorted copies of each image:

I desired output generated for each copy

"Boring" images solved as follows:
I a buffer of 200 images (including 15 copies of the original), in

every step the system trains on the buffer
I after several updates a new image is captured, 15 copies are

made and they will substitute 15 images in the buffer (5 chosen
randomly, 10 with the smallest error).

157

ALVINN - learning

I pure backpropagation
I constant learning rate
I momentum, slowly increasing.

We used a learning rate of 0.015, a momentum term of 0.9, and we ramped
up the learning rate and momentum using a rate term of 0.05. This means
that the learning rate and momentum increase linearly over 20 epochs until
they reach their maximum value (0.015 and 0.9, respectively). We also used
a weight decay term of 0.0001.

Results:
I Trained for 5 minutes, speed 4 miles per hour.
I ALVINN was able to drive well on a new road it has never

seen (in different weather conditions).

I The maximum speed was limited by the hydraulic controller
of the steering wheel, not the learning algorithm.

158

ALVINN - learning

I pure backpropagation
I constant learning rate
I momentum, slowly increasing.

We used a learning rate of 0.015, a momentum term of 0.9, and we ramped
up the learning rate and momentum using a rate term of 0.05. This means
that the learning rate and momentum increase linearly over 20 epochs until
they reach their maximum value (0.015 and 0.9, respectively). We also used
a weight decay term of 0.0001.

Results:
I Trained for 5 minutes, speed 4 miles per hour.
I ALVINN was able to drive well on a new road it has never

seen (in different weather conditions).
I The maximum speed was limited by the hydraulic controller

of the steering wheel, not the learning algorithm.
158

ALVINN - weight development

round 0

round 10

round 20

round 50

h1 h2 h3 h4 h5

Here h1, . . . ,h5 are hidden neurons.
159

MNIST – handwritten digits recognition

I Database of labelled images of
handwritten digits: 60 000
training examples, 10 000 testing.

I Dimensions: 28 x 28, digits are
centered to the "center of gravity"
of pixel values and normalized to
fixed size.

I More at http:
//yann.lecun.com/exdb/mnist/

The database is used as a standard benchmark in lots of publications.

Allows comparison of various methods.

160

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

MNIST – handwritten digits recognition

I Database of labelled images of
handwritten digits: 60 000
training examples, 10 000 testing.

I Dimensions: 28 x 28, digits are
centered to the "center of gravity"
of pixel values and normalized to
fixed size.

I More at http:
//yann.lecun.com/exdb/mnist/

The database is used as a standard benchmark in lots of publications.

Allows comparison of various methods.

160

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

MNIST

One of the best "old" results is the following:

6-layer NN 784-2500-2000-1500-1000-500-10 (on GPU)
(Ciresan et al. 2010)

Abstract: Good old on-line back-propagation for plain multi-layer
perceptrons yields a very low 0.35 error rate on the famous MNIST
handwritten digits benchmark. All we need to achieve this best result so far
are many hidden layers, many neurons per layer, numerous deformed
training images, and graphics cards to greatly speed up learning.

A famous application of the first convolutional network LeNet-1 in
1998.

161

MNIST – LeNet1

162

MNIST – LeNet1

Interpretation of output:
I the output neuron with the highest value identifies the digit.
I the same, but if the two largest neuron values are too close

together, the input is rejected (i.e. no answer).
Learning:
Inputs:

I training on 7291 samples, tested on 2007 samples

Results:

I error on test set without rejection: 5%
I error on test set with rejection: 1% (12% rejected)

I compare with dense MLP with 40 hidden neurons: error
1% (19.4% rejected)

163

Modern convolutional networks

The rest of the lecture is based on the online book Neural
Networks and Deep Learning by Michael Nielsen.
http://neuralnetworksanddeeplearning.com/index.html

I Convolutional networks are currently the best networks for
image classification.

I Their common ancestor is LeNet-5 (and other LeNets)
from nineties.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 1998

164

http://neuralnetworksanddeeplearning.com/index.html

AlexNet

In 2012 this network made a breakthrough in ILVSCR
competition, taking the classification error from around 28% to
16%:

A convolutional network, trained on two GPUs.

165

Convolutional networks - local receptive fields

Every neuron is connected with a field of k × k (in this case
5 × 5) neurons in the lower layer (this filed is receptive field).

Neuron is "standard": Computes a weighted sum of its inputs,
applies an activation function.

166

Convolutional networks - stride length

Then we slide the local receptive field over by one pixel to the right
(i.e., by one neuron), to connect to a second hidden neuron:

The "size" of the slide is
called stride length.

The group of all such
neurons is feature map.
all these neurons share
weights and biases!

167

Feature maps

Each feature map represents a property of the input that is
supposed to be spatially invariant.

Typically, we consider several feature maps in a single layer.

168

Trained feature maps

(20 feature maps, receptive fields 5 × 5)

169

Pooling

Neurons in the pooling layer compute functions of their
receptive fields:
I Max-pooling : maximum of inputs
I L2-pooling : square root of the sum of squres
I Average-pooling : mean
I · · ·

170

Simple convolutional network

28 × 28 input image, 3 feature maps, each feature map has its
own max-pooling (field 5 × 5, stride = 1), 10 output neurons.

Each neuron in the output layer gets input from each neuron in
the pooling layer.

Trained using backprop, which can be easily adapted to
convolutional networks.

171

Convolutional network

172

Simple convolutional network vs MNIST

two convolutional-pooling layers, one 20, second 40 feature
maps, two dense (MLP) layers (1000-1000), outputs (10)
I Activation functions of the feature maps and dense layers:

ReLU
I max-pooling
I output layer: soft-max

I Error function: negative log-likelihood (= cross-entropy)

I Training: SGD, mini-batch size 10
I learning rate 0.03
I L2 regularization with "weight" λ = 0.1 + dropout with prob.

1/2
I training for 40 epochs (i.e. every training example is

considered 40 times)

I Expanded dataset: displacement by one pixel to an
arbitrary direction.

I Committee voting of 5 networks. 173

MNIST

Out of 10 000 images in the test set, only these 33 have been
incorrectly classified:

174

More complex convolutional networks

Convolutional networks have been used for classification of
images from the ImageNet database (16 million color images,
20 thousand classes)

175

ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC)

Competition in classification over a subset of images from
ImageNet.
Started in 2010, assisted in breakthrough in image recognition.

Training set 1.2 million images, 1000 classes. Validation set: 50
000, test set: 150 000.

Many images contain more than one object⇒ model is allowed
to choose five classes, the correct label must be among the
five. (top-5 criterion).

176

AlexNet

ImageNet classification with deep convolutional neural networks, by Alex
Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton (2012).

Trained on two GPUs (NVIDIA GeForce GTX 580)

Výsledky:
I accuracy 84.7% in top-5 (second best algorithm at the time

73.8%)
I 63.3% "perfect" (top-1) classification

177

ILSVRC 2014

The same set as in 2012, top-5 criterion.

GoogLeNet: deep convolutional network, 22 layers

Results:

I Accuracy 93.33% top-5

178

ILSVRC 2015

I Deep convolutional network
I Various numbers of layers, the winner has

152 layers
I Skip connections implementing residual

learning

I Error 3.57% in top-5.

179

Superhuman convolutional nets?!

Andrej Karpathy: ...the task of labeling images with 5 out of 1000
categories quickly turned out to be extremely challenging, even for some
friends in the lab who have been working on ILSVRC and its classes for a
while. First we thought we would put it up on [Amazon Mechanical Turk].
Then we thought we could recruit paid undergrads. Then I organized a
labeling party of intense labeling effort only among the (expert labelers) in
our lab. Then I developed a modified interface that used GoogLeNet
predictions to prune the number of categories from 1000 to only about 100. It
was still too hard - people kept missing categories and getting up to ranges of
13-15% error rates. In the end I realized that to get anywhere competitively
close to GoogLeNet, it was most efficient if I sat down and went through the
painfully long training process and the subsequent careful annotation process
myself... The labeling happened at a rate of about 1 per minute, but this
decreased over time... Some images are easily recognized, while some
images (such as those of fine-grained breeds of dogs, birds, or monkeys) can
require multiple minutes of concentrated effort. I became very good at
identifying breeds of dogs... Based on the sample of images I worked on, the
GoogLeNet classification error turned out to be 6.8%... My own error in the
end turned out to be 5.1%, approximately 1.7% better.

180

Convolutional networks – theory

181

Convolutional network

182

Convolutional layers

Every neuron is connected with a (typically small) receptive
field of neurons in the lower layer.

Neuron is "standard": Computes a weighted sum of its inputs,
applies an activation function.

183

Convolutional layers

Neurons grouped into
feature maps sharing
weights.

184

Convolutional layers

Each feature map represents a property of the input that is
supposed to be spatially invariant.

Typically, we consider several feature maps in a single layer.

185

Pooling layers

Neurons in the pooling layer compute simple functions of their
receptive fields (the fields are typically disjoint):
I Max-pooling : maximum of inputs
I L2-pooling : square root of the sum of squres
I Average-pooling : mean
I · · ·

186

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
I input layer L0

I dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

I convolutional & pooling layer Lm: Contains two
sub-layers:
I convolutional layer: Neurons organized into disjoint

feature maps, all neurons of a given feature map share
weights (but have different inputs)

I pooling layer: Each (convolutional) feature map F has
a corresponding pooling map P. Neurons of P
I have inputs only from F (typically few of them),
I compute a simple aggregate function (such as max),
I have disjoint inputs.

187

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
I input layer L0

I dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

I convolutional & pooling layer Lm: Contains two
sub-layers:
I convolutional layer: Neurons organized into disjoint

feature maps, all neurons of a given feature map share
weights (but have different inputs)

I pooling layer: Each (convolutional) feature map F has
a corresponding pooling map P. Neurons of P
I have inputs only from F (typically few of them),
I compute a simple aggregate function (such as max),
I have disjoint inputs.

187

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
I input layer L0

I dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

I convolutional & pooling layer Lm: Contains two
sub-layers:
I convolutional layer: Neurons organized into disjoint

feature maps, all neurons of a given feature map share
weights (but have different inputs)

I pooling layer: Each (convolutional) feature map F has
a corresponding pooling map P. Neurons of P
I have inputs only from F (typically few of them),
I compute a simple aggregate function (such as max),
I have disjoint inputs.

187

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
I input layer L0

I dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

I convolutional & pooling layer Lm: Contains two
sub-layers:
I convolutional layer: Neurons organized into disjoint

feature maps, all neurons of a given feature map share
weights (but have different inputs)

I pooling layer: Each (convolutional) feature map F has
a corresponding pooling map P. Neurons of P
I have inputs only from F (typically few of them),
I compute a simple aggregate function (such as max),
I have disjoint inputs.

187

Convolutional networks – architecture
I Denote
I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

I [ji] is a set of all connections (i.e. pairs of neurons) sharing
the weight wji . 188

Convolutional networks – activity
I neurons of dense and convolutional layers:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable):

yj = σj(ξj)

I Neurons of pooling layers: Apply the "pooling" function:
I max-pooling:

yj = max
i∈j←

yi

I avg-pooling:

yj =

∑
i∈j← yi

|j←|
A convolutional network is evaluated layer-wise (as MLP), for each j ∈ Y we
have that yj(~w, ~x) is the value of the output neuron j after evaluating the
network with weights ~w and input ~x.

189

Convolutional networks – activity
I neurons of dense and convolutional layers:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable):

yj = σj(ξj)

I Neurons of pooling layers: Apply the "pooling" function:
I max-pooling:

yj = max
i∈j←

yi

I avg-pooling:

yj =

∑
i∈j← yi

|j←|
A convolutional network is evaluated layer-wise (as MLP), for each j ∈ Y we
have that yj(~w, ~x) is the value of the output neuron j after evaluating the
network with weights ~w and input ~x.

189

Convolutional networks – learning

Learning:
I Given a training set T of the form{ (

~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function – mean squared error (for example):

E(~w) =
1
p

p∑
k=1

Ek (~w)

where

Ek (~w) =
1
2

∑
j∈Y

(
yj(~w, ~xk) − dkj

)2

190

Convolutional networks – SGD

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:
I Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
I Compute

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) ·
1
|T |

∑
k∈T

∇Ek (~w(t))

Here T is a minibatch (of a fixed size),
I 0 < ε(t) ≤ 1 is a learning rate in step t + 1
I ∇Ek (~w(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented
by randomly shuffling all data and then choosing minibatches
sequentially. Epoch consists of one round through all data. 191

Backprop

Recall that ∇Ek (~w(t)) is a vector of all partial derivatives of
the form ∂Ek

∂wji
.

How to compute ∂Ek
∂wji

?

First, switch from derivatives w.r.t. wji to derivatives w.r.t. yj :
I Recall that for every wji where j is in a dense layer, i.e.

does not share weights:

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

I Now for every wji where j is in a convolutional layer:

∂Ek

∂wji
=

∑
r`∈[ji]

∂Ek

∂yr
· σ′r (ξr) · y`

I Neurons of pooling layers do not have weights.

192

Backprop

Recall that ∇Ek (~w(t)) is a vector of all partial derivatives of
the form ∂Ek

∂wji
.

How to compute ∂Ek
∂wji

?

First, switch from derivatives w.r.t. wji to derivatives w.r.t. yj :
I Recall that for every wji where j is in a dense layer, i.e.

does not share weights:

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

I Now for every wji where j is in a convolutional layer:

∂Ek

∂wji
=

∑
r`∈[ji]

∂Ek

∂yr
· σ′r (ξr) · y`

I Neurons of pooling layers do not have weights.

192

Backprop

Recall that ∇Ek (~w(t)) is a vector of all partial derivatives of
the form ∂Ek

∂wji
.

How to compute ∂Ek
∂wji

?

First, switch from derivatives w.r.t. wji to derivatives w.r.t. yj :
I Recall that for every wji where j is in a dense layer, i.e.

does not share weights:

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

I Now for every wji where j is in a convolutional layer:

∂Ek

∂wji
=

∑
r`∈[ji]

∂Ek

∂yr
· σ′r (ξr) · y`

I Neurons of pooling layers do not have weights.
192

Backprop
Now compute derivatives w.r.t. yj :
I for every j ∈ Y :

∂Ek

∂yj
= yj − dkj

This holds for the squared error, for other error functions the derivative
w.r.t. outputs will be different.

I for every j ∈ Z r Y such that j→ is either a dense layer, or a
convolutional layer:

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

I for every j ∈ Z r Y such that j→ is max-pooling: Then j→ = {i} for
a single "max" neuron and we have

∂Ek

∂yj
=

 ∂Ek
∂yi

if j = arg max r∈i←yr

0 otherwise

I.e. gradient can be propagated from the output layer downwards as in MLP.

193

Backprop
Now compute derivatives w.r.t. yj :
I for every j ∈ Y :

∂Ek

∂yj
= yj − dkj

This holds for the squared error, for other error functions the derivative
w.r.t. outputs will be different.

I for every j ∈ Z r Y such that j→ is either a dense layer, or a
convolutional layer:

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

I for every j ∈ Z r Y such that j→ is max-pooling: Then j→ = {i} for
a single "max" neuron and we have

∂Ek

∂yj
=

 ∂Ek
∂yi

if j = arg max r∈i←yr

0 otherwise

I.e. gradient can be propagated from the output layer downwards as in MLP.

193

Backprop
Now compute derivatives w.r.t. yj :
I for every j ∈ Y :

∂Ek

∂yj
= yj − dkj

This holds for the squared error, for other error functions the derivative
w.r.t. outputs will be different.

I for every j ∈ Z r Y such that j→ is either a dense layer, or a
convolutional layer:

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

I for every j ∈ Z r Y such that j→ is max-pooling: Then j→ = {i} for
a single "max" neuron and we have

∂Ek

∂yj
=

 ∂Ek
∂yi

if j = arg max r∈i←yr

0 otherwise

I.e. gradient can be propagated from the output layer downwards as in MLP.
193

Convolutional networks – summary

I Conv. nets. are nowadays the most used networks in
image processing (and also in other areas where input has
some local, "spatially" invariant properties)

I Typically trained using backpropagation.
I Due to the weight sharing allow (very) deep architectures.
I Typically extended with more adjustments and tricks in

their topologies.

194

Recurrent Neural Networks - LSTM

195

RNN

I Input:
~x = (x1, . . . , xM)

I Hidden:
~h = (h1, . . . ,hH)

I Output:
~y = (y1, . . . , yN)

196

RNN example

Activation function:

σ(ξ) =

1 ξ ≥ 0
0 ξ < 0

y 1 0 1
h (0,0) (1,1) (1,0) (0,1) · · ·

x (0,0) (1,0) (1,1)

197

RNN example

Activation function:

σ(ξ) =

1 ξ ≥ 0
0 ξ < 0

y ~y1 = 1 ~y2 = 0 ~y3 = 1
h ~h0 = (0,0) ~h1 = (1,1) ~h2 = (1,0) ~h3 = (0,1) · · ·

x ~x1 = (0,0) ~x2 = (1,0) ~x3 = (1,1)

197

RNN example

y ~y1 = 1 ~y2 = 0 ~y3 = 1
h ~h0 = (0,0) ~h1 = (1,1) ~h2 = (1,0) ~h3 = (0,1) · · ·

x ~x1 = (0,0) ~x2 = (1,0) ~x3 = (1,1)

197

RNN – formally

I M inputs: ~x = (x1, . . . , xM)

I H hidden neurons: ~h = (h1, . . . ,hH)

I N output neurons: ~y = (y1, . . . , yN)

I Weights:
I Ukk ′ from input xk ′ to hidden hk
I Wkk ′ from hidden hk ′ to hidden hk
I Vkk ′ from hidden hk ′ to output yk

198

RNN – formally

I Input sequence: x = ~x1, . . . , ~xT

~xt = (xt1, . . . , xtM)

I Hidden sequence: h = ~h0, ~h1, . . . , ~hT

~ht = (ht1, . . . ,htH)

We have ~h0 = (0, . . . ,0) and

~htk = σ

 M∑
k ′=1

Ukk ′xtk ′ +

H∑
k ′=1

Wkk ′h(t−1)k ′


I Output sequence: y = ~y1, . . . , ~yT

~yt = (yt1, . . . , ytN)

where ytk = σ
(∑H

k ′=1 Vkk ′htk ′
)
.

199

RNN – formally

I Input sequence: x = ~x1, . . . , ~xT

~xt = (xt1, . . . , xtM)

I Hidden sequence: h = ~h0, ~h1, . . . , ~hT

~ht = (ht1, . . . ,htH)

We have ~h0 = (0, . . . ,0) and

~htk = σ

 M∑
k ′=1

Ukk ′xtk ′ +

H∑
k ′=1

Wkk ′h(t−1)k ′



I Output sequence: y = ~y1, . . . , ~yT

~yt = (yt1, . . . , ytN)

where ytk = σ
(∑H

k ′=1 Vkk ′htk ′
)
.

199

RNN – formally

I Input sequence: x = ~x1, . . . , ~xT

~xt = (xt1, . . . , xtM)

I Hidden sequence: h = ~h0, ~h1, . . . , ~hT

~ht = (ht1, . . . ,htH)

We have ~h0 = (0, . . . ,0) and

~htk = σ

 M∑
k ′=1

Ukk ′xtk ′ +

H∑
k ′=1

Wkk ′h(t−1)k ′


I Output sequence: y = ~y1, . . . , ~yT

~yt = (yt1, . . . , ytN)

where ytk = σ
(∑H

k ′=1 Vkk ′htk ′
)
.

199

RNN – in matrix form

I Input sequence: x = ~x1, . . . , ~xT

I Hidden sequence: h = ~h0, ~h1, . . . , ~hT where

~h0 = (0, . . . ,0)

and

~ht = σ(U~xt + W~ht−1)

I Output sequence: y = ~y1, . . . , ~yT where

yt = σ(Vht)

200

RNN – in matrix form

I Input sequence: x = ~x1, . . . , ~xT

I Hidden sequence: h = ~h0, ~h1, . . . , ~hT where

~h0 = (0, . . . ,0)

and

~ht = σ(U~xt + W~ht−1)

I Output sequence: y = ~y1, . . . , ~yT where

yt = σ(Vht)

200

RNN – in matrix form

I Input sequence: x = ~x1, . . . , ~xT

I Hidden sequence: h = ~h0, ~h1, . . . , ~hT where

~h0 = (0, . . . ,0)

and

~ht = σ(U~xt + W~ht−1)

I Output sequence: y = ~y1, . . . , ~yT where

yt = σ(Vht)

200

RNN – Comments

I ~ht is the memory of the network, captures what happened
in all previous steps (with decaying quality).

I RNN shares weights U,V ,W along the sequence.
Note the similarity to convolutional networks where the weights were
shared spatially over images, here they are shared temporally over
sequences.

I RNN can deal with sequences of variable length.
Compare with MLP which accepts only fixed-dimension vectors on
input.

201

RNN – training

Training set

T =
{
(x1,d1), . . . , (xp ,yp)

}
here
I each x` = ~x`1, . . . , ~x`T` is an input sequence,

I each d` = ~d`1, . . . , ~d`T` is an expected output sequence.
Here each ~x`t = (x`t1, . . . , x`tM) is an input vector and each
~d`t = (d`t1, . . . ,d`tN) is an expected output vector.

202

Error function

In what follows I will consider a training set with a single
element (x,d). I.e. drop the index ` and have
I x = ~x1, . . . , ~xT where ~xt = (xt1, . . . , xtM)

I d = ~d1, . . . , ~dT where ~dt = (dt1, . . . ,dtN)

The squared error of (x,d) is defined by

E(x,d) =

T∑
t=1

N∑
k=1

1
2

(ytk − dtk)2

Recall that we have a sequence of network outputs
y = ~y1, . . . , ~yT and thus ytk is the k -th component of ~yt

203

Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:

I Initialize all weights randomly close to 0.
I In the step ` + 1 (here ` = 0,1,2, . . .) compute "new"

weights U(`+1),V (`+1),W (`+1) from the "old" weights
U(`),V (`),W (`) as follows:

U(`+1)
kk ′ = U(`)

kk ′ − ε(`) ·
δE(x,d)

δUkk ′

V (`+1)
kk ′ = V (`)

kk ′ − ε(`) ·
δE(x,d)

δVkk ′

W (`+1)
kk ′ = W (`)

kk ′ − ε(`) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!

204

Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:
I Initialize all weights randomly close to 0.

I In the step ` + 1 (here ` = 0,1,2, . . .) compute "new"
weights U(`+1),V (`+1),W (`+1) from the "old" weights
U(`),V (`),W (`) as follows:

U(`+1)
kk ′ = U(`)

kk ′ − ε(`) ·
δE(x,d)

δUkk ′

V (`+1)
kk ′ = V (`)

kk ′ − ε(`) ·
δE(x,d)

δVkk ′

W (`+1)
kk ′ = W (`)

kk ′ − ε(`) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!

204

Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:
I Initialize all weights randomly close to 0.
I In the step ` + 1 (here ` = 0,1,2, . . .) compute "new"

weights U(`+1),V (`+1),W (`+1) from the "old" weights
U(`),V (`),W (`) as follows:

U(`+1)
kk ′ = U(`)

kk ′ − ε(`) ·
δE(x,d)

δUkk ′

V (`+1)
kk ′ = V (`)

kk ′ − ε(`) ·
δE(x,d)

δVkk ′

W (`+1)
kk ′ = W (`)

kk ′ − ε(`) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!

204

Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:
I Initialize all weights randomly close to 0.
I In the step ` + 1 (here ` = 0,1,2, . . .) compute "new"

weights U(`+1),V (`+1),W (`+1) from the "old" weights
U(`),V (`),W (`) as follows:

U(`+1)
kk ′ = U(`)

kk ′ − ε(`) ·
δE(x,d)

δUkk ′

V (`+1)
kk ′ = V (`)

kk ′ − ε(`) ·
δE(x,d)

δVkk ′

W (`+1)
kk ′ = W (`)

kk ′ − ε(`) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!
204

Backpropagation

Computes the derivatives of E, no weights are modified!

δE(x,d)

δUkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · xtk ′ k ′ = 1, . . . ,M

δE(x,d)

δVkk ′
=

T∑
t=1

δE(x,d)

δytk
· σ′ · htk ′ k ′ = 1, . . . ,H

δE(x,d)

δWkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · h(t−1)k ′ k ′ = 1, . . . ,H

Backpropagation:
δE(x,d)

δytk
= ytk − dtk (assuming squared error)

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

205

Backpropagation

Computes the derivatives of E, no weights are modified!

δE(x,d)

δUkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · xtk ′ k ′ = 1, . . . ,M

δE(x,d)

δVkk ′
=

T∑
t=1

δE(x,d)

δytk
· σ′ · htk ′ k ′ = 1, . . . ,H

δE(x,d)

δWkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · h(t−1)k ′ k ′ = 1, . . . ,H

Backpropagation:
δE(x,d)

δytk
= ytk − dtk (assuming squared error)

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

205

Backpropagation

Computes the derivatives of E, no weights are modified!

δE(x,d)

δUkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · xtk ′ k ′ = 1, . . . ,M

δE(x,d)

δVkk ′
=

T∑
t=1

δE(x,d)

δytk
· σ′ · htk ′ k ′ = 1, . . . ,H

δE(x,d)

δWkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · h(t−1)k ′ k ′ = 1, . . . ,H

Backpropagation:
δE(x,d)

δytk
= ytk − dtk (assuming squared error)

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

205

Long-term dependencies

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

I Unless
∑H

k ′=1 σ
′
·Wk ′k ≈ 1, the gradient either vanishes, or

explodes.
I For a large T (long-term dependency), the gradient

"deeper" in the past tends to be too small (large).
I A solution: LSTM

206

LSTM

~ht = ~ot ◦ σh(~Ct) output
~Ct = ~ft ◦ ~Ct−1 +~it ◦ C̃t memory

C̃t = σh(WC ·
~ht−1 + UC · ~xt) new memory contents

~ot = σg(Wo · ~ht−1 + Uo · ~xt) output gate
~ft = σg(Wf ·

~ht−1 + Uf · ~xt) forget gate
~it = σg(Wi · ~ht−1 + Ui · ~xt) input gate

I ◦ is the component-wise product of vectors
I · is the matrix-vector product
I σh hyperbolic tangents (applied component-wise)
I σg logistic sigmoid (aplied component-wise)

207

RNN vs LSTM

208

LSTM

⇒ ~ht = ~ot ◦ σh(~Ct)

⇒ ~Ct = ~ft ◦ ~Ct−1 +~it ◦ C̃t

⇒ C̃t = σh(WC ·
~ht−1 + UC · ~xt)

⇒ ~ot = σg(Wo · ~ht−1 + Uo · ~xt)

⇒ ~ft = σg(Wf ·
~ht−1 + Uf · ~xt)

⇒~it = σg(Wi · ~ht−1 + Ui · ~xt)

209

LSTM

⇒ ~ht = ~ot ◦ σh(~Ct)

⇒ ~Ct = ~ft ◦ ~Ct−1 +~it ◦ C̃t

⇒ C̃t = σh(WC ·
~ht−1 + UC · ~xt)

⇒ ~ot = σg(Wo · ~ht−1 + Uo · ~xt)

⇒ ~ft = σg(Wf ·
~ht−1 + Uf · ~xt)

⇒~it = σg(Wi · ~ht−1 + Ui · ~xt)

209

LSTM

⇒ ~ht = ~ot ◦ σh(~Ct)

⇒ ~Ct = ~ft ◦ ~Ct−1 +~it ◦ C̃t

⇒ C̃t = σh(WC ·
~ht−1 + UC · ~xt)

⇒ ~ot = σg(Wo · ~ht−1 + Uo · ~xt)

⇒ ~ft = σg(Wf ·
~ht−1 + Uf · ~xt)

⇒~it = σg(Wi · ~ht−1 + Ui · ~xt)

209

LSTM

⇒ ~ht = ~ot ◦ σh(~Ct)

⇒ ~Ct = ~ft ◦ ~Ct−1 +~it ◦ C̃t

⇒ C̃t = σh(WC ·
~ht−1 + UC · ~xt)

⇒ ~ot = σg(Wo · ~ht−1 + Uo · ~xt)

⇒ ~ft = σg(Wf ·
~ht−1 + Uf · ~xt)

⇒~it = σg(Wi · ~ht−1 + Ui · ~xt)

209

LSTM

⇒ ~ht = ~ot ◦ σh(~Ct)

⇒ ~Ct = ~ft ◦ ~Ct−1 +~it ◦ C̃t

⇒ C̃t = σh(WC ·
~ht−1 + UC · ~xt)

⇒ ~ot = σg(Wo · ~ht−1 + Uo · ~xt)

⇒ ~ft = σg(Wf ·
~ht−1 + Uf · ~xt)

⇒~it = σg(Wi · ~ht−1 + Ui · ~xt)

209

LSTM – summary

I LSTM (almost) solves the vanishing gradient problem w.r.t.
the "internal" state of the network.

I Learns to control its own memory (via forget gate).
I Revolution in machine translation and text processing.

210

Convolutions & LSTM in action – cancer research

211

Colorectal cancer outcome prediction

The problem: Predict 5-year survival probability from an image
of a small region of tumour tissue (1 mm diameter).

Input: Digitized haematoxylin-eosin-stained
tumour tissue microarray samples.
Output: Estimated survival probability.

Data:
I Training set: 420 patients of Helsinki University Centre

Hospital, diagnosed with colorectal cancer, underwent
primary surgery.

I Test set: 182 patients
I Follow-up time and outcome known for each patient.

Human expert comparison:
I Histological grade assessed at the time of diagnosis.
I Visual Risk Score: Three pathologists classified to

high/low-risk categories (by majority vote).
Source: D. Bychkov et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific
Reports, Nature, 2018.

212

Colorectal cancer outcome prediction

The problem: Predict 5-year survival probability from an image
of a small region of tumour tissue (1 mm diameter).

Input: Digitized haematoxylin-eosin-stained
tumour tissue microarray samples.
Output: Estimated survival probability.

Data:
I Training set: 420 patients of Helsinki University Centre

Hospital, diagnosed with colorectal cancer, underwent
primary surgery.

I Test set: 182 patients
I Follow-up time and outcome known for each patient.

Human expert comparison:
I Histological grade assessed at the time of diagnosis.
I Visual Risk Score: Three pathologists classified to

high/low-risk categories (by majority vote).
Source: D. Bychkov et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific
Reports, Nature, 2018.

212

Colorectal cancer outcome prediction

The problem: Predict 5-year survival probability from an image
of a small region of tumour tissue (1 mm diameter).

Input: Digitized haematoxylin-eosin-stained
tumour tissue microarray samples.
Output: Estimated survival probability.

Data:
I Training set: 420 patients of Helsinki University Centre

Hospital, diagnosed with colorectal cancer, underwent
primary surgery.

I Test set: 182 patients
I Follow-up time and outcome known for each patient.

Human expert comparison:
I Histological grade assessed at the time of diagnosis.
I Visual Risk Score: Three pathologists classified to

high/low-risk categories (by majority vote).
Source: D. Bychkov et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific
Reports, Nature, 2018.

212

Colorectal cancer outcome prediction

The problem: Predict 5-year survival probability from an image
of a small region of tumour tissue (1 mm diameter).

Input: Digitized haematoxylin-eosin-stained
tumour tissue microarray samples.
Output: Estimated survival probability.

Data:
I Training set: 420 patients of Helsinki University Centre

Hospital, diagnosed with colorectal cancer, underwent
primary surgery.

I Test set: 182 patients
I Follow-up time and outcome known for each patient.

Human expert comparison:
I Histological grade assessed at the time of diagnosis.
I Visual Risk Score: Three pathologists classified to

high/low-risk categories (by majority vote).
Source: D. Bychkov et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific
Reports, Nature, 2018. 212

Colorectal cancer outcome prediction

213

Colorectal cancer outcome prediction

213

Data & workflow

I Input images: 3500 px × 3500 px
I Cut into tiles: 224 px × 224 px⇒ 256 tiles

I Each tile pased to a convolutional network (CNN)
I Ouptut of CNN: 4096 dimensional vector.

I A "string" of 256 vectors (each of the dimension 4096)
pased into a LSTM.

I LSTM outputs the probability of 5-year survival.

The authors also tried to substitute the LSTM on top of CNN
with
I logistic regression
I naive Bayes
I support vector machines

214

Data & workflow

I Input images: 3500 px × 3500 px
I Cut into tiles: 224 px × 224 px⇒ 256 tiles

I Each tile pased to a convolutional network (CNN)
I Ouptut of CNN: 4096 dimensional vector.

I A "string" of 256 vectors (each of the dimension 4096)
pased into a LSTM.

I LSTM outputs the probability of 5-year survival.

The authors also tried to substitute the LSTM on top of CNN
with
I logistic regression
I naive Bayes
I support vector machines

214

CNN architecture – VGG-16

(Pre)trained on ImageNet (cats, dogs, chairs, etc.)
215

LSTM architecture

I LSTM has three layers (264, 128, 64 cells)

216

LSTM – training

I L1 regularization (0.005) at each hidden layer of LSTM
i.e. 0.005 times the sum of absolute values of weights added to the error

I L2 regularization (0.005) at each hidden layer of LSTM
i.e. 0.005 times the sum of squared values of weights added to the error

I Dropout 5% at the input and the last hidden layers of LSTM

I Datasets:
I Training: 220 samples,
I Validation 60 samples,
I Test 140 samples.

217

Colorectal cancer outcome prediction

Source: D. Bychkov et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific

Reports, Nature, 2018.

218

Feed-forward networks summary

Architectures:
I Multi-layer perceptron (MLP):
I dense connections between layers

I Convolutional networks (CNN):
I local receptors, feature maps
I pooling

I Recurrent networks (RNN, LSTM):
I self-loops but still feed-forward through time

Training:
I gradient descent algorithm + heuristics

219

Hopfield Network

220

Hopfield network

Auto-associative network: Given an input, the network outputs
a training example (encoded in its weights) "similar" to
the given input.

221

Hopfield network

Architecture:
I complete topology, i.e. output of each neuron is input to all

neurons
I all neurons are both input and output
I denote by ξ1, . . . , ξn inner potentials and by y1, . . . , yn

outputs (states) of individual neurons
I denote by wji the weight of connection from a neuron

i ∈ {1, . . . ,n} to a neuron j ∈ {1, . . . ,n}
We assume wji = wij , i.e. symmetric connections.

I assume wjj = 0 for every j = 1, . . . ,n
I For now: no neuron has a bias

222

Hopfield network

Learning: Training set

T = {~xk | ~xk = (xk1, . . . , xkn) ∈ {−1,1}n, k = 1, . . . ,p}

The goal is to "store" the training examples of T so that the
network is able to associate similar examples.

Hebb’s learning rule: If the inputs to a system cause the same pattern
of activity to occur repeatedly, the set of active elements constituting that
pattern will become increasingly strongly interassociated. That is, each
element will tend to turn on every other element and (with negative weights)
to turn off the elements that do not form part of the pattern. To put it another
way, the pattern as a whole will become "auto-associated".
Mathematically speaking:

wji =

p∑
k=1

xkjxki 1 ≤ j , i ≤ n

Intuition: "Neurons that fire together, wire together".
223

Hopfield network

Learning: Training set

T = {~xk | ~xk = (xk1, . . . , xkn) ∈ {−1,1}n, k = 1, . . . ,p}

Hebb’s rule:

wji =

p∑
k=1

xkjxki 1 ≤ j , i ≤ n

Note that wji = wij , i.e. the weight matrix is symmetric.

Learning can be seen as poll about equality of inputs:
I If xkj = xki , then the training example votes for "i equals j"

by adding one to wji .
I If xkj , xki , then the training example votes for "i does not

equal j" by subtracting one from wji .

224

Hopfield network

Activity: Initially, neurons set to the network input
~x = (x1, . . . , xn), thus y(0)

j = xj for every j = 1, . . . ,n.

Cyclically update states of neurons, i.e. in step t + 1 compute
the value of a neuron j such that j = (t mod p) + 1, as follows:

Compute the inner potential:

ξ(t)j =

n∑
i=1

wjiy
(t)
i

then

y(t+1)
j =


1 ξ(t)j > 0

y(t)
j ξ(t)j = 0

−1 ξ(t)j < 0

225

Hopfield network

Activity: Initially, neurons set to the network input
~x = (x1, . . . , xn), thus y(0)

j = xj for every j = 1, . . . ,n.

Cyclically update states of neurons, i.e. in step t + 1 compute
the value of a neuron j such that j = (t mod p) + 1, as follows:

Compute the inner potential:

ξ(t)j =

n∑
i=1

wjiy
(t)
i

then

y(t+1)
j =


1 ξ(t)j > 0

y(t)
j ξ(t)j = 0

−1 ξ(t)j < 0

225

Hopfield network – activity

The computation stops in a step t ∗ if the network is for the first
time in a stable state, i.e.

y(t ∗+n)
j = y(t ∗)

j (j = 1, . . . ,n)

Theorem
Assuming symmetric weights, computation of a Hopfiled
network always stops for every input.

This implies that a given Hopfiled network computes a function
from {−1,1}n to {−1,1}n (determined by its weights).

Denote by ~y(W , ~x) =
(
y(t ∗)

1 , . . . , y(t ∗)
n

)
the value of the network

for a given input ~x and a weight matrix W .
Denote by yj(W , ~x) = y(t ∗)

j the component of the value of
the network corresponding to the neuron j.

If W is clear from the context, we write only y(~x) a yj(~x).

226

Hopfield network – activity

The computation stops in a step t ∗ if the network is for the first
time in a stable state, i.e.

y(t ∗+n)
j = y(t ∗)

j (j = 1, . . . ,n)

Theorem
Assuming symmetric weights, computation of a Hopfiled
network always stops for every input.

This implies that a given Hopfiled network computes a function
from {−1,1}n to {−1,1}n (determined by its weights).

Denote by ~y(W , ~x) =
(
y(t ∗)

1 , . . . , y(t ∗)
n

)
the value of the network

for a given input ~x and a weight matrix W .
Denote by yj(W , ~x) = y(t ∗)

j the component of the value of
the network corresponding to the neuron j.

If W is clear from the context, we write only y(~x) a yj(~x).

226

Hopfield network – activity

The computation stops in a step t ∗ if the network is for the first
time in a stable state, i.e.

y(t ∗+n)
j = y(t ∗)

j (j = 1, . . . ,n)

Theorem
Assuming symmetric weights, computation of a Hopfiled
network always stops for every input.

This implies that a given Hopfiled network computes a function
from {−1,1}n to {−1,1}n (determined by its weights).

Denote by ~y(W , ~x) =
(
y(t ∗)

1 , . . . , y(t ∗)
n

)
the value of the network

for a given input ~x and a weight matrix W .
Denote by yj(W , ~x) = y(t ∗)

j the component of the value of
the network corresponding to the neuron j.

If W is clear from the context, we write only y(~x) a yj(~x).

226

Hopfield network – activity

The computation stops in a step t ∗ if the network is for the first
time in a stable state, i.e.

y(t ∗+n)
j = y(t ∗)

j (j = 1, . . . ,n)

Theorem
Assuming symmetric weights, computation of a Hopfiled
network always stops for every input.

This implies that a given Hopfiled network computes a function
from {−1,1}n to {−1,1}n (determined by its weights).

Denote by ~y(W , ~x) =
(
y(t ∗)

1 , . . . , y(t ∗)
n

)
the value of the network

for a given input ~x and a weight matrix W .
Denote by yj(W , ~x) = y(t ∗)

j the component of the value of
the network corresponding to the neuron j.

If W is clear from the context, we write only y(~x) a yj(~x).
226

Ising model – an analogy

Simple models of magnetic materials resemble Hopfield
network.

I atomic magnets organized into
square-lattice

I each magnet may have only one of
two possible orientations (in the
Hopfield network +1 a −1)

I orientation of each magnet is
influenced by an external magnetic
field (input of the network) as well as
orientation of the other magnets

I weights in the Hopfiled net model
determine interaction among
magnets

227

Ising model – an analogy

Simple models of magnetic materials resemble Hopfield
network.

I atomic magnets organized into
square-lattice

I each magnet may have only one of
two possible orientations (in the
Hopfield network +1 a −1)

I orientation of each magnet is
influenced by an external magnetic
field (input of the network) as well as
orientation of the other magnets

I weights in the Hopfiled net model
determine interaction among
magnets

227

Ising model – an analogy

Simple models of magnetic materials resemble Hopfield
network.

I atomic magnets organized into
square-lattice

I each magnet may have only one of
two possible orientations (in the
Hopfield network +1 a −1)

I orientation of each magnet is
influenced by an external magnetic
field (input of the network) as well as
orientation of the other magnets

I weights in the Hopfiled net model
determine interaction among
magnets

227

Ising model – an analogy

Simple models of magnetic materials resemble Hopfield
network.

I atomic magnets organized into
square-lattice

I each magnet may have only one of
two possible orientations (in the
Hopfield network +1 a −1)

I orientation of each magnet is
influenced by an external magnetic
field (input of the network) as well as
orientation of the other magnets

I weights in the Hopfiled net model
determine interaction among
magnets

227

Ising model – an analogy

Simple models of magnetic materials resemble Hopfield
network.

I atomic magnets organized into
square-lattice

I each magnet may have only one of
two possible orientations (in the
Hopfield network +1 a −1)

I orientation of each magnet is
influenced by an external magnetic
field (input of the network) as well as
orientation of the other magnets

I weights in the Hopfiled net model
determine interaction among
magnets

227

Energy function

Energy function E assigns to every state ~y ∈ {−1,1}n

a (potential) energy:

E(~y) = −
1
2

n∑
j=1

n∑
i=1

wjiyjyi

I states with low energy are stable (few neurons "want to"
change their states), states with high energy are not stable

I i.e. large (positive) wjiyjyi is stable and small (negative)
wjiyjyi is not stable

The energy does not increase during computation:
E(~y(t)) ≥ E(~y(t+1)), stable states ~y(t ∗) correspond to local
minima of E.

228

Energy function

Energy function E assigns to every state ~y ∈ {−1,1}n

a (potential) energy:

E(~y) = −
1
2

n∑
j=1

n∑
i=1

wjiyjyi

I states with low energy are stable (few neurons "want to"
change their states), states with high energy are not stable

I i.e. large (positive) wjiyjyi is stable and small (negative)
wjiyjyi is not stable

The energy does not increase during computation:
E(~y(t)) ≥ E(~y(t+1)), stable states ~y(t ∗) correspond to local
minima of E.

228

Energy function

Energy function E assigns to every state ~y ∈ {−1,1}n

a (potential) energy:

E(~y) = −
1
2

n∑
j=1

n∑
i=1

wjiyjyi

I states with low energy are stable (few neurons "want to"
change their states), states with high energy are not stable

I i.e. large (positive) wjiyjyi is stable and small (negative)
wjiyjyi is not stable

The energy does not increase during computation:
E(~y(t)) ≥ E(~y(t+1)), stable states ~y(t ∗) correspond to local
minima of E.

228

Energy landscape

229

Hopfield network – convergence

Observe that
I the energy does not increase during computation:

E(~y(t)) ≥ E(~y(t+1))

I if the state is updated in a step t + 1, then
E(~y(t)) > E(~y(t+1))

I there are only finitely many states, and thus, eventually,
a local minimum of E is reached.

This proves that computation of a Hopfield network always
stops.

230

Hopfield network – convergence

Observe that
I the energy does not increase during computation:

E(~y(t)) ≥ E(~y(t+1))

I if the state is updated in a step t + 1, then
E(~y(t)) > E(~y(t+1))

I there are only finitely many states, and thus, eventually,
a local minimum of E is reached.

This proves that computation of a Hopfield network always
stops.

230

Hopfield network – convergence

Observe that
I the energy does not increase during computation:

E(~y(t)) ≥ E(~y(t+1))

I if the state is updated in a step t + 1, then
E(~y(t)) > E(~y(t+1))

I there are only finitely many states, and thus, eventually,
a local minimum of E is reached.

This proves that computation of a Hopfield network always
stops.

230

Hopfield network – example

I figures 12 × 10
(120 neurons, −1 is white and 1 is black)

I learned 8 figures
I input generated with 25% noise
I image shows the activity of the

Hopfield network

231

Hopfield network – example

232

Hopfield network – example

233

Restricted Boltzmann Machines

234

Restricted Boltzmann machine (RBM)

Architecture:
I Neural network with cycles and symmetric connections,

neurons divided into two disjoint sets:
I V - visible
I H - hidden

Connections: V × S (complete bipartite graph)
I N is a set of all neurons.
I Denote by ξj the inner potential and by yj the output (i.e.

state) of neuron j.
State of the machine: ~y ∈ {0,1}|N|.

I Denote by wji ∈ R the weight of the connection from i to j
(and thus also from j to i).

I Consider bias: wj0 is the weight between j and a neuron 0
whose value y0 is always 1.

235

RBM – activity

Activity: States of neurons initially set to values of {0,1}, i.e.
y(0)

j ∈ {0,1} for j ∈ N.

In the step t + 1 do the following:
I t even: randomly choose new values of all hidden neurons,

for every j ∈ H

P
[
y(t+1)

j = 1
]

= 1
/ 1 + exp

−wj0 −
∑
i∈V

wjiy
(t)
i




I t odd: randomly choose new values of all visible neurons,
for every j ∈ V

P
[
y(t+1)

j = 1
]

= 1
/ 1 + exp

−wj0 −
∑
i∈H

wjiy
(t)
i




236

RBM – activity

Activity: States of neurons initially set to values of {0,1}, i.e.
y(0)

j ∈ {0,1} for j ∈ N.

In the step t + 1 do the following:
I t even: randomly choose new values of all hidden neurons,

for every j ∈ H

P
[
y(t+1)

j = 1
]

= 1
/ 1 + exp

−wj0 −
∑
i∈V

wjiy
(t)
i




I t odd: randomly choose new values of all visible neurons,
for every j ∈ V

P
[
y(t+1)

j = 1
]

= 1
/ 1 + exp

−wj0 −
∑
i∈H

wjiy
(t)
i




236

Equilibrium

Theorem
For every γ∗ ∈ {0,1}|N| we have that

lim
t→∞

P
[
~y(t) = γ∗

]
=

1
Z

e−E(γ∗)

where

Z =
∑

γ∈{0,1}|N|
e−E(γ)

and

E(γ) = −
∑

i∈V , j∈H

wjiy
γ
j yγi −

∑
i∈V

wi0yγi −
∑
j∈H

wj0yγj

Here yγi is the value of the neuron i in the state γ.

237

RBM – Probability distribution

RBM defines the following probability distribution on {0,1}|N|

(recall that N is the set of all neurons):

pN(γ∗) := lim
t→∞

P
[
~y(t) = γ∗

]
for every γ∗ ∈ {0,1}|N|

We obtain a distribution on states of visible neurons by
marginalization:

pV (α) =
∑

β∈{0,1}|H|
pN(αβ) for every α ∈ {0,1}|V |

Here αβ ∈ {0,1}|N| is a vector of values of all states obtained by
concatenating values α of visible neurons and values β of
hidden neurons.

238

RBM – learning

Learning:
Let pd be a probability distribution on states of visible neurons,
i.e. on {0,1}|V |.

Our goal is to find a configuration of the network W such that
pV ≈ pd .

A suitable measure of difference between probability
distributions pV and pd is relative entropy weighted by
probabilities of states (Kullback-Leibler divergence):

E(W) =
∑

α∈{0,1}|V |
pd(α) ln

pd(α)

pV (α)

E is minimized using the gradient descent algorithm.

239

RBM – learning

Minimize E(~w) using gradient descent, i.e. compute a
sequence of weight matrices: W (0),W (1), . . .

I initialise W (0) randomly, close to 0
I in step t + 1 compute W (t+1) as follows:

W (t+1)
ji = W (t)

ji + ∆W (t)
ji

where

∆W (t)
ji = −ε(t) ·

∂E
∂wji

(W (t))

is the update of the weight wji in the step t + 1 and
0 < ε(t) ≤ 1 is the learning rate in the step t + 1.

It remains to compute ∂E
∂wji

(W)

(skipped).

240

RBM – learning

Minimize E(~w) using gradient descent, i.e. compute a
sequence of weight matrices: W (0),W (1), . . .

I initialise W (0) randomly, close to 0

I in step t + 1 compute W (t+1) as follows:

W (t+1)
ji = W (t)

ji + ∆W (t)
ji

where

∆W (t)
ji = −ε(t) ·

∂E
∂wji

(W (t))

is the update of the weight wji in the step t + 1 and
0 < ε(t) ≤ 1 is the learning rate in the step t + 1.

It remains to compute ∂E
∂wji

(W)

(skipped).

240

RBM – learning

Minimize E(~w) using gradient descent, i.e. compute a
sequence of weight matrices: W (0),W (1), . . .

I initialise W (0) randomly, close to 0
I in step t + 1 compute W (t+1) as follows:

W (t+1)
ji = W (t)

ji + ∆W (t)
ji

where

∆W (t)
ji = −ε(t) ·

∂E
∂wji

(W (t))

is the update of the weight wji in the step t + 1 and
0 < ε(t) ≤ 1 is the learning rate in the step t + 1.

It remains to compute ∂E
∂wji

(W)

(skipped).
240

Deep MLP

Input

Hidden

Output

x1 x2

y1 y2
I Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

I layers numbered from 0; the
input layer has number 0
I E.g. three-layer network has

two hidden layers and one
output layer

I Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

I Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

241

Why deep networks

... if one hidden layer is able to represent an arbitrary (reasonable)
function?

I One hidden layer may be very inefficient, i.e. huge amount of
neurons may be needed. One can show that

I the number of hidden neurons may be exponential w.r.t. the
dimension of the input,

I networks with multiple layers may be exponentially more
succinct as opposed to single hidden layer.

... ok, so let’s try to teach deep networks ... using backpropagation?

Problems:

I Gradient may vanish/explode when backpropagated through
many layers.

I Deep networks (with many neurons) overfit very easily.

242

Why deep networks

... if one hidden layer is able to represent an arbitrary (reasonable)
function?

I One hidden layer may be very inefficient, i.e. huge amount of
neurons may be needed. One can show that

I the number of hidden neurons may be exponential w.r.t. the
dimension of the input,

I networks with multiple layers may be exponentially more
succinct as opposed to single hidden layer.

... ok, so let’s try to teach deep networks ... using backpropagation?

Problems:

I Gradient may vanish/explode when backpropagated through
many layers.

I Deep networks (with many neurons) overfit very easily.

242

Why deep networks

... if one hidden layer is able to represent an arbitrary (reasonable)
function?

I One hidden layer may be very inefficient, i.e. huge amount of
neurons may be needed. One can show that

I the number of hidden neurons may be exponential w.r.t. the
dimension of the input,

I networks with multiple layers may be exponentially more
succinct as opposed to single hidden layer.

... ok, so let’s try to teach deep networks ... using backpropagation?

Problems:

I Gradient may vanish/explode when backpropagated through
many layers.

I Deep networks (with many neurons) overfit very easily.

242

Deep MLP – pretraining

Assume k layers. Denote

I Wi the weight matrix between layers i − 1 and i

I Fi function computed by the "lower" part of the MLP consisting of
layers 0,1, . . . , i
F1 is a function which consists of the input and the first hidden layer
(which is now considered as the output layer).

Crucial observation: For every i, the layers i − 1 and i together with
the matrix Wi can be considered as a RBM.

Denote such a RBM as Bi .

243

Deep MLP – pretraining

Assume k layers. Denote

I Wi the weight matrix between layers i − 1 and i

I Fi function computed by the "lower" part of the MLP consisting of
layers 0,1, . . . , i
F1 is a function which consists of the input and the first hidden layer
(which is now considered as the output layer).

Crucial observation: For every i, the layers i − 1 and i together with
the matrix Wi can be considered as a RBM.

Denote such a RBM as Bi .

243

Deep MLP – pretraining

Assume k layers. Denote

I Wi the weight matrix between layers i − 1 and i

I Fi function computed by the "lower" part of the MLP consisting of
layers 0,1, . . . , i
F1 is a function which consists of the input and the first hidden layer
(which is now considered as the output layer).

Crucial observation: For every i, the layers i − 1 and i together with
the matrix Wi can be considered as a RBM.

Denote such a RBM as Bi .

243

Deep MLP – pretraining

For now, consider only input vectors ~x1, . . . , ~xp where ~xk ∈ {0,1}n for
all k = 1, . . . ,p.

I unsupervised pretraining: Gradually, for every i = 1, . . . , k ,
train RBM Bi on randomly selected inputs from the training set:

Fi−1(~x1), . . . ,Fi−1(~xp)

using the training algorithm for RBM (here F0(~xi) = ~xi).
(Thus Bi learns from training samples transformed by the already
pretrained layers 0, . . . , i − 1)

We obtain a deep belief network D representing a distribution given
by ~x1, . . . , ~xp .
(Recall that in such a distribution the probability of a given ~x is equal to
the relative frequency of ~x in ~x1, . . . , ~xp .)

244

Deep belief network
The network D can be used to sample from the distribution as
follows:
I Simulate the topmost RBM for some steps (ideally to thermal

equilibrium), this gives values of neurons in the two topmost
layers.

I Propagate the values downwards by always simulating one step
of the corresponding RBM. That is,
I you have already computed values of neurons in layers k

and k − 1.
I To compute values of neurons in the layer k − 2, simulate

one step of RBM Bk−1, that is sample values of neurons in
the layer k − 2 using RBM dynamics of Bk−1 with values of
the layer k − 1 fixed.

I Similarly, compute values of k − 3 by simulating Bk−2 ... etc.
I ... finally obtain values of input neurons.

I Probability with which a concrete input ~x is sampled by the
above procedure is the probability of ~x in the distribution
represented by D.

245

Deep belief network
The network D can be used to sample from the distribution as
follows:
I Simulate the topmost RBM for some steps (ideally to thermal

equilibrium), this gives values of neurons in the two topmost
layers.

I Propagate the values downwards by always simulating one step
of the corresponding RBM. That is,
I you have already computed values of neurons in layers k

and k − 1.
I To compute values of neurons in the layer k − 2, simulate

one step of RBM Bk−1, that is sample values of neurons in
the layer k − 2 using RBM dynamics of Bk−1 with values of
the layer k − 1 fixed.

I Similarly, compute values of k − 3 by simulating Bk−2 ... etc.
I ... finally obtain values of input neurons.

I Probability with which a concrete input ~x is sampled by the
above procedure is the probability of ~x in the distribution
represented by D.

245

Deep belief network
The network D can be used to sample from the distribution as
follows:
I Simulate the topmost RBM for some steps (ideally to thermal

equilibrium), this gives values of neurons in the two topmost
layers.

I Propagate the values downwards by always simulating one step
of the corresponding RBM. That is,
I you have already computed values of neurons in layers k

and k − 1.
I To compute values of neurons in the layer k − 2, simulate

one step of RBM Bk−1, that is sample values of neurons in
the layer k − 2 using RBM dynamics of Bk−1 with values of
the layer k − 1 fixed.

I Similarly, compute values of k − 3 by simulating Bk−2 ... etc.
I ... finally obtain values of input neurons.

I Probability with which a concrete input ~x is sampled by the
above procedure is the probability of ~x in the distribution
represented by D.

245

Deep MLP – training with pretraining
Now consider supervised learning with a training set:
T =

{ (
~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}
.

Still assume that ~xk ∈ {0,1}n.

I unsupervised pretraining: Gradually, for every i = 1, . . . , k ,
train RBM Bi on randomly selected inputs from the training set:

Fi−1(~x1), . . . ,Fi−1(~xp)

using the training algorithm for RBM (here F0(~xi) = ~xi).
(Thus Bi learns from training samples transformed by the already
pretrained layers 0, . . . , i − 1)

Obtain D.
I Add one (or more) layer to the top of D and consider the result

to be MLP.
(i.e. forget the RBM dynamics and start considering the network as
MLP with sigmoidal activations).

I supervised fine-tuning: Train in supervised mode (on the
training set T) using e.g. gradient descent + backprop.

246

Application – dimensionality reduction

I Dimensionality reduction: A mapping R from Rn to Rm

where
I m < n,
I for every example ~x we have that ~x can be "reconstructed"

from R(~x).

I Standard method: PCA (there are many linear as well as
non-linear variants)

247

Application – dimensionality reduction

I Dimensionality reduction: A mapping R from Rn to Rm

where
I m < n,
I for every example ~x we have that ~x can be "reconstructed"

from R(~x).
I Standard method: PCA (there are many linear as well as

non-linear variants)

247

Reconstruction – PCA

1024 pixels compressed to 100 dimensions (i.e. 100 numbers).

248

Deep MLP – dimensionality reduction

Hinton, G. E., Osindero, S. and Teh, Y. (2006)
A fast learning algorithm for deep belief nets.
Neural Computation, 18, pp 1527-1554.

Hinton, G. E. and Salakhutdinov, R. R. (2006)
Reducing the dimensionality of data with neural networks.
Science, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006.

This basically started all the deep learning craze ...

249

Deep MLP – dimensionality reduction

250

Images – pretraining

I Data: 165 600 black-white images, 25 × 25, mean intensity
0, variance 1.
Images obtained from Olivetti Faces database of images 64 × 64 using
standard transformations.

I 103 500 training set, 20 700 validation, 41 400 test
I Network: 2000-100-500-30, training using layered RBM.

Notes:
Training of the lowest layer (2000 neurons): Values of pixels distorted
using Gaussian noise, low learning rate: 0.001, 200 iterations
Training all hidden layers: Values of neurons are binary.

Training of output layer: Values computed directly using the sigmoid
activation functions + noise. That is, values of output neurons are
from the interval [0,1].

251

Images – fine-tuning

I Stochastic activation substituted with deterministic.
That is the value of hidden neurons is not chosen randomly but directly
computed by application of sigmoid on the inner potential (this gives the
mean activation).

I Backpropagation.
I Error function: cross-entropy

−

∑
i

pi ln p̂i −
∑

i

(1 − pi) ln(1 − p̂i)

here pi is the intensity of i-th pixel of the input and p̂i of
the reconstruction.

252

Results

1. Original
2. Reconstruction using deep networks (reduction to 30-dim)
3. Reconstruction using PCA (reduction to 30-dim)

253

Kohonen’s Map

254

Vector quantization

I Assume we are given a probability density function p(~x) on
input vectors ~x ∈ Rn.
I.e. assume that the inputs are randomly generated according to p(~x).

I Our goal is to approximate p(~x) using finitely many
centres ~wi ∈ R

n where i = 1, . . . ,h.
Roughly speaking: We want more centres in areas of higher density
and less in areas of low density.

I Formally: To every input ~x we assign its closest centre
~wc(~x) :

c(~x) = arg min
i=1,...,h

{ ∣∣∣∣∣∣~x − ~wi
∣∣∣∣∣∣ }

and then minimize the error

E =

∫ ∣∣∣∣∣∣~x − ~wc(~x)

∣∣∣∣∣∣2 p(~x)d~x

Caution! c(~x) depends on ~x.

255

Vector quantization

I Assume we are given a probability density function p(~x) on
input vectors ~x ∈ Rn.
I.e. assume that the inputs are randomly generated according to p(~x).

I Our goal is to approximate p(~x) using finitely many
centres ~wi ∈ R

n where i = 1, . . . ,h.
Roughly speaking: We want more centres in areas of higher density
and less in areas of low density.

I Formally: To every input ~x we assign its closest centre
~wc(~x) :

c(~x) = arg min
i=1,...,h

{ ∣∣∣∣∣∣~x − ~wi
∣∣∣∣∣∣ }

and then minimize the error

E =

∫ ∣∣∣∣∣∣~x − ~wc(~x)

∣∣∣∣∣∣2 p(~x)d~x

Caution! c(~x) depends on ~x.

255

Vector quantization

In practice, p(~x) is obtained by sampling uniformly from a given
training (multi)set:

T = {~xj ∈ R
n
| j = 1, . . . , `}

The error then corresponds to

E =
1
`

∑̀
j=1

∣∣∣∣∣∣∣∣~xj − ~wc(~xj)

∣∣∣∣∣∣∣∣2
(keep in mind that c(~xj) = arg mini=1,...,h

{ ∣∣∣∣∣∣~xj − ~wi
∣∣∣∣∣∣ }.)

If T has been randomly selected according to p(~x) and ` is large
eough, then

1
`

∑̀
j=1

∣∣∣∣∣∣~xj − ~wc(~xj)

∣∣∣∣∣∣2 ≈ ∫ ∣∣∣∣∣∣~x − ~wc(~x)

∣∣∣∣∣∣2 p(~x)d~x

256

Vector quantization

In practice, p(~x) is obtained by sampling uniformly from a given
training (multi)set:

T = {~xj ∈ R
n
| j = 1, . . . , `}

The error then corresponds to

E =
1
`

∑̀
j=1

∣∣∣∣∣∣∣∣~xj − ~wc(~xj)

∣∣∣∣∣∣∣∣2
(keep in mind that c(~xj) = arg mini=1,...,h

{ ∣∣∣∣∣∣~xj − ~wi
∣∣∣∣∣∣ }.)

If T has been randomly selected according to p(~x) and ` is large
eough, then

1
`

∑̀
j=1

∣∣∣∣∣∣~xj − ~wc(~xj)

∣∣∣∣∣∣2 ≈ ∫ ∣∣∣∣∣∣~x − ~wc(~x)

∣∣∣∣∣∣2 p(~x)d~x

256

Vector quantization

In practice, p(~x) is obtained by sampling uniformly from a given
training (multi)set:

T = {~xj ∈ R
n
| j = 1, . . . , `}

The error then corresponds to

E =
1
`

∑̀
j=1

∣∣∣∣∣∣∣∣~xj − ~wc(~xj)

∣∣∣∣∣∣∣∣2
(keep in mind that c(~xj) = arg mini=1,...,h

{ ∣∣∣∣∣∣~xj − ~wi
∣∣∣∣∣∣ }.)

If T has been randomly selected according to p(~x) and ` is large
eough, then

1
`

∑̀
j=1

∣∣∣∣∣∣~xj − ~wc(~xj)

∣∣∣∣∣∣2 ≈ ∫ ∣∣∣∣∣∣~x − ~wc(~x)

∣∣∣∣∣∣2 p(~x)d~x

256

Example – image compression

I Every pixel has 256 shades of grey,
I each pair of neighbouring pixels is a

two-dimensional vector from
{0, . . . ,255} × {0, . . . ,255},

I our compression finds a small set of
centres that will encode shades of grey
of pairs of pixels,

I image is then encoded by simple
substitution of pairs of pixels with their
centres.

257

Example – image compression

pair distribution

naive quantization

smart quantization
258

k-means clustering algorithm

Assume a finite training set: T = {~xj ∈ R
n
| j = 1, . . . , `}

The algorithm moves centres closer to the centres of mass of
closest points.

In the step t computes ~w(t)
1 , . . . , ~w(t)

h as follows:
I for every k = 1, . . . ,h compute a set Tk of all vectors of T

to which ~w(t−1)
k is the closest centre:

Tk =

{
~xj ∈ T | k = arg min

i=1,...,h

{ ∣∣∣∣∣∣∣∣~xj − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ }}
I compute ~w(t)

k to be the centroid of Tk :

~w(t)
k =

1
|Tk |

∑
~x∈Tk

~x

We may stop the computation when, e.g. the error E is
sufficiently small.

259

k-means clustering algorithm

Assume a finite training set: T = {~xj ∈ R
n
| j = 1, . . . , `}

The algorithm moves centres closer to the centres of mass of
closest points.
In the step t computes ~w(t)

1 , . . . , ~w(t)
h as follows:

I for every k = 1, . . . ,h compute a set Tk of all vectors of T
to which ~w(t−1)

k is the closest centre:

Tk =

{
~xj ∈ T | k = arg min

i=1,...,h

{ ∣∣∣∣∣∣∣∣~xj − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ }}
I compute ~w(t)

k to be the centroid of Tk :

~w(t)
k =

1
|Tk |

∑
~x∈Tk

~x

We may stop the computation when, e.g. the error E is
sufficiently small.

259

k-means clustering algorithm

Assume a finite training set: T = {~xj ∈ R
n
| j = 1, . . . , `}

The algorithm moves centres closer to the centres of mass of
closest points.
In the step t computes ~w(t)

1 , . . . , ~w(t)
h as follows:

I for every k = 1, . . . ,h compute a set Tk of all vectors of T
to which ~w(t−1)

k is the closest centre:

Tk =

{
~xj ∈ T | k = arg min

i=1,...,h

{ ∣∣∣∣∣∣∣∣~xj − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ }}

I compute ~w(t)
k to be the centroid of Tk :

~w(t)
k =

1
|Tk |

∑
~x∈Tk

~x

We may stop the computation when, e.g. the error E is
sufficiently small.

259

k-means clustering algorithm

Assume a finite training set: T = {~xj ∈ R
n
| j = 1, . . . , `}

The algorithm moves centres closer to the centres of mass of
closest points.
In the step t computes ~w(t)

1 , . . . , ~w(t)
h as follows:

I for every k = 1, . . . ,h compute a set Tk of all vectors of T
to which ~w(t−1)

k is the closest centre:

Tk =

{
~xj ∈ T | k = arg min

i=1,...,h

{ ∣∣∣∣∣∣∣∣~xj − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ }}
I compute ~w(t)

k to be the centroid of Tk :

~w(t)
k =

1
|Tk |

∑
~x∈Tk

~x

We may stop the computation when, e.g. the error E is
sufficiently small.

259

Kohonen’s learning

The k-means algorithm is not online.

The following Kohonen’s algorithm is online (i.e. the inputs may
be generated one by one and the centres are adapted online):

In step t , consider the input ~xt and compute ~w(t)
k as follows:

If ~w(t−1)
k is the closest centre to ~xt , i.e.

k = arg mini

∣∣∣∣∣∣∣∣~xt − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ then

~w(t)
k = ~w(t−1)

k + θ · (~xt − ~w
(t−1)
k)

else ~w(t)
k = ~w(t−1)

k

0 < θ ≤ 1 determines how much to move the centre towards
the input.

Let us formulate this algorithm in the language of neural
networks.

260

Kohonen’s learning

The k-means algorithm is not online.

The following Kohonen’s algorithm is online (i.e. the inputs may
be generated one by one and the centres are adapted online):

In step t , consider the input ~xt and compute ~w(t)
k as follows:

If ~w(t−1)
k is the closest centre to ~xt , i.e.

k = arg mini

∣∣∣∣∣∣∣∣~xt − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ then

~w(t)
k = ~w(t−1)

k + θ · (~xt − ~w
(t−1)
k)

else ~w(t)
k = ~w(t−1)

k

0 < θ ≤ 1 determines how much to move the centre towards
the input.

Let us formulate this algorithm in the language of neural
networks.

260

Kohonen’s learning

The k-means algorithm is not online.

The following Kohonen’s algorithm is online (i.e. the inputs may
be generated one by one and the centres are adapted online):

In step t , consider the input ~xt and compute ~w(t)
k as follows:

If ~w(t−1)
k is the closest centre to ~xt , i.e.

k = arg mini

∣∣∣∣∣∣∣∣~xt − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ then

~w(t)
k = ~w(t−1)

k + θ · (~xt − ~w
(t−1)
k)

else ~w(t)
k = ~w(t−1)

k

0 < θ ≤ 1 determines how much to move the centre towards
the input.

Let us formulate this algorithm in the language of neural
networks.

260

Kohonen’s learning

The k-means algorithm is not online.

The following Kohonen’s algorithm is online (i.e. the inputs may
be generated one by one and the centres are adapted online):

In step t , consider the input ~xt and compute ~w(t)
k as follows:

If ~w(t−1)
k is the closest centre to ~xt , i.e.

k = arg mini

∣∣∣∣∣∣∣∣~xt − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ then

~w(t)
k = ~w(t−1)

k + θ · (~xt − ~w
(t−1)
k)

else ~w(t)
k = ~w(t−1)

k

0 < θ ≤ 1 determines how much to move the centre towards
the input.

Let us formulate this algorithm in the language of neural
networks.

260

Kohonen’s learning

The k-means algorithm is not online.

The following Kohonen’s algorithm is online (i.e. the inputs may
be generated one by one and the centres are adapted online):

In step t , consider the input ~xt and compute ~w(t)
k as follows:

If ~w(t−1)
k is the closest centre to ~xt , i.e.

k = arg mini

∣∣∣∣∣∣∣∣~xt − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ then

~w(t)
k = ~w(t−1)

k + θ · (~xt − ~w
(t−1)
k)

else ~w(t)
k = ~w(t−1)

k

0 < θ ≤ 1 determines how much to move the centre towards
the input.

Let us formulate this algorithm in the language of neural
networks.

260

Kohonen’s learning – neural network

Architecture: Single layer

x1 xi xn

· · · · · ·

y1 yk yh

· · · · · ·

wk1 wki wkn

Activity: For an input ~x ∈ Rn and k = 1, . . . ,h:

yk =

1 k = arg mini=1,...,h
∣∣∣∣∣∣~x − ~wi

∣∣∣∣∣∣
0 otherwise

261

Kohonen’s learning – neural network

Architecture: Single layer

x1 xi xn

· · · · · ·

y1 yk yh

· · · · · ·

wk1 wki wkn

Activity: For an input ~x ∈ Rn and k = 1, . . . ,h:

yk =

1 k = arg mini=1,...,h
∣∣∣∣∣∣~x − ~wi

∣∣∣∣∣∣
0 otherwise

261

Kohonen’s learning

In step t , consider the input ~xt and compute ~w(t)
k as follows:

If ~w(t−1)
k is the closest neuron to ~xt , i.e.

k = arg mini

∣∣∣∣∣∣∣∣~xt − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ then

~w(t)
k = ~w(t−1)

k + θ · (~xt − ~w
(t−1)
k)

else ~w(t)
k = ~w(t−1)

k

0 < θ ≤ 1 determines how much to move the neuron towards
the input.

262

Kohonen’s learning

In step t , consider the input ~xt and compute ~w(t)
k as follows:

If ~w(t−1)
k is the closest neuron to ~xt , i.e.

k = arg mini

∣∣∣∣∣∣∣∣~xt − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ then

~w(t)
k = ~w(t−1)

k + θ · (~xt − ~w
(t−1)
k)

else ~w(t)
k = ~w(t−1)

k

0 < θ ≤ 1 determines how much to move the neuron towards
the input.

262

Kohonen’s learning – efficiency

I Works well if most input vectors evenly distributed in a
convex area.

I In case of two (or more) separated clusters, the density
may not correspond to p(~x) at all:
I Ex. Two separated areas with the same density.
I Assume that the centres are initially in one of the areas.
I The second then "drags" only one of the centres (which

always wins the competition).
I Result: One of the areas will be covered by a single centre

even though it contains half of the mass of the input
examples.

Solution: We tie centres together so that they have to move
together.

263

Kohonen’s learning – efficiency

I Works well if most input vectors evenly distributed in a
convex area.

I In case of two (or more) separated clusters, the density
may not correspond to p(~x) at all:
I Ex. Two separated areas with the same density.
I Assume that the centres are initially in one of the areas.

I The second then "drags" only one of the centres (which
always wins the competition).

I Result: One of the areas will be covered by a single centre
even though it contains half of the mass of the input
examples.

Solution: We tie centres together so that they have to move
together.

263

Kohonen’s learning – efficiency

I Works well if most input vectors evenly distributed in a
convex area.

I In case of two (or more) separated clusters, the density
may not correspond to p(~x) at all:
I Ex. Two separated areas with the same density.
I Assume that the centres are initially in one of the areas.
I The second then "drags" only one of the centres (which

always wins the competition).

I Result: One of the areas will be covered by a single centre
even though it contains half of the mass of the input
examples.

Solution: We tie centres together so that they have to move
together.

263

Kohonen’s learning – efficiency

I Works well if most input vectors evenly distributed in a
convex area.

I In case of two (or more) separated clusters, the density
may not correspond to p(~x) at all:
I Ex. Two separated areas with the same density.
I Assume that the centres are initially in one of the areas.
I The second then "drags" only one of the centres (which

always wins the competition).
I Result: One of the areas will be covered by a single centre

even though it contains half of the mass of the input
examples.

Solution: We tie centres together so that they have to move
together.

263

Kohonen’s map

Architecture: Single layer

x1 xi xn

· · · · · ·

y1 yk yh

· · · · · ·

wk1 wki wkn

I Topological structure: neurons connected by edges so
that they are nodes in an undirected graph.

I In most cases, this structure is either a one dimensional
sequence or a two dimensional grid.

264

Kohonen’s map – illustration

265

Kohonen’s map – bio motivation

Source: Neural Networks - A Systematic Introduction, Raul Rojas, Springer, 1996

266

Kohonen’s map

Activity: Given an input vector ~x ∈ Rn and k = 1, . . . ,h:

yk =

1 k = arg mini=1,...,h
∣∣∣∣∣∣~x − ~wi

∣∣∣∣∣∣
0 jinak

Learning: We use the topological structure.
I Denote by d(c, k) the length of the shortest path from

neuron c to neuron k in the topological structure.
I For every neuron c and a given s ∈N0 define topological

neighbourhood of the neuron c of size s :
Ns(c) = {k | d(c, k) ≤ s}

In step t , given training example ~xt adapt ~wk as follows:

~w(t)
k =

~w(t−1)
k + θ ·

(
~xt − ~w

(t−1)
k

)
k ∈ Ns(c(~xt))

~w(t−1)
k otherwise

where c(~xt) = arg mini=1,...,h

∣∣∣∣∣∣∣∣~xt − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ and θ ∈ R and s ∈N0

are parameters that may change during training.

267

Kohonen’s map

Activity: Given an input vector ~x ∈ Rn and k = 1, . . . ,h:

yk =

1 k = arg mini=1,...,h
∣∣∣∣∣∣~x − ~wi

∣∣∣∣∣∣
0 jinak

Learning: We use the topological structure.
I Denote by d(c, k) the length of the shortest path from

neuron c to neuron k in the topological structure.
I For every neuron c and a given s ∈N0 define topological

neighbourhood of the neuron c of size s :
Ns(c) = {k | d(c, k) ≤ s}

In step t , given training example ~xt adapt ~wk as follows:

~w(t)
k =

~w(t−1)
k + θ ·

(
~xt − ~w

(t−1)
k

)
k ∈ Ns(c(~xt))

~w(t−1)
k otherwise

where c(~xt) = arg mini=1,...,h

∣∣∣∣∣∣∣∣~xt − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ and θ ∈ R and s ∈N0

are parameters that may change during training.

267

Kohonen’s map

Activity: Given an input vector ~x ∈ Rn and k = 1, . . . ,h:

yk =

1 k = arg mini=1,...,h
∣∣∣∣∣∣~x − ~wi

∣∣∣∣∣∣
0 jinak

Learning: We use the topological structure.
I Denote by d(c, k) the length of the shortest path from

neuron c to neuron k in the topological structure.
I For every neuron c and a given s ∈N0 define topological

neighbourhood of the neuron c of size s :
Ns(c) = {k | d(c, k) ≤ s}

In step t , given training example ~xt adapt ~wk as follows:

~w(t)
k =

~w(t−1)
k + θ ·

(
~xt − ~w

(t−1)
k

)
k ∈ Ns(c(~xt))

~w(t−1)
k otherwise

where c(~xt) = arg mini=1,...,h

∣∣∣∣∣∣∣∣~xt − ~w
(t−1)
i

∣∣∣∣∣∣∣∣ and θ ∈ R and s ∈N0

are parameters that may change during training. 267

Kohonen’s map – learning

More general version:

~w(t)
k = ~w(t−1)

k + Θ(c(~xt), k) ·
(
~xt − ~w

(t−1)
k

)
where c(~xt) = arg mini=1,...,h

∣∣∣∣∣∣∣∣~xt − ~w
(t−1)
i

∣∣∣∣∣∣∣∣. The previous case
then corresponds to

Θ(c(~xt), k) =

θ k ∈ Ns(c(~xt))

0 jinak

A smoother version:

Θ(c(~xt), k) = θ0 · exp

(
−d(c(~xt), k)2

σ2

)
where θ0 ∈ R is a learning rate and σ ∈ R is the width (both
parameters may change during training).

268

Example 1

Inputs uniformly distributed in a rectangle.
Image source: Neural Networks - A Systematic Introduction, Raul Rojas, Springer, 1996

269

Example 2

Inputs uniformly distributed in a triangle. Zdroj obrázku: Neural Networks - A

Systematic Introduction, Raul Rojas, Springer, 1996
270

Example 3

Inputs uniformly distributed in a cuboid.
Zdroj obrázku: Neural Networks - A Systematic Introduction, Raul Rojas, Springer, 1996

271

Example 4

Inputs uniformly distributed in a cactus.
Zdroj obrázku: Neural Networks - A Systematic Introduction, Raul Rojas, Springer, 1996 272

Example – defect

Topological defect – twisted network.
Zdroj obrázku: Neural Networks - A Systematic Introduction, Raul Rojas, Springer, 1996

273

Kohonen’s map – theory

I Convergence to "ordered" state has been proved only for
one dimensional maps and special cases of the distribution
p(~x) (uniform), fixed neighbourhoods of size 1, and a fixed
learning rate.
There are simple counterexamples disproving convergence in case
these assumptions are not satisfied.

I In more than one dimension there are no guarantees at all,
convergence depends on several factors:
I initial distribution of neurons (centres)
I size of the neighbourhood
I learning rate

I What dimension to choose? Typically one or two
dimensional map is used (as a coarse version of
dimensionality reduction).

274

Kohonen’s map – theory

I Convergence to "ordered" state has been proved only for
one dimensional maps and special cases of the distribution
p(~x) (uniform), fixed neighbourhoods of size 1, and a fixed
learning rate.
There are simple counterexamples disproving convergence in case
these assumptions are not satisfied.

I In more than one dimension there are no guarantees at all,
convergence depends on several factors:
I initial distribution of neurons (centres)
I size of the neighbourhood
I learning rate

I What dimension to choose? Typically one or two
dimensional map is used (as a coarse version of
dimensionality reduction).

274

LVQ – classification using Kohonen’s map

Assume randomly generated training examples of the form
(~xt ,dt) where ~xt ∈ Rn is feature vector and dt ∈ {C1, . . . ,Cq}

corresponds to one of the q classes.

Our goal is to classify objects based on our knowledge of their
features, i.e. to every ~xt assign a class so that the probability of
error is minimized.

Ex.: Conveyor belt with fruits, apples and oranges: Formally,
(~xt ,dt) where
I ~xt ∈ R2, here the first component is the weight and the

second the diameter.
I dt is either A or O depending on whether the given object

is an apple or an orange.
We allow apples and oranges with the same features.

The goal is to sort out the fruits based on their weight and
diameter.

275

LVQ – classification using Kohonen’s map

Assume randomly generated training examples of the form
(~xt ,dt) where ~xt ∈ Rn is feature vector and dt ∈ {C1, . . . ,Cq}

corresponds to one of the q classes.
Our goal is to classify objects based on our knowledge of their
features, i.e. to every ~xt assign a class so that the probability of
error is minimized.

Ex.: Conveyor belt with fruits, apples and oranges: Formally,
(~xt ,dt) where
I ~xt ∈ R2, here the first component is the weight and the

second the diameter.
I dt is either A or O depending on whether the given object

is an apple or an orange.
We allow apples and oranges with the same features.

The goal is to sort out the fruits based on their weight and
diameter.

275

LVQ – classification using Kohonen’s map

Assume randomly generated training examples of the form
(~xt ,dt) where ~xt ∈ Rn is feature vector and dt ∈ {C1, . . . ,Cq}

corresponds to one of the q classes.
Our goal is to classify objects based on our knowledge of their
features, i.e. to every ~xt assign a class so that the probability of
error is minimized.

Ex.: Conveyor belt with fruits, apples and oranges: Formally,
(~xt ,dt) where

I ~xt ∈ R2, here the first component is the weight and the
second the diameter.

I dt is either A or O depending on whether the given object
is an apple or an orange.

We allow apples and oranges with the same features.

The goal is to sort out the fruits based on their weight and
diameter.

275

LVQ – classification using Kohonen’s map

Assume randomly generated training examples of the form
(~xt ,dt) where ~xt ∈ Rn is feature vector and dt ∈ {C1, . . . ,Cq}

corresponds to one of the q classes.
Our goal is to classify objects based on our knowledge of their
features, i.e. to every ~xt assign a class so that the probability of
error is minimized.

Ex.: Conveyor belt with fruits, apples and oranges: Formally,
(~xt ,dt) where
I ~xt ∈ R2, here the first component is the weight and the

second the diameter.

I dt is either A or O depending on whether the given object
is an apple or an orange.

We allow apples and oranges with the same features.

The goal is to sort out the fruits based on their weight and
diameter.

275

LVQ – classification using Kohonen’s map

Assume randomly generated training examples of the form
(~xt ,dt) where ~xt ∈ Rn is feature vector and dt ∈ {C1, . . . ,Cq}

corresponds to one of the q classes.
Our goal is to classify objects based on our knowledge of their
features, i.e. to every ~xt assign a class so that the probability of
error is minimized.

Ex.: Conveyor belt with fruits, apples and oranges: Formally,
(~xt ,dt) where
I ~xt ∈ R2, here the first component is the weight and the

second the diameter.
I dt is either A or O depending on whether the given object

is an apple or an orange.

We allow apples and oranges with the same features.

The goal is to sort out the fruits based on their weight and
diameter.

275

LVQ – classification using Kohonen’s map

Assume randomly generated training examples of the form
(~xt ,dt) where ~xt ∈ Rn is feature vector and dt ∈ {C1, . . . ,Cq}

corresponds to one of the q classes.
Our goal is to classify objects based on our knowledge of their
features, i.e. to every ~xt assign a class so that the probability of
error is minimized.

Ex.: Conveyor belt with fruits, apples and oranges: Formally,
(~xt ,dt) where
I ~xt ∈ R2, here the first component is the weight and the

second the diameter.
I dt is either A or O depending on whether the given object

is an apple or an orange.
We allow apples and oranges with the same features.

The goal is to sort out the fruits based on their weight and
diameter.

275

Classification using Kohonen’s map

We use Kohonen’s map as follows:
1. Train the map on feature vectors ~xt where t = 1, . . . , `

(ignore the classes for now).

2. Label neurons with classes. The class vc of a given neuron
c is determined as follows:

For every neuron c and every class Ci count the number
#(c,Ci) of training examples ~xt with class Ci for which the
neuron c returns 1 (i.e. is the closest to them).

To c, assign the class vc satisfying

vc = argmaxCi
#(c,Ci)

3. Fine tune the network using LVQ (next slide)
The trained network is used as follows: Given a feature vector
~x, evaluate the network with ~x as the input. A single neuron c
has the value 1, return vc as the class of ~x.

276

Classification using Kohonen’s map

We use Kohonen’s map as follows:
1. Train the map on feature vectors ~xt where t = 1, . . . , `

(ignore the classes for now).
2. Label neurons with classes. The class vc of a given neuron

c is determined as follows:

For every neuron c and every class Ci count the number
#(c,Ci) of training examples ~xt with class Ci for which the
neuron c returns 1 (i.e. is the closest to them).

To c, assign the class vc satisfying

vc = argmaxCi
#(c,Ci)

3. Fine tune the network using LVQ (next slide)
The trained network is used as follows: Given a feature vector
~x, evaluate the network with ~x as the input. A single neuron c
has the value 1, return vc as the class of ~x.

276

Classification using Kohonen’s map

We use Kohonen’s map as follows:
1. Train the map on feature vectors ~xt where t = 1, . . . , `

(ignore the classes for now).
2. Label neurons with classes. The class vc of a given neuron

c is determined as follows:

For every neuron c and every class Ci count the number
#(c,Ci) of training examples ~xt with class Ci for which the
neuron c returns 1 (i.e. is the closest to them).

To c, assign the class vc satisfying

vc = argmaxCi
#(c,Ci)

3. Fine tune the network using LVQ (next slide)
The trained network is used as follows: Given a feature vector
~x, evaluate the network with ~x as the input. A single neuron c
has the value 1, return vc as the class of ~x.

276

LVQ

Iterate over training examples. For (~xt ,dt) find the closes
neuron c

c = arg min
i=1,...,h

∣∣∣∣∣∣~xt − ~wi
∣∣∣∣∣∣

Adjust weights of c as follows:

~w(t)
c =

~w(t−1)
c + α(~xt − ~w

(t−1)
c) dt = vc

~w(t−1)
c − α(~xt − ~w

(t−1)
c) dt , vc

The parameter α should be small right from the beginning
(approx. 0.01 − 0.02) and go to 0 steadily.

By Kohonen: The border between classes should be a good
approximation of the Bayes decision boundary.
What is it??

277

LVQ

Iterate over training examples. For (~xt ,dt) find the closes
neuron c

c = arg min
i=1,...,h

∣∣∣∣∣∣~xt − ~wi
∣∣∣∣∣∣

Adjust weights of c as follows:

~w(t)
c =

~w(t−1)
c + α(~xt − ~w

(t−1)
c) dt = vc

~w(t−1)
c − α(~xt − ~w

(t−1)
c) dt , vc

The parameter α should be small right from the beginning
(approx. 0.01 − 0.02) and go to 0 steadily.

By Kohonen: The border between classes should be a good
approximation of the Bayes decision boundary.
What is it??

277

Bayes classifier

For simplicity, consider two classes C0 and C1 (e.g. A and O).

Let P(Ci | ~x) be the probability that the object belongs to Ci
assuming that it has features ~x.
(e.g. P(A | (a,b)) is the probability that a fruit with weight a and diameter b is
an apple.)

Bayes classifier assigns to ~x the class Ci which satisfies
P(Ci | ~x) ≥ P(C1−i | ~x).
Denote by R0 the set of all ~x satisfying P(C0 | ~x) ≥ P(C1 | ~x)
and R1 = Rn r R0.

Bayes classifier minimizes the error probability:

P(~x ∈ R0 ∧ C1) + P(~x ∈ R1 ∧ C0)

Bayes decision boundary is the boundary between the sets R0
and R1.

278

Bayes classifier

For simplicity, consider two classes C0 and C1 (e.g. A and O).

Let P(Ci | ~x) be the probability that the object belongs to Ci
assuming that it has features ~x.
(e.g. P(A | (a,b)) is the probability that a fruit with weight a and diameter b is
an apple.)

Bayes classifier assigns to ~x the class Ci which satisfies
P(Ci | ~x) ≥ P(C1−i | ~x).
Denote by R0 the set of all ~x satisfying P(C0 | ~x) ≥ P(C1 | ~x)
and R1 = Rn r R0.

Bayes classifier minimizes the error probability:

P(~x ∈ R0 ∧ C1) + P(~x ∈ R1 ∧ C0)

Bayes decision boundary is the boundary between the sets R0
and R1.

278

Bayes decision boundary vs LVQ

Zdroj obrázku: The Self-Organizing Map, Teuvo Kohonen, IEEE, 1990

279

Oceanographic data

Source: Patterns of ocean current variability on the West Florida Shelf using
the self-organizing map. Y. Liu a R. H. Weisberg, JOURNAL OF
GEOPHYSICAL RESEARCH, 2005

Investigates currents in the ocean around Florida.

280

Oceanographic data

I 11 measuring stations, 3 depths (surface, bottom, in
between).

I data: 2D velocity vectors of the current
I measured by every hour, for 25585 hours

Thus we have 25585 data samples, 66 dimensions.

Kohonen’s map:
I grid 3 × 4
I neighbourhoods given by Gaussian functions

Θ(c, k) = θ0 · exp

(
−d(c, k)2

σ2

)
shrinking width
(linearly decreasing learning rate)

281

Oceanographic data

I 11 measuring stations, 3 depths (surface, bottom, in
between).

I data: 2D velocity vectors of the current
I measured by every hour, for 25585 hours

Thus we have 25585 data samples, 66 dimensions.

Kohonen’s map:
I grid 3 × 4
I neighbourhoods given by Gaussian functions

Θ(c, k) = θ0 · exp

(
−d(c, k)2

σ2

)
shrinking width
(linearly decreasing learning rate)

281

Oceanographic data

282

Oceanographic data

I crosses are winning neurons)
I influenced by local fluctuations
I observable trend:
I winter: neurons 1-6 (south-east)
I summer: neurons 10-12 (north-west)

283

Grimm’s fairy tales

Zdroj: Contextual Relations of Words in Grimm Tales, Analyzed by
Self-Organizing Map. T. Kohonen, T. Honkela a V. Pulkki, ICANN, 1995

Our goal is to visualize syntactic and semantic categories of
words in fairy tales (depending on context).

Input: Grimm’s fairy tales (understandably encoded using a
stream of 270-dimensional vectors)
I triples of words (predecessor, key, successor)
I every component in the triple encoded using a randomly

generated 90 dimensional real vector
Network: Kohonen’s map, 42 × 36 neurons, weights of the form
w = (wp ,wk ,wn) where wp ,wk ,wn ∈ R90.

284

Grimm’s fairy tales

Zdroj: Contextual Relations of Words in Grimm Tales, Analyzed by
Self-Organizing Map. T. Kohonen, T. Honkela a V. Pulkki, ICANN, 1995

Our goal is to visualize syntactic and semantic categories of
words in fairy tales (depending on context).

Input: Grimm’s fairy tales (understandably encoded using a
stream of 270-dimensional vectors)
I triples of words (predecessor, key, successor)
I every component in the triple encoded using a randomly

generated 90 dimensional real vector
Network: Kohonen’s map, 42 × 36 neurons, weights of the form
w = (wp ,wk ,wn) where wp ,wk ,wn ∈ R90.

284

Grimm’s fairy tales

Learning:

Trained on triples of successive words in fairy tales
The training set consisted of 150 most common words, with "average"
context.

Training: Approx. 1000 000 iterations.

In the end, 150 most common words labelled neurons:

A word u labels a neuron with weights w = (wp ,wk ,wn) when
wk is closest to the code of u.

285

Grimm’s fairy tales

286

Course Summary

287

Great summary – models

We have considered several models of neural networks:
I ADALINE (aka linear regression)
I Multilayer Perceptron
I Hopfield Networks
I Convolutional Networks
I Recurrent Networks (LSTM)
I Restricted Boltzmann Machines and Deep Belief Networks
I Kohonen’s Maps

288

Great summary – algorithms

Gradient descent!

The only exception were Kohonen’s maps (Kohonen learning)
and Hopfield (Hebb’s learning).

The gradient computed using
I Backpropagation: MLP, Convolutional, Recurrent (LSTM)
I Simulations: RBM

289

Deeper thoughts

I Most neural network models are universal approximators
(i.e. capable of approximating any reasonable function),
but it is difficult to find the appropriate configuration→
such configuration can be learned efficiently (without
guarantees of course)

I Depth is stronger than size: deep networks are more
succinct in their representation but are harder to train: Do
not forget the vanishin/exploding gradient problem!

I Weight tying = single most effective trick in the history of
neural networks!

290

