Neural Machine Translation 111

Philipp Koehn

24 October 2017

—N
SN

Philipp Koehn

Machine Translation: Neural Machine Translation Il

24 October 2017



Neural Machine Translation

<s> the house is big </s>
_— | | - - = - ]
e e e 5 S e of e
[

3 J 3

<s> das Haus

ist

grofd

</s>

Input Word
Embeddings

Left-to-Right
Recurrent NN

Right-to-Left
Recurrent NN

Attention

Input Context

Hidden State

Output Word
Predictions

Error

Given
Output Words

Output Word
Embedding

Philipp Koehn

Machine Translation: Neural Machine Translation Il|

24 October 2017



=

Google: Neural vs. Statistical MT > QY

B vt e R e perfGCt translation

— IUMAN

2 4 - ' neural (GNMT)
‘§ |
E’ , phrase-based (PBMT)
i
- 2
=
1
0
English  English  English  Spanish  French  Chinese
> > > > > >
Spanish  French  Chinese English  English  English
Translation model

Philipp Koehn Machine Translation: Neural Machine Translation Il 24 October 2017



WMT 2016

HUMAN

e UEDIN-NMT

4 + Statistical MT

e METAMIND

UEDIN-SYNTAX e

e NYU-UMONTREAL

‘OPR_OMT-RULE-BASED o

NLINE-B
KIT-LIMS1#%6 o CAMBRIDGE
KI "ONLINE-A

JHU-SYNTAX e

e JHU-PBMT

ONLINE-F

UEDIN-PBMT

[ J
ONLINE-G

BLIEU
|

18 20 22 24 26 28 30 32 34 36

(in 2017 barely any statistical machine translation submissions)
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Today’s Agenda .

e Challenges

— lack of training data
— domain mismatch
— noisy data

— sentence length

— word alignment

— beam search

e Alternative architectures

— convolutional neural networks
— self-attention
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challenges
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Corpus Size (English Words)

English-Spanish systems trained on 0.4 million to 385.7 million words

Philipp Koehn Machine Translation: Neural Machine Translation Il 24 October 2017



Translation Examples 7

Source | A Republican strategy to counter the re-election of Obama
57 | Un 6rgano de coordinacién para el anuncio de libre determinacién
=5 Lista de una estrategia para luchar contra la elecciéon de hojas de Ohio
T Explosion realiza una estrategia divisiva de luchar contra las
elecciones de autor
55 Una estrategia republicana para la eliminacion de la reeleccion de
Obama
o Estrategia siria para contrarrestar la reeleccion del Obama .
35 Una estrategia republicana para contrarrestar la reeleccion de Obama
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domain mismatch
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Domain Mismatch A=

System | Law Medical IT Koran | Subtitles
All Data 30.532.8 45.142.2 35.344.7 17.917.9 26.420.8

. — — _ —
Law 31.134.4 12.118.2 3.5 69 1.3 2.2 2.8 6.0
Medical | 39102 | 39435 | 2085 | 0620 | 1458

_ — 1 _ —
IT 1.9 3.7 6.5 5.3 42.139.8 1.8 1.6 3.9 4.7

_ - - | —
Koran 04 1.8 0.0 2.1 0.0 2.3 15.918.8 1.0 5.5
Subtitles 7.0 9.9 9.317.8 9.213.6 9.0 84 25.922.1
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Translation Examples 10

Source Schaue um dich herum.

Ref. Look around you.

All NMT: Look around you.
SMT: Look around you.

Law NMT: Sughum gravecorn.

SMT: In order to implement dich Schaue .

Medical | NMT: EMEA / MB / 049 / 01-EN-Final Work progamme for 2002
SMT: Schaue by dich around .

IT NMT: Switches to paused.
SMT: To Schaue by itself . \t \t

Koran NMT: Take heed of your own souls.
SMT: And you see.

Subtitles | NMT: Look around you.
SMT: Look around you .
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noisy data
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e Chen etal. [2016] add noise to WMT EN-EFR training data

Noise in Training Data

— artificial noise: permute order of target sentences

— conclusion: NMT is more sensitive to (some types of) noise than SMT

Noise 0% 10% 20% 50%
SMT 32.7 32.7 (£0.0) | 32.6 (-0.1) | 32.0 (=0.7)
NMT | 35.4 (-0.1) | 34.8 (-0.6) | 32.1(=3.3) | 30.1 (-5.3)

e Other kind of noise: non-text, text in wrong languages

12
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sentence length
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word alignment
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Word Alignment 16
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Word Alignment? 17
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beam search
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Beam Search
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Just Better Fluency? 20

Adequacy Fluency

+1% +13%
100 100

CS—EN DE—EN RO—EN RU—EN CS—EN DE—EN RO—EN RU—EN
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(from: Sennrich and Haddow, 2017)
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alternative architectures
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Beyond Recurrent Neural Networks 22

o We presented the currently dominant model

— recurrent neural networks for encoder and decoder

— attention
e Convolutional neural networks

e Self attention
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convolutional neural networks
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Convolutional Neural Networks 24

Input Word
Embeddings

K2 Layer

Ks Layer

L3 Layer

e Build sentence representation bottom-up

— merge any n neighboring nodes

— nmay be 2, 3, ...
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Generation
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Generation 26

e Encode with convolutional neural network
e Decode with convolutional neural network

e Also include a linear recurrent neural network
e Important: predict length of output sentence

e Does it work?
used successfully in re-ranking (Cho et al., 2014)
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Convolutional Network with Attention =
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(Facebook, 2017)
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Convolutional Encoder 28

Input Word
0 0 Embeddings
0 0 Convolution
Layer 1
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e Similar idea as deep recurrent neural networks
e Good: more parallelizable

e Bad: less context when refining representation of a word
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Convolutional Decoder 29

Decoder
Convolution 2

Decoder
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Output Word
Embedding

Selected
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e Convolutions over output words

e Only previously produced output words
(still left-to-right decoding)
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Convolutional Decoder 30

Input Context
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e Inclusion of Input context

o Context result of attention mechanism (similar to previous)
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Convolutional Decoder

e Predict output word distribution

e Select output word
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self-attention
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Attention 33

Encoder States

Attention

=

Input Context

Hidden State

e Compute association between last hidden state and encoder states
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Attention Math 34

e Input word representation £,
e Decoder state s;

e Computations

1 .
ajp = msjhg raw assoclation
exp(a
Qj P(ajr) normalized association (softmax)
Z/{ exp<a’]"3)
self-attention(h;) = Z ajh weighted sum
k
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Self-Attention 35

e Attention

1
Ajk = msjh;f

e Self-attention

1
ajk = mh]hg
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Why? 3 QY
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e Refine representation of word with related words
making ... more difficult refines making

e Good: more parallelizable than recurrent neural network

e Good: wide context when refining representation of a word
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Stacked Attention in Decoder 37
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Where Are We Now? 38

e Recurrent neural network with attention currently dominant model
e Still many challenges

e New proposals in Spring 2017

— convolutions (Facebook)
— self-attention (Google)

e Too early to tell if either becomes the new paradigm

e Open source implementations are available
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questions?
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