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1Administrativa

• Class web site: http://www.mt-class.org/jhu/

• Graduate section: Tuesdays and Thursdays, 1:30-2:45, Ames 234

• Instructor: Philipp Koehn

• TAs: Huda Khayrallah, Brian Thompson, Tanay Agarwal

• Grading

– five programming assignments (12% each)
– final project (30%)
– in-class presentation: language in ten minutes (10%)

Philipp Koehn Machine Translation 4 September 2018



2Why Take This Class?

• Close look at an artificial intelligence problem

• Practical introduction to natural language processing

• Introduction to deep learning for structured prediction
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3Textbook

Neural Machine Translation

Philipp Koehn
Center for Speech and Language Processing

Department of Computer Science
Johns Hopkins University

1st public draft
August 7, 2015

2nd public draft (arxiv)
September 22, 2017

3rd draft
September 25, 2017
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4

some history
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5An Old Idea

Warren Weaver on translation
as code breaking (1947):

When I look at an article in Russian, I say:
”This is really written in English,
but it has been coded in some strange symbols.
I will now proceed to decode”.
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6Early Efforts and Disappointment

• Excited research in 1950s and 1960s

1954
Georgetown experiment
Machine could translate

250 words and
6 grammar rules

• 1966 ALPAC report:

– only $20 million spent on translation in the US per year
– no point in machine translation
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7Rule-Based Systems

• Rule-based systems

– build dictionaries
– write transformation rules
– refine, refine, refine

• Météo system for weather forecasts (1976)

• Systran (1968), Logos and Metal (1980s)

"have" :=

if
subject(animate)
and object(owned-by-subject)

then
translate to "kade... aahe"

if
subject(animate)
and object(kinship-with-subject)

then
translate to "laa... aahe"

if
subject(inanimate)

then
translate to "madhye...

aahe"
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8Statistical Machine Translation

• 1980s: IBM

• 1990s: increased research

• Mid 2000s: Phrase-Based MT (Moses, Google)

• Around 2010: commercial viability
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9Neural Machine Translation

• Late 2000s: successful use of neural models for computer vision

• Since mid 2010s: neural network models for machine translation

• 2016: Neural machine translation the new state of the art
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10Hype

Hype

1950 1960 1970 1980 1990 2000 2010

Reality

Georgetown 
experiment

Expert systems /
5th generation AI

Statistical 
MT

Neural 
MT
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11

how good is machine translation?
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12Machine Translation: Chinese
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13Machine Translation: French
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14A Clear Plan

Source Target

Lexical Transfer

Interlingua
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15A Clear Plan

Source Target

Lexical Transfer

Syntactic Transfer

Interlingua
Ana

lys
is

Generation
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16A Clear Plan

Source Target

Lexical Transfer

Syntactic Transfer

Semantic Transfer

Interlingua

Ana
lys

is
Generation
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17A Clear Plan

Source Target

Lexical Transfer

Syntactic Transfer

Semantic Transfer

Interlingua

Ana
lys

is
Generation
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18Learning from Data

Statistical 
Machine 

Translation 
System

Training Data Linguistic Tools

Statistical 
Machine 

Translation 
System

Translation

Source Text
Training Using

parallel corpora
monolingual corpora

dictionaries
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19

why is that a good plan?
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20Word Translation Problems

• Words are ambiguous

He deposited money in a bank account
with a high interest rate.

Sitting on the bank of the Mississippi,
a passing ship piqued his interest.

• How do we find the right meaning, and thus translation?

• Context should be helpful
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21Syntactic Translation Problems

• Languages have different sentence structure

das behaupten sie wenigstens
this claim they at least
the she

• Convert from object-verb-subject (OVS) to subject-verb-object (SVO)

• Ambiguities can be resolved through syntactic analysis

– the meaning the of das not possible (not a noun phrase)
– the meaning she of sie not possible (subject-verb agreement)
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22Semantic Translation Problems

• Pronominal anaphora

I saw the movie and it is good.

• How to translate it into German (or French)?

– it refers to movie
– movie translates to Film
– Film has masculine gender
– ergo: it must be translated into masculine pronoun er

• We are not handling this very well [Le Nagard and Koehn, 2010]
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23Semantic Translation Problems

• Coreference

Whenever I visit my uncle and his daughters,
I can’t decide who is my favorite cousin.

• How to translate cousin into German? Male or female?

• Complex inference required
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24Semantic Translation Problems

• Discourse

Since you brought it up, I do not agree with you.

Since you brought it up, we have been working on it.

• How to translated since? Temporal or conditional?

• Analysis of discourse structure — a hard problem
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25Learning from Data

• What is the best translation?

Sicherheit→ security 14,516
Sicherheit→ safety 10,015
Sicherheit→ certainty 334
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26Learning from Data

• What is the best translation?

Sicherheit→ security 14,516
Sicherheit→ safety 10,015
Sicherheit→ certainty 334

• Counts in European Parliament corpus
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27Learning from Data

• What is the best translation?

Sicherheit→ security 14,516
Sicherheit→ safety 10,015
Sicherheit→ certainty 334

• Phrasal rules
Sicherheitspolitik→ security policy 1580

Sicherheitspolitik→ safety policy 13
Sicherheitspolitik→ certainty policy 0

Lebensmittelsicherheit→ food security 51
Lebensmittelsicherheit→ food safety 1084
Lebensmittelsicherheit→ food certainty 0

Rechtssicherheit→ legal security 156
Rechtssicherheit→ legal safety 5

Rechtssicherheit→ legal certainty 723
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28Learning from Data

• What is most fluent?

a problem for translation 13,000

a problem of translation 61,600

a problem in translation 81,700
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29Learning from Data

• What is most fluent?

a problem for translation 13,000

a problem of translation 61,600

a problem in translation 81,700

• Hits on Google
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30Learning from Data

• What is most fluent?

a problem for translation 13,000

a problem of translation 61,600

a problem in translation 81,700

a translation problem 235,000
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31Learning from Data

• What is most fluent?

police disrupted the demonstration 2,140

police broke up the demonstration 66,600

police dispersed the demonstration 25,800

police ended the demonstration 762

police dissolved the demonstration 2,030

police stopped the demonstration 722,000

police suppressed the demonstration 1,400

police shut down the demonstration 2,040
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32Learning from Data

• What is most fluent?

police disrupted the demonstration 2,140

police broke up the demonstration 66,600

police dispersed the demonstration 25,800

police ended the demonstration 762

police dissolved the demonstration 2,030

police stopped the demonstration 722,000

police suppressed the demonstration 1,400

police shut down the demonstration 2,040
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where are we now?
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34Word Alignment

house

the

in

stay

will

he

that

assumes

michael

m
ic

ha
el

ge
ht

da
vo

n

au
s

da
ss

er im ha
us

bl
ei

bt

,
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35Phrase-Based Model

• Foreign input is segmented in phrases

• Each phrase is translated into English

• Phrases are reordered

• Workhorse of today’s statistical machine translation
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36Syntax-Based Translation

Sie
PPER

will
VAFIN

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP

VP
S

PRO
she

VB
drink

NN
|

cup

IN
|

of

NP

PP

NN

NP

DET
|
a

VBZ
|

wants
VB

VP
VP

NPTO
|

to

NN
coffee

S

PRO   VP

➏

➊ ➋ ➌

➍

➎
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37Semantic Translation

• Abstract meaning representation [Knight et al., ongoing]

(w / want-01
:agent (b / boy)
:theme (l / love

:agent (g / girl)
:patient b))

• Generalizes over equivalent syntactic constructs
(e.g., active and passive)

• Defines semantic relationships

– semantic roles
– co-reference
– discourse relations

• In a very preliminary stage
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38Neural Model

Input Word
Embeddings

Left-to-Right
Recurrent NN

Right-to-Left
Recurrent NN

Attention

Input Context

Hidden State

Output Word
Predictions

Given 
Output Words

Error

Output Word
Embedding

<s> the house is big . </s>

<s> das Haus ist groß , </s>
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what is it good for?
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40

what is it good enough for?
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41Why Machine Translation?

Assimilation — reader initiates translation, wants to know content

• user is tolerant of inferior quality
• focus of majority of research (GALE program, etc.)

Communication — participants don’t speak same language, rely on translation

• users can ask questions, when something is unclear
• chat room translations, hand-held devices
• often combined with speech recognition, IWSLT campaign

Dissemination — publisher wants to make content available in other languages

• high demands for quality
• currently almost exclusively done by human translators
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42Problem: No Single Right Answer

Israeli officials are responsible for airport security.
Israel is in charge of the security at this airport.
The security work for this airport is the responsibility of the Israel government.
Israeli side was in charge of the security of this airport.
Israel is responsible for the airport’s security.
Israel is responsible for safety work at this airport.
Israel presides over the security of the airport.
Israel took charge of the airport security.
The safety of this airport is taken charge of by Israel.
This airport’s security is the responsibility of the Israeli security officials.
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43Quality

HTER assessment

0%
publishable

10%
editable

20%

30% gistable

40% triagable

50%

(scale developed in preparation of DARPA GALE programme)
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44Applications

HTER assessment application examples

0% Seamless bridging of language divide
publishable Automatic publication of official announcements

10%
editable Increased productivity of human translators

20% Access to official publications
Multi-lingual communication (chat, social networks)

30% gistable Information gathering
Trend spotting

40% triagable Identifying relevant documents

50%
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45Current State of the Art

HTER assessment language pairs and domains

0% French-English restricted domain
publishable French-English technical document localization

10% French-English news stories
editable German-English news stories

20%

30% gistable Swahili–English news stories

40% triagable Uyghur–English news stories

50%

(informal rough estimates by presenter)
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46Thank You

questions?
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