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1Lexical Translation

• How to translate a word→ look up in dictionary

Haus — house, building, home, household, shell.

• Multiple translations

– some more frequent than others
– for instance: house, and building most common
– special cases: Haus of a snail is its shell

• Note: In all lectures, we translate from a foreign language into English
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2Collect Statistics

Look at a parallel corpus (German text along with English translation)

Translation of Haus Count
house 8,000
building 1,600
home 200
household 150
shell 50
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3Estimate Translation Probabilities

Maximum likelihood estimation

pf(e) =



0.8 if e = house,
0.16 if e = building,
0.02 if e = home,
0.015 if e = household,
0.005 if e = shell.
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4Alignment

• In a parallel text (or when we translate), we align words in one language with
the words in the other

das Haus ist klein

the house is small

1 2 3 4

1 2 3 4

• Word positions are numbered 1–4
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5Alignment Function

• Formalizing alignment with an alignment function

• Mapping an English target word at position i to a German source word at
position j with a function a : i→ j

• Example
a : {1→ 1, 2→ 2, 3→ 3, 4→ 4}
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6Reordering

Words may be reordered during translation

das Hausistklein

the house is small
1 2 3 4

1 2 3 4

a : {1→ 3, 2→ 4, 3→ 2, 4→ 1}
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7One-to-Many Translation

A source word may translate into multiple target words

das Haus ist klitzeklein

the house is very small
1 2 3 4

1 2 3 4

5

a : {1→ 1, 2→ 2, 3→ 3, 4→ 4, 5→ 4}
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8Dropping Words

Words may be dropped when translated
(German article das is dropped)

das Haus ist klein

house is small
1 2 3

1 2 3 4

a : {1→ 2, 2→ 3, 3→ 4}
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9Inserting Words

• Words may be added during translation

– The English just does not have an equivalent in German
– We still need to map it to something: special NULL token

das Haus ist klein

the house is just small

NULL

1 2 3 4

1 2 3 4

5

0

a : {1→ 1, 2→ 2, 3→ 3, 4→ 0, 5→ 4}
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10IBM Model 1

• Generative model: break up translation process into smaller steps
– IBM Model 1 only uses lexical translation

• Translation probability
– for a foreign sentence f = (f1, ..., flf) of length lf
– to an English sentence e = (e1, ..., ele) of length le
– with an alignment of each English word ej to a foreign word fi according to

the alignment function a : j → i

p(e, a|f) = ε

(lf + 1)le

le∏
j=1

t(ej|fa(j))

– parameter ε is a normalization constant
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11Example

das Haus ist klein
e t(e|f)
the 0.7
that 0.15
which 0.075
who 0.05
this 0.025

e t(e|f)
house 0.8
building 0.16
home 0.02
household 0.015
shell 0.005

e t(e|f)
is 0.8
’s 0.16
exists 0.02
has 0.015
are 0.005

e t(e|f)
small 0.4
little 0.4
short 0.1
minor 0.06
petty 0.04

p(e, a|f) = ε

43
× t(the|das)× t(house|Haus)× t(is|ist)× t(small|klein)

=
ε

43
× 0.7× 0.8× 0.8× 0.4

= 0.0028ε
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12

finding translations
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13Centauri-Arcturan Parallel Text
1a. ok-voon ororok sprok . 7a. lalok farok ororok lalok sprok izok enemok .
1b. at-voon bichat dat . 7b. wat jjat bichat wat dat vat eneat .
————————————————– ————————————————–
2a. ok-drubel ok-voon anok plok sprok . 8a. lalok brok anok plok nok .
2b. at-drubel at-voon pippat rrat dat . 8b. iat lat pippat rrat nnat .
————————————————– ————————————————–
3a. erok sprok izok hihok ghirok . 9a. wiwok nok izok kantok ok-yurp .
3b. totat dat arrat vat hilat . 9b. totat nnat quat oloat at-yurp .
————————————————– ————————————————–
4a. ok-voon anok drok brok jok . 10a. lalok mok nok yorok ghirok clok .
4b. at-voon krat pippat sat lat . 10b. wat nnat gat mat bat hilat .
————————————————– ————————————————–
5a. wiwok farok izok stok . 11a. lalok nok crrrok hihok yorok zanzanok .
5b. totat jjat quat cat . 11b. wat nnat arrat mat zanzanat .
————————————————– ————————————————–
6a. lalok sprok izok jok stok . 12a. lalok rarok nok izok hihok mok .
6b. wat dat krat quat cat . 12b. wat nnat forat arrat vat gat .

Translation challenge: farok crrrok hihok yorok clok kantok ok-yurp

(from Knight (1997): Automating Knowledge Acquisition for Machine Translation)
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14

em algorithm
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15Learning Lexical Translation Models

• We would like to estimate the lexical translation probabilities t(e|f) from a
parallel corpus

• ... but we do not have the alignments

• Chicken and egg problem

– if we had the alignments,
→we could estimate the parameters of our generative model

– if we had the parameters,
→we could estimate the alignments
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16EM Algorithm

• Incomplete data

– if we had complete data, would could estimate model
– if we had model, we could fill in the gaps in the data

• Expectation Maximization (EM) in a nutshell

1. initialize model parameters (e.g. uniform)
2. assign probabilities to the missing data
3. estimate model parameters from completed data
4. iterate steps 2–3 until convergence
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17EM Algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

• Initial step: all alignments equally likely

• Model learns that, e.g., la is often aligned with the
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18EM Algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

• After one iteration

• Alignments, e.g., between la and the are more likely
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19EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

• After another iteration

• It becomes apparent that alignments, e.g., between fleur and flower are more
likely (pigeon hole principle)
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20EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

• Convergence

• Inherent hidden structure revealed by EM
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21EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

p(la|the) = 0.453
p(le|the) = 0.334

p(maison|house) = 0.876
p(bleu|blue) = 0.563

...

• Parameter estimation from the aligned corpus

Philipp Koehn Machine Translation: IBM Model 1 and the EM Algorithm 13 September 2018



22IBM Model 1 and EM

• EM Algorithm consists of two steps

• Expectation-Step: Apply model to the data

– parts of the model are hidden (here: alignments)
– using the model, assign probabilities to possible values

• Maximization-Step: Estimate model from data

– take assign values as fact
– collect counts (weighted by probabilities)
– estimate model from counts

• Iterate these steps until convergence
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23IBM Model 1 and EM

• We need to be able to compute:

– Expectation-Step: probability of alignments

– Maximization-Step: count collection

Philipp Koehn Machine Translation: IBM Model 1 and the EM Algorithm 13 September 2018



24IBM Model 1 and EM

• Probabilities p(the|la) = 0.7 p(house|la) = 0.05
p(the|maison) = 0.1 p(house|maison) = 0.8

• Alignments

la •
maison•

the•
house•

la •
maison•

the•
house•

@
@
@

la •
maison•

the•
house•�

�
� la •

maison•
the•
house•

@
@
@�
�
�

p(e, a|f) = 0.56 p(e, a|f) = 0.035 p(e, a|f) = 0.08 p(e, a|f) = 0.005

p(a|e, f) = 0.824 p(a|e, f) = 0.052 p(a|e, f) = 0.118 p(a|e, f) = 0.007

• Counts c(the|la) = 0.824 + 0.052 c(house|la) = 0.052 + 0.007
c(the|maison) = 0.118 + 0.007 c(house|maison) = 0.824 + 0.118
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25IBM Model 1 and EM: Expectation Step

• We need to compute p(a|e, f)

• Applying the chain rule:

p(a|e, f) = p(e, a|f)
p(e|f)

• We already have the formula for p(e,a|f) (definition of Model 1)
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26IBM Model 1 and EM: Expectation Step

• We need to compute p(e|f)

p(e|f) =
∑
a

p(e, a|f)

=

lf∑
a(1)=0

...

lf∑
a(le)=0

p(e, a|f)

=

lf∑
a(1)=0

...

lf∑
a(le)=0

ε

(lf + 1)le

le∏
j=1

t(ej|fa(j))

Philipp Koehn Machine Translation: IBM Model 1 and the EM Algorithm 13 September 2018



27IBM Model 1 and EM: Expectation Step

p(e|f) =
lf∑

a(1)=0

...

lf∑
a(le)=0

ε

(lf + 1)le

le∏
j=1

t(ej|fa(j))

=
ε

(lf + 1)
le

lf∑
a(1)=0

...

lf∑
a(le)=0

le∏
j=1

t(ej|fa(j))

=
ε

(lf + 1)
le

le∏
j=1

lf∑
i=0

t(ej|fi)

• Note the trick in the last line

– removes the need for an exponential number of products
→ this makes IBM Model 1 estimation tractable

Philipp Koehn Machine Translation: IBM Model 1 and the EM Algorithm 13 September 2018



28The Trick
(case le = lf = 2)

2∑
a(1)=0

2∑
a(2)=0

=
ε

32

2∏
j=1

t(ej|fa(j)) =

= t(e1|f0) t(e2|f0) + t(e1|f0) t(e2|f1) + t(e1|f0) t(e2|f2)+
+ t(e1|f1) t(e2|f0) + t(e1|f1) t(e2|f1) + t(e1|f1) t(e2|f2)+
+ t(e1|f2) t(e2|f0) + t(e1|f2) t(e2|f1) + t(e1|f2) t(e2|f2) =

= t(e1|f0) (t(e2|f0) + t(e2|f1) + t(e2|f2))+
+ t(e1|f1) (t(e2|f1) + t(e2|f1) + t(e2|f2))+
+ t(e1|f2) (t(e2|f2) + t(e2|f1) + t(e2|f2)) =

= (t(e1|f0) + t(e1|f1) + t(e1|f2)) (t(e2|f2) + t(e2|f1) + t(e2|f2))
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29IBM Model 1 and EM: Expectation Step

• Combine what we have:

p(a|e, f) = p(e,a|f)/p(e|f)

=

ε
(lf+1)le

∏le
j=1 t(ej|fa(j))

ε
(lf+1)le

∏le
j=1

∑lf
i=0 t(ej|fi)

=

le∏
j=1

t(ej|fa(j))∑lf
i=0 t(ej|fi)
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30IBM Model 1 and EM: Maximization Step

• Now we have to collect counts

• Evidence from a sentence pair e,f that word e is a translation of word f :

c(e|f ; e, f) =
∑
a

p(a|e, f)
le∑
j=1

δ(e, ej)δ(f, fa(j))

• With the same simplication as before:

c(e|f ; e, f) = t(e|f)∑lf
i=0 t(e|fi)

le∑
j=1

δ(e, ej)

lf∑
i=0

δ(f, fi)
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31IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

t(e|f ;e, f) =
∑

(e,f) c(e|f ;e, f))∑
e

∑
(e,f) c(e|f ;e, f))
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32IBM Model 1 and EM: Pseudocode
Input: set of sentence pairs (e, f)
Output: translation prob. t(e|f)

1: initialize t(e|f) uniformly
2: while not converged do
3: // initialize
4: count(e|f ) = 0 for all e, f
5: total(f ) = 0 for all f
6: for all sentence pairs (e,f) do
7: // compute normalization
8: for all words e in e do
9: s-total(e) = 0

10: for all words f in f do
11: s-total(e) += t(e|f)
12: end for
13: end for

14: // collect counts
15: for all words e in e do
16: for all words f in f do
17: count(e|f ) += t(e|f)

s-total(e)

18: total(f ) += t(e|f)
s-total(e)

19: end for
20: end for
21: end for
22: // estimate probabilities
23: for all foreign words f do
24: for all English words e do
25: t(e|f) = count(e|f)

total(f)
26: end for
27: end for
28: end while
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33Convergence
das Haus

the house

das Buch

the book

ein Buch

a book

e f initial 1st it. 2nd it. 3rd it. ... final
the das 0.25 0.5 0.6364 0.7479 ... 1

book das 0.25 0.25 0.1818 0.1208 ... 0
house das 0.25 0.25 0.1818 0.1313 ... 0

the buch 0.25 0.25 0.1818 0.1208 ... 0
book buch 0.25 0.5 0.6364 0.7479 ... 1

a buch 0.25 0.25 0.1818 0.1313 ... 0
book ein 0.25 0.5 0.4286 0.3466 ... 0

a ein 0.25 0.5 0.5714 0.6534 ... 1
the haus 0.25 0.5 0.4286 0.3466 ... 0

house haus 0.25 0.5 0.5714 0.6534 ... 1
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34Perplexity

• How well does the model fit the data?

• Perplexity: derived from probability of the training data according to the model

log2PP = −
∑
s

log2 p(es|fs)

• Example (ε=1)

initial 1st it. 2nd it. 3rd it. ... final
p(the haus|das haus) 0.0625 0.1875 0.1905 0.1913 ... 0.1875
p(the book|das buch) 0.0625 0.1406 0.1790 0.2075 ... 0.25
p(a book|ein buch) 0.0625 0.1875 0.1907 0.1913 ... 0.1875

perplexity 4095 202.3 153.6 131.6 ... 113.8
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35Higher IBM Models

IBM Model 1 lexical translation
IBM Model 2 adds absolute reordering model
IBM Model 3 adds fertility model
IBM Model 4 relative reordering model
IBM Model 5 fixes deficiency

• Only IBM Model 1 has global maximum
– training of a higher IBM model builds on previous model

• Compuationally biggest change in Model 3
– trick to simplify estimation does not work anymore
→ exhaustive count collection becomes computationally too expensive
– sampling over high probability alignments is used instead
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36

word alignment
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37Word Alignment

Given a sentence pair, which words correspond to each other?

house

the

in

stay

will

he

that

assumes

michael

m
ic

ha
el

ge
ht

da
vo

n

au
s

da
ss

er im ha
us

bl
ei

bt

,
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38Word Alignment?

here

live

not

does

john

jo
hn

hi
er

ni
ch

t

w
oh

nt

??

Is the English word does aligned to
the German wohnt (verb) or nicht (negation) or neither?
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39Word Alignment?

bucket

the

kicked

john

jo
hn

in
s

gr
as

s

bi
ss

How do the idioms kicked the bucket and biss ins grass match up?
Outside this exceptional context, bucket is never a good translation for grass
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40Measuring Word Alignment Quality

• Manually align corpus with sure (S) and possible (P ) alignment points (S ⊆ P )

• Common metric for evaluation word alignments: Alignment Error Rate (AER)

AER(S, P ;A) = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

• AER = 0: alignment A matches all sure, any possible alignment points

• However: different applications require different precision/recall trade-offs
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41

symmetrization
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42Word Alignment with IBM Models

• IBM Models create a many-to-one mapping

– words are aligned using an alignment function

– a function may return the same value for different input

(one-to-many mapping)

– a function can not return multiple values for one input

(no many-to-one mapping)

• Real word alignments have many-to-many mappings

Philipp Koehn Machine Translation: IBM Model 1 and the EM Algorithm 13 September 2018



43Symmetrization

• Run IBM Model training in both directions

→ two sets of word alignment points

• Intersection: high precision alignment points

• Union: high recall alignment points

• Refinement methods explore the sets between intersection and union
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44Example

Maria no daba una
bofetada

a la
bruja

verde

Mary

witch

green

the

slap

not

did

Maria no daba una
bofetada

a la
bruja

verde

Mary

witch

green

the

slap

not

did

Maria no daba una
bofetada

a la
bruja

verde

Mary

witch

green

the

slap

not

did

english to spanish spanish to english

intersection
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45Growing Heuristics

Maria no daba una
bofetada

a la
bruja

verde

Mary

witch

green

the

slap

not

did

black: intersection grey: additional points in union

• Add alignment points from union based on heuristics:

– directly/diagonally neighboring points
– finally, add alignments that connect unaligned words in source and/or target

• Popular method: grow-diag-final-and
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