Large Spoken Language Dialogue Systems: Verbmobil & SmartKom

Tilman Becker
DFKI GmbH
Stuhlsatzenhausweg 3
D-66123 Saarbrücken
becker@dfki.de

http://verbmobil.dfki.de http://www.smartkom.org

Overview

- Speech-to-speech translation: Verbmobil
- Multi-Modal Man-Machine Interaction: SmartKom
- Zooming in: Natural Language Generation

Content

- Overview of Verbmobil
- A walk through the system
 - Acoustic Processing
 - Dialog Translation
 - Selection and Speech Synthesis
- Technical issues
- Human Factors and Experiences

Overview of Verbmobil

Challenges, Partners, and General Approaches

What is Verbmobil?

- Speech-to-speech translation system
- Robust processing of spontaneous dialogs
- Speaker independent (adaptive)
- Languages: English, German, Japanese
- Domains: Appointment scheduling, travel planning and hotel reservation, remote PC maintenance
- The system mediates between two humans, it does not play an active role
- There is no control of the ongoing dialog by the system

© Tilman Becker, DFKI March 2002 (5)

Challenges for Language Engineering

	Input Conditions	Naturalness	Adaptability	Dialog Capabilities					
Increasing Complexity	Close-Speaking Microphone/Headset Push-to-talk	Isolated Words	Speaker Dependent	Monolog Dictation					
	Telephone, Pause-based Segmentation	Read Continuous Speech	Speaker Independent	Information- seeking Dialog					
	Open Microphone, GSM Quality	Spontaneous Speech	Speaker Adaptive	Multiparty Negotiation					
	Verbmobil								

© Tilman Becker, DFKI March 2002 (6)

The Verbmobil Partners

The Verbmobil Partners

Facts About the Project

- 23 participating institutions (in Verbmobil II), from Germany and the USA
- Over 900 full-time employees and students involved over the whole duration
- Funded by the German Ministry for Education and Science and the participating companies:

BMBF-Funding Phase I, 1.01.93 – 31.12.96	62.7 Mio. DM	31.6 Mio €	
BMBF-Funding Phase II, 1.01.97 - 30.9.2000	53.3 Mio. DM	27 Mio €	
Industrial investment I+II	32.6 Mio. DM	16.5 Mio €	
Related industrial R & D activities	ca. 20 Mio. DM	ca. 10 Mio €	
Total	168.6 Mio. DM	85.1 Mio €	

© Tilman Becker, DFKI March 2002 (10)

Verbmobil – The Book

There are over 600 refereed papers on the various aspects of and achievements in Verbmobil.

Wolfgang Wahlster (ed.):
"Verbmobil: Foundations of
Speech-to-Speech Translation"

Springer-Verlag Berlin Heidelberg New York. 679 Pages

ISBN 3-540-67783-6

© Tilman Becker, DFKI March 2002 (11)

Typical Verbmobil Hardware

- SUN Ultra-Sparc 80
- 4 processors (450 MHz)
- 2 GB main memory
- 8 GB swap
- no special signal processing hardware
- Desklab Gradient A/D converter or Sun internal audio device
- close-speaking cordless microphones

© Tilman Becker, DFKI March 2002 (12)

Walk Through the Verbmobil System

Detailed Module Presentation and Demonstration

Acoustic Processing

Recording, Synthesizing and Synchronization

Task:

Providing a uniform interface to varying audio hardware; synchronizing in- and output

• Input:

Audio data and system states

Method:

Introducing audio modules; Finite State Machine for synchronizing

Result:

Audio Data and Synchronization

Benefit:

Encapsulating audio hardware,

"open microphone", preventing outof-sync or overlapping system output

Responsible:

DFKI, Kaiserslautern

© Tilman Becker, DFKI March 2002 (16)

Audio Configuration

Configuration of the systems I/O behavior

- How many speakers?
- For every (possible) speaker:
 - Input device (channel identification, speaker adaption)
 - Output device(s) (translation output, destination for man/machine dialogs)
 - Source language (or "unknown")
- Desired system output categories

Audio channel configuration

 Uniform configuration of heterogeneous audio hardware

© Tilman Becker, DFKI March 2002 (17)

Recording Audio Data

- Turn-based processing, barge-in available for voice commands
- Different audio quality:
 - lab-quality close-speaking microphone (16kHz)
 - room microphone (16kHz)
 - telephone quality (8kHz)
 - GSM mobile (8kHz)

- provides a uniform interface of different hardware devices to the system
- # of channels is only limited by hardware
- Open Microphone Approach (essential for telephone translation service!)
- Input/output synchronization
- No cross-talk allowed

© Tilman Becker, DFKI March 2002 (18)

Open Microphone Approach

Synchronisation

- Synchronization controls the high-level System behavior
- Realized via Finite State Machine

Recognizing Speech

Task:

Analyzing continuous spontaneous speech signals

Input:

Audio data

Method:

HMMs, class based language models, etc.

Result:

Word Hypotheses Graphs (WHG) and speech commands

• Benefit:

Compact representation of hypotheses of what has been said

Responsible:

DaimlerChrysler AG
University of Karlsruhe
RWTH Aachen
Philips GmbH (Language Models)

© Tilman Becker, DFKI March 2002 (21)

General Speech Recognition Task

© Tilman Becker, DFKI March 2002 (22)

Word Hypotheses Graphs (WHGs)

WHGs realize the interface between acoustic and linguistic processing

Focuses of Speech Recognition in Verbmobil

Nine Available Recognizer Modules

DaimlerChrysler

- German, 16 kHz, speaker adaptive, approx. 10000 words
- German, 8 kHz, telephone/GSM quality, speaker adaptive, approx. 10000 words
- English, 8 kHz, telephone/GSM quality, speaker adaptive, approx. 7000 words

University of Karlsruhe

- German, 16 kHz, speaker adaptive, approx. 10000 words
- English, 16 kHz, speaker adaptive, approx. 7000 words
- Japanese, 16 kHz, speaker adaptive, approx. 2600 words
- Language Identification Component (German, English, Japanese)

RWTH Aachen

- German, 16 kHz, speaker adaptive, approx. 10000 words
- German, 16 kHz, speaker dependent, approx. 30000 words

© Tilman Becker, DFKI March 2002 (25)

Principal Recognizer Architecture

© Tilman Becker, DFKI March 2002 (26)

The Speech Recognition Task

- Some Highlights of the Verbmobil Recognizers:
 - Speaker adaptive recognition:
 - Start speaker independent
 - Recognition results enhance during the dialog
 - Capable of dividing speech and noise input using garbage models
 - Segmentation of speech input allows incremental processing
 - Word class based language models and recognition allow flexible vocabulary extension
 - Online vocabulary extension through unknown word detection (names, towns, street names, ...)
 - Integrated continuous und speech command recognition

... and many more

© Tilman Becker, DFKI March 2002 (27)

Language Identification

Features

- ID on 3 seconds speech signal (maximum)
- Real time factor 0.5
- Speaker independent
- Unknown audio channel
- Using language model know-how
- Flexible Architecture:
 LID can be combined with any speech recognizer

Prosodic Processing

Task:

Recognizing prosodic phenomena (accents, sentence mood) and boundaries

• Input:

WHG and speech signal

Method:

Neural networks and statistical classifiers

Result:

WHG annotated with accent and boundary information

Benefit:

Provides prosodic information needed for correct translation of spontaneous speech

Responsible:

Universität Erlangen-Nürnberg

© Tilman Becker, DFKI March 2002 (29)

Prosody in Speech Communication

Prosody can help to disambiguate

- lexical and phrasal accent
- phrasing (chunks of speech)
- sentence mood
- emotion, attitude, foreign accent

Parameters represented by Features

- F0 (fundamental frequency)
- Energy
- Duration
- Speech tempo
- Pause

© Tilman Becker, DFKI March 2002 (30)

Prosody in Verbmobil

What Linguistic Analysis Really Needs

Syntactic Boundaries

He saw? the man? with the telescope Prosody cannot help

Dialog Act Boundaries

No, I have no time at all on Thursday. D
But how about on Friday?

Dialog acts are pragmatic units that chunk the input into units which can be processed alone.

Prosodic Syntactic Boundaries

Of course ? not ? on Saturday

Syntactic boundaries that correlate to the acoustic-phonetic reality; help during analysis within one chunk/dialog act. Important in spontaneous speech with elliptical utterances.

Extraction of Prosodic Features

- computed for each word
- from basic prosodic features and segmental information
- over different time contexts
- modeling of FO: linear regression coefficient, regression error, mean, median, minimum, maximum, onset, offset and their temporal locations
- modeling of energy--contour
 mean, median, maximum, max-pos, regression coefficient, ...
 and phoneme intrinsic normalizations

© Tilman Becker, DFKI March 2002 (33)

Extraction of Prosodic Features

Prosodic Classification in Verbmobil

- five classes of boundaries: default, particles, phrases, clauses, sentences
- sentence mood: question vs. non-questions
- phrase accent: disambiguation of particles
- Computed by NN-classifiers and Language Models
- Language Models trained on a corpus annotated with syntactic prosodic boundaries and dialog act boundaries

© Tilman Becker, DFKI March 2002 (35)

An Example

I am calling about the trip to Hanover on the seventh and eighth of March

2	3	I	50.284023	34	46	(ID r3485) (PR (S 1.00 0.00 0.00 0.00 0.00) (A 0.82 0.18) (F 0.92 0
 3 3	9 10	am am	24.803406 32.151409	47 47	52 54	(ID r3489) (PR (S 1.00 0.00 0.00 0.00 0.00) (A 0.84 0.16) (F 0.81 0 (ID r3490) (PR (S 1.00 0.00 0.00 0.00 0.00) (A 0.88 0.12) (F 0.37 0
9 10 11 12 12 13 14	11 11 12 13 13 14	about the that trip to	142.015503 131.019409 125.144707 40.895718 42.615807 106.785835 69.326729	53 55 92 125 125 137 168	91 91 124 136 136 167 188	(ID r3504) (PR (S 0.94 0.00 0.05 0.00 0.00) (A 0.14 0.86) (F 0.10 0 (ID r3505) (PR (S 0.39 0.01 0.32 0.27 0.01) (A 0.07 0.93) (F 0.13 0 (ID r3506) (PR (S 1.00 0.00 0.00 0.00 0.00) (A 0.22 0.78) (F 0.92 0 (ID r3507) (PR (S 1.00 0.00 0.00 0.00 0.00) (A 0.90 0.10) (F 1.00 0 (ID r3508) (PR (S 0.80 0.00 0.07 0.00 0.12) (A 0.84 0.16) (F 1.00 0 (ID r3509) (PR (S 0.10 0.00 0.80 0.10 0.00) (A 0.24 0.76) (F 0.03 0 (ID r3510) (PR (S 0.86 0.02 0.08 0.02 0.02) (A 0.85 0.15) (F 1.00 0 0.00)
15 16 17 18 19 20 21 22 23 24	16 18 18 19 20 21 22 23 24 25	Hanover and on the seventh and the eighth of March	245.755707 69.891464 75.358749 37.180725 184.631897 44.750828 42.576515 134.293030 62.543167 204.886185	189 266 264 285 296 356 370 381 425 444	261 284 280 295 350 369 376 420 443 497	(ID r3511) (PR (S 0.02 0.14 0.43 0.01 0.40) (A 0.01 0.99) (F 0.04 0) (ID r3514) (PR (S 0.57 0.08 0.11 0.23 0.02) (A 0.87 0.13) (F 0.95 0) (ID r3515) (PR (S 0.92 0.03 0.01 0.03 0.00) (A 0.87 0.13) (F 0.62 0) (ID r3516) (PR (S 1.00 0.00 0.00 0.00 0.00) (A 0.94 0.06) (F 0.98 0) (ID r3517) (PR (S 0.06 0.10 0.31 0.00 0.53) (A 0.07 0.93) (F 0.11 0) (ID r3518) (PR (S 0.99 0.00 0.01 0.00 0.00) (A 0.85 0.15) (F 0.15 0) (ID r3520) (PR (S 1.00 0.00 0.00 0.00) (A 0.95 0.05) (F 1.00 0) (ID r3521) (PR (S 0.00 0.00 0.99 0.00 0.01) (A 0.24 0.76) (F 0.38 0) (ID r3522) (PR (S 1.00 0.00 0.00 0.00) (A 0.74 0.26) (F 1.00 0) (ID r3523) (PR (S 0.02 0.63 0.03 0.02 0.30) (A 0.04 0.96) (F 0.03 0)

Repair of Self-Corrections

Task:

Detecting and repairing selfcorrections

• Input:

WHGs

• Method:

Stochastic models

Result:

Enriched WHGs, including additional repaired hypotheses

Benefit:

Enabling Verbmobil to repair selfcorrections of spontaneous speech input

Responsible:

Universität Erlangen-Nürnberg

The Understanding of Spontaneous Speech Repairs

Facts about Repairs in the Verbmobil Corpus

- 21% of all turns in the Verbmobil corpus (79 562 turns) contain at least one self correction
- The syntactic category is preserved in most cases
 (For example: Out of a sample of 266 verb replacements, 224 are again mapped to verbs)
- Repairs take place in a restricted context
 (in 98% the reparandum consists of less than 5 words)
- Repair sequences underlie certain regularities

© Tilman Becker, DFKI March 2002 (39)

Architecture of Repair Processing

"On Thursday I cannot no I can meet äh after one"

Scopus Detection

- The editing term (ET) is given by the prosody
- Wanted: Beginning (RB) and end (RE) of the Repair
- Search the best replacement of a word order on the left hand side of ET through a word order on the right hand side of ET

⇒ rate the possible replacements search space is limited through looking at 4 words before and after ET

Choose the best rated replacement over a certain threshold

© Tilman Becker, DFKI March 2002 (41)

Repair Detection and Word Smoothing

Dialog Translation

Multiple Approaches

- Mono-cultural approaches are dangerous
 - humans vs. viruses ♥ diversity
- Some sources of errors in a speech translation system
 - external
 - spontaneous speech: not well formed, hesitations, repairs
 - bad acoustic conditions
 - human dialog behavior
 - internal
 - knowledge gaps in modules
 - software errors
 - probabilistic processing
- ☐ Use multiple engines, varying approaches on various stages of processing

© Tilman Becker, DFKI March 2002 (44)

Multiple Approaches in Verbmobil

- Exclusive alternatives: three different 16 kHz German speech recognizers with various capabilities
- Competing approaches:
 - three parsers: HPSG, Chunk, Statistical
 - five translation tracks: case-based, dialog-act based, statistical, substringbased, linguistic (deep) semantic translation
- Needed: selection and combination of results from competing tracks
 - parsers: combination of partial analyses in the semantic processing modules
 - translation: preselection module

© Tilman Becker, DFKI March 2002 (45)

Multiple Translation Tracks - Approaches and Advantages

Case-based:

- Approach: uses examples from the aligned bilingual Verbmobil corpus
- Advantage: good translation if input matches example in corpus

Dialog-act based:

- Approach: extract core intention (dialog act) and content
- Advantage: robust wrt. recognition errors

Statistical

- Approach: use statistical language and translation models
- Advantage: guaranteed translation with high approximate correctness

Substring- based

- Approach: combines statistical word alignment with precomputation of translation "chunks" and contextual clustering
- Advantage: guaranteed translation with high approximate correctness

Linguistic (deep) semantic translation

- Approach: "classic" approach using semantic transfer
- Advantage: high quality translation in case of success

Example Based Translation

Task:

Providing a translation based on translation templates and partial linguistic analysis

• Input:

WHGs or best Hypothesis

Method:

Definite Clause Grammar (DCG), graph matching algorithms

Result:

Translation and a confidence value

Benefit:

Improving Verbmobils translation capabilities through an additional translation path

Responsible:

DFKI, Kaiserslautern

© Tilman Becker, DFKI March 2002 (47)

The Case Based Approach

Training is based on Verbmobil's bilangual corpus

E: I am on vacation, on the sixth and the seventh.

D: ich bin am sechsten und siebten verreist.

 Principle: Look up an example in the example storage that matches the input sentence best, use it's translation as output

Generalization in Example Based Machine Translation (EBMT)

Handicap of this naive approach: inadequate coverage

```
S: I am not free on Friday.
S': I am not free on Monday.
T(S'): am Montag habe ich keine Zeit.
```

Solution: partial generalization (analysis and generation)

```
E: I am not free <Temp>.
D: <Temp> habe ich keine Zeit.
```

- Automatic generalization approach:
 - The grammar automatically generalizes the corpus (offline)
 - The runtime module generalizes incoming input (online)
 - Match generalized input sentence with generalized corpus example
 - Result: instantiated corpus translation

Generalization of WHGs

© Tilman Becker, DFKI March 2002 (50)

Example Based Translation – Some More Features

- Generalization grammar for temporals, names, locations (region, town, country), institutions
- Fast and robust WHG search:
 - WHG packing
 - Optimal alignment for fast corpus search
 - Search space pruning
 - Search space caching
 - Any time capable
- Adequate confidence value for selection

© Tilman Becker, DFKI March 2002 (51)

Dialog-Act Based Translation

Task:

Robustly provide a translation of core intentions and contents of the domain

• Input:

Prosodically annotated best hypothesis (flat WHG)

Method:

Statistical dialog-act classifier and Finite State Transducers

Result:

Translation and a confidence value, additionally content descriptions for the dialog module

Benefit:

Robust translation and content extraction even when the recognition is erroneous

Responsible:

DFKI, Saarbrücken

Dialog Acts

- Describe the core intention of an utterance
- 32 acts defined in a hierarchy, 19 used in processing
- 21 CD-ROMs with 1505 dialogs (German, English, Japanese) annotated with dialog acts for training and test purposes
- Computation uses bigram language models

$$D = \underset{D}{\operatorname{argmax}} P(w \mid D) \cdot P(D)$$

- Probabilities estimated from the annotated corpus
- Leave-One-Out test results for approx. 1000 German, English and Japanese dialogs: Recall 72.48 % (27185 of 37505), Precision 69.90 %

© Tilman Becker, DFKI March 2002 (53)

Dialog Acts - The Hierarchy

Representation of Information and Extraction

- Semantic representation language, used also in the dialog and context modules
- Extraction using Finite State
 Transducers
- Semi-automatic creation exploiting semantic databases and lexica
- Comfortable development platform

Processing Steps

good so we will leave Hamburg on the first

I would so we were to leave Hamburg on the first

INFORM

has_move:[move,has_source_location:[city,has_name = 'hamburg'], has_departure_time:[date,time=[dom:1]].

Generation

- Generation templates (>140), depending on dialog act, topic, content
- Translated in Finite State Transducers
- Examples:

```
suggest scheduling $has_date
g:ich w"urde $* vorschlagen &loc_mode_dat
e:how about $*

suggest entertainment or($has_location,$has_theme)
g:wir k"onnten $* gehen &loc_mode_acc
e:we could go $*

request_suggest
g:was schlagen Sie vor
e:what do you suggest
j:itsu ga yoroshii deshou ka
```

Result for our example: also wir fahren ab Hamburg am ersten

© Tilman Becker, DFKI March 2002 (57)

Statistical Translation

Task:

Provide approximative correct translations

Input:

Prosodically annotated best hypothesis (flat WHG)

Method:

Use statistical language and translation models

Result:

Translation and a confidence value

Benefit:

Approximative correct translation for spontaneous speech

Responsible:

RWTH Aachen

© Tilman Becker, DFKI March 2002 (58)

The Statistical Translation Model

 Task: translate the source string f in the most probable target string e:

$$\begin{split} \hat{e}_{1}^{I} &= \arg\max_{e_{1}^{I}} \; \{ p(e_{1}^{I}|f_{1}^{J}) \} \\ &= \arg\max_{e_{1}^{I}} \; \{ p(e_{1}^{I}) \cdot p(f_{1}^{J}|e_{1}^{I}) \} \end{split}$$

- Bayes' rule needs language model of the target language, and lexicon and alignment models
- Learned from aligned corpus

© Tilman Becker, DFKI March 2002 (59)

Alignment Templates

- Find corresponding words in source and target language sentences
- Difficult for language pairs with different word order
- Solution: alignment templates
 - based on word classes (sparse data problem: approx. 40% of the words in the training corpus are singletons)
 - first step: statistically learn alignment of words for each translation direction
 - second step: combine the alignments of both directions
 - third step: statistically learn alignment of "phrases", i.e. word sequences

© Tilman Becker, DFKI March 2002 (60)

Alignment

© Tilman Becker, DFKI March 2002 (61)

Deep Translation

Task:

Provide high quality translations

• Input:

Prosodically annotated WHG and contextual information

Method:

Use syntactic and semantic approaches to analysis, transfer, and generation

Result:

Translation containing content information, suited for high quality speech synthesis

Benefit:

Delivers the highest quality, but is sensitive to recognition errors and spontaneous speech phenomena

Responsible:

Siemens AG, DFKI Saarbrücken, Universität Tübingen, Universität des Saarlandes, Universität Stuttgart, TU Berlin, CSLI Stanford

© Tilman Becker, DFKI March 2002 (62)

Modules Involved

- •Integrated processing comprises
 - search through the WHG
 - statistic parser
 - chunk parser
- Semantic Construction provides VITs from statistic and chunk parser output

- Deep Analysis: HPSG Parser
- •Dialog Semantics:combination of parsing results, and semantic resolution
- Transfer: VIT to VIT transfer
- Generation: TAG generation from VITs
- Dialog+Context: provides contextual information

The Multi-Parser Approach

- Verbmobil uses three different syntactic parsers:
 an HPSG parser, a chunk parser, and a probabilistic LR parser.
- Every parser implements another level of parsing accuracy, depth of syntactic analysis, and robustness of the analyzing process.
 - Chunk parser: Most robust but least accurate analysis
 - HPSG parser: Most accurate by least robust analysis
 - Probabilistic parser: Level of accuracy and robustness between HPSG and chunk parser

© Tilman Becker, DFKI March 2002 (64)

Integrated Processing

- Gets WHGs for the English, German, or Japanese speech input and dispatches WHG information to the three parsers
- Provides an A* search algorithm that allows any connected parser to find the best scored path using
 - acoustic score of the speech recognizer
 - Verbmobil trigram language model
- Parsers analyze the same utterance simultaneously

© Tilman Becker, DFKI March 2002 (65)

VIT: Verbmobil Interface Term

- Common syntactic-semantic interface
- Contains all linguistic information relevant for translation
- Record-like data structure: variable-free lists of non-recursive terms
- "Flat" set representations: semantic, scopal, sortal, morpho-syntactic, prosodic, and discourse information
- Labels relate different kinds of information
- Abstract Data Type implements construction, access, update, check, print, etc. facilities

© Tilman Becker, DFKI March 2002 (66)

VIT: Verbmobil Interface Term

```
vit(vitID(sid(...),
                                          %Segment ID
                                          %WHG-String
    index(1250,1234,i72),
                                          %Index
    [start v(1248,i72),
                                          %Conditions
     arg1(1248, i72, i75),
     nop(1240,h85),
     quest(1249,h84),
     time(1238, i73),
     abstr vacation(1247, i75),
                                      When do your vacations begin?
     pron(\overline{1}242,i74),
     poss(1244, i75, i74),
     temp_loc(1239, i72, i73),
     def(\overline{1}245, i75, h87, h86),
     whq(1235, i73, h83, h82)],
                                          %Constraints
    [in g(1235,1237), ...
     leq(1234,h85), ...],
    [s class(1240,mp), ...],
                                          %Sorts
    [ana_ante(i74,[i75,i69,i67,i66]),
                                          %Discourse
     prontype(i74,third,std), ...],
    [gend(i75,masc), num(i75,sg)],
                                          %Syntax
                                          %Tense and Aspect
    [ta mood(i72,ind), ...],
    [\ldots]
                                          %Prosody
```

© Tilman Becker, DFKI March 2002 (67)

VIT: Verbmobil Interface Term

We meet at the station.

© Tilman Becker, DFKI March 2002 (68)

HPSG Processing

Task:

Thorough syntactic analysis

Input:

Word chains from integrated processing

Method:

Apply HPSG analysis

Result:

Source language VITs

Benefit:

Delivers the highest quality, but is sensitive to recognition errors and spontaneous speech phenomena

Responsible:

DFKI Saarbrücken, CSLI Stanford

© Tilman Becker, DFKI March 2002 (69)

Head Driven Phrase Structure Grammar

- Well known advanced grammar theory in linguistics
- Based on the concept of a sign as integrated information structure for all types of linguistic information
- Inherently multilingual by distinguishing universal principles from language specific aspects
- Typed feature structures with inheritance
- Small number of rules, due to general principles
- Independent of specific processing strategies, usable for analysis and generation

© Tilman Becker, DFKI March 2002 (70)

HPSG Basic Principles

- Lexicalism: Words carry all the important information about what they can be combined with, thus allowing to deal with regular and idiosyncratic properties in a uniform way
- Heads: Phrases contain a head which determines their combinatory potential, e.g. verbs as heads determine what complements must be present, and what modifiers they can combine with
- Principles: Few language independent general projection principles stating,
 e.g., how to combine a head with complements and modifiers
- Unification: Monotonically combines constraints from different sources

© Tilman Becker, DFKI March 2002 (71)

HPSG Parsing in Verbmobil

- active chart parser allowing bidirectional and island parsing on word hypotheses graphs or strings
- fast processing by
 - eliminating disjunctions, enabling fast conjunctive unification
 - precompiling type unifiability, avoiding runtime computations
 - quick checks on mostly relevant features, avoiding full unification
 - quick checks on possibly discontinuous constituents, e.g. separable verb prefixes in German, reducing the chart size
 - precompiling rule filters on possible rule sequences
 - scoring rule applications
- anytime behavior
- robust: best partial analyses even for ungrammatical input

© Tilman Becker, DFKI March 2002 (72)

Statistical Parser

• Task:

Robust probabilistic parsing

• Input:

n-best hypotheses

Method:

LR-Parser trained on Verbmobil's tree-bank

Result:

Syntactic tree representation of the input sentence

• Benefit:

Increasing robustness in Verbmobil's multi-engine parser strategy

Responsible:

Siemens AG

© Tilman Becker, DFKI March 2002 (73)

Statistical Parser – Approach

- (Non-probabilistic) LR-parsing worked quite well for parsing speech in Verbmobil's first phase.
- LR-parsing is well known to be able to parse huge amounts of input very efficiently.
- Probabilistic chart parsing of spontaneous speech input had some problems i.e. the combinatorical explosion of edges in the chart on a word graph
- ⇒ try probabilistic LR-Parser

Statistical Parser – Training and Transformations

- Training process: derivation of an LR table and the estimation of unknown probabilistic parameters from the Verbmobil tree bank
 - Find the set of all context free rules (G) contained in the tree bank.
 - Construct an LR table from G using well known standard
 - Problems: sparse data, different annotation styles
 - ⇒ eliminate rules that do occur less than N times
- Transformations:
 - Needed after parsing to correct errors of the probabilistic context free parser
 - Rules are learned automatically from the training corpus

© Tilman Becker, DFKI March 2002 (75)

Chunk Parser

Task:

Robust and efficient partial parsing, even on ill-formed input

• Input:

N-best hypotheses

Method:

Cascaded Finite State Transducers

Result:

Syntactic tree representation of the input sentence

Benefit:

Increasing robustness in Verbmobils multi-engine parser strategy

Responsible:

Universität Tübingen

© Tilman Becker, DFKI March 2002 (76)

Parsing Based on Chunks

1st Step: Chunk Parsing using Cascaded Finite State Transducers

"Chunks are non-recursive cores of 'major' phrases, i.e. NP, VP, PP, ..."

2nd Step:

Building a syntactic tree out of the parsing results

Benefit: Robust and efficient parsing

But: Partial parsing: Often no spanning analysis

Example for Chunks

"Ich habe bei meinem letzten Besuch in Hannover so eine nette Kneipe entdeckt"

Chunks:

[NX Ich] [VX habe] [PX bei [NX meinem letzten Besuch]] in [NX Hannover]
 [PX so [NX eine nette Kneipe]] [VX entdeckt].

where

- [NX]: Extends from the beginning to the head of a NP
- [VX]: Includes all modals, auxiliary verbs and medial adverbs, but ends at the head verb or predicate adjective
- [PX]: Extends to the end of an [NX]

© Tilman Becker, DFKI March 2002 (78)

Tree-Building Tasks

- Determine the chunk position inside the syntactic tree
- Complete the internal chunk structure
- Determine functional categories and topological fields
- Rearrange chunks to obtain a complete syntactic tree

The Result is a Syntactic Tree

"Alright, and that should get us there about nine in the evening."

... but analysis is not always spanning

"The train arise at seven thirty. We could take a cab it to the hotel problem train station."

Semantic Construction

Task:

Convert and extend syntax trees to VITs

• Input:

Syntax tree from statistical and chunk parsers

Method:

Compositional construction using semantic lexicon

Result:

VITs

Benefit:

Providing results of shallow parser to the deep analysis track

Responsible:

Universität Stuttgart (IMS)

© Tilman Becker, DFKI March 2002 (82)

Schematic Processing

Input:

Syntactic tree

Lexcion access and interpretation of the grammatical roles

Intermediate representation:

Application Tree

Compositional semantic construction

Intermediate representation:

VIT

Non compositional semantic construction using transfer rule engine

Intermediate representation:

Resulting VIT

Dialog Semantics

Task:

Combining results from various parsers, reinterpret and correct VITs, and resolve non-local ambiguities

Input:

VITs from different parsers

Method:

VIT models and rule based approaches

Result:

VIT ready for transfer

Benefit:

Enhances robustness of deep analysis and provides vital information for transfer

Responsible:

Universität des Saarlandes, Saarbrücken

© Tilman Becker, DFKI March 2002 (84)

Combining Analyses from Various Parsers

- Parsers deliver VITs for segments of a turn
- May be spanning analyses or just partial fragments
- Combination necessary, both analyses of one parsers, but also analyses from various parsers
- Combination criteria
 - HPSG is better than statistical parsers is better than chunk parser
 - Integrated results are better than fragments
 - Longer results are better than short ones

© Tilman Becker, DFKI March 2002 (85)

Stochastic Choice of Spanning Results

 Parser internal scores not normalized ⇒ external scoring necessary

 Statistical model based on VIT content and dialog act (Tetragram language models)

Search through Vit Hypotheses
 Graph VHG comparable to
 search through WHG

Robust Semantic Processing

- Partial results don't necessarily fit together
 - phenomena of spontaneous speech
 - recognition errors
 - parsing errors

Bridging Mechanism for False Starts

Resolving Non-Local Ambiguities

- Based on prosody and dialog act information
- Ambiguities processed:
 - Verb disambiguation:
 Wir gehen in's Theater (We go to the theater)
 Montag geht bei mir nicht (Monday does not suit me)
 - Sentence mood
 Wir gehen in's Theater! vs. Wir gehen in's Theater?
 - Adverb disambiguation
 Wir gehen eher in's Theater (We go to the theater earlier)
 Montag geht bei mir eher nicht (Monday does not really suit me)
 - Anaphora and ellipsis resolution
 - Japanese: Definiteness, topic phrases, zero anaphora

Semantic Based Transfer

Task:

Transfer VITs from the source to the target language

• Input:

VITs

Method:

Rule based transfer

Result:

VITs for generation

• Benefit:

Translate VITs inside the deep translation path

Responsible:

Universität Stuttgart (IMS)

The Transfer Approach: Rule Based Transfer

- VITs are mapped onto VITs: Transfer is a VIT rewriting system
- Rule based, context conditions restrict application
- Transfer rules remove matching source language expressions from the VIT
- Efficient implementation
- Examples:
 - Simple Rules: adelig(L,I) -> noble(L,I)
 - Simple Templates: @mod(adelig, noble, L, I)

© Tilman Becker, DFKI March 2002 (91)

Advanced Features of Transfer

Structural changes:

- Adjective to PP: tagsüber -> during the day
- Insertion: übernachte -> spend the night

– ...

Disambiguation:

type of ambiguity	kinds of knowledge needed for disambiguation	modules that contribute to the resolution
lexical	syntactic, semantic, contrastive, domain, prosodic	parsers, semantic construction, discourse semantics, transfer, context
structural	syntactic, semantic, domain	parsers, semantic construction, transfer
anaphora and ellipsis	syntactic, semantic, domain	discourse semantics, context
semantic focus and operator scope	prosodic, syntactic, semantic, contrastive, domain	discourse semantics transfer

© Tilman Becker, DFKI March 2002 (92)

Performance of Transfer

- Rules are compiled and packed
- 18088 rules German ⇔ English
- 4694 rules German ⇔ Japanese
- Mean runtime per sentence: 80 msec (Sun Ultra II, 300 MHz)

Context Evaluation

Task:

Resolving ambiguities in the dialog context during semantic transfer

Input:

Requests from transfer

Method:

Using world knowledge and rules

Result:

disambiguated transfer requests

Benefit:

Higher quality of transfer results

Responsible:

Technical University (TU) Berlin

© Tilman Becker, DFKI March 2002 (94)

Context Evaluation - Tasks and Methods

- Supports semantic transfers and processes VITs
- Gets information from dialog module from shallow tracks
- Extends disambiguation of the dialog semantic module and uses ontological information

Using World Knowledge for Transfer

Example: Platz → room / table / seat

- Nehmen wir dieses Hotel, ja.
 → Let us take this hotel.
 → I will reserve a room.
- ✓ Machen wir das Abendessen dort. → Let us have dinner there.
 Ich reserviere einen Platz. → I will reserve a table.
- Gehen wir ins Theater. → Let us go to the theater.
 - Ich möchte Plätze reservieren. → I would like to reserve seats.

© Tilman Becker, DFKI March 2002 (96)

Dialog Processing

Task:

Provides dialog context for all tracks and computes main information for dialog summaries

• Input:

Data from a lot of modules

Method:

Frame-like topic structuring and rules

Result:

context information and dialog summaries and minutes

Benefit:

Verbmobil knows what happens throughout the dialog and can present it

Responsible: DFKI, Saarbrücken

© Tilman Becker, DFKI March 2002 (97)

Dialog Processing

Dialog Memory:

- Stores information from each track
- Only dialog act based and semantic transfer provide abstract representations:
 Discourse Representation Language DRL:

I would so we were to leave Hamburg on the first

```
[INFORM, has_move: [move, has_source_location: [city, has_name='hamburg', has_departure_time: [date, time='day:1']
```

Discourse Interpretation:

- Groups information into topics
- Completes information
- Keeps tracks of negotiation structure

Dialog Information in Semantic Transfer

Collaboration for a New Functionality: Result Summaries

- Provide the users with a summary of the topics that were agreed
- Two benefits
 - have a piece of information to use in calendars etc.
 - control the translation
- Approach: exploit already existing modules for
 - content extraction
 - dialog interpretation
 - planning the summary
 - generation
 - transfer

© Tilman Becker, DFKI March 2002 (100)

Result Summary

Generation

Task:

Robustly generate the output of the semantic transfer in German, English, or Japanese

• Input:

VITs from transfer

Method:

Constraint system for micro-planning,
TAG grammar (reusing HPSG
grammars) for syntactic realization

• Result:

Strings, enriched with content-tospeech (CTS) information to support synthesis

Benefit:

Output from the semantic transfer track

 Responsible: DFKI, Saarbrücken

Architecture

VIT (Verbmobil Interface Term)

Robustness Preprocessing

- •Repairing structural problems
- ·Heuristics for generation gap

Microplanning Module

- Microplanning | Selecting planning rules
 - •Lexical choice constraints

Syntactic Realization Module

- •Selecting LTAG trees
- Tree combination

Surface Realization Module

- Inflection
- Synthesis Annotation

Annotated String

Preprocessing for Robustness

Why pre-pocessing:

- Check and repair inconsistencies as early as possible
- Keep robustness and standard modules separate
- Alternative: relax constraints

Preprocessing for robustness means:

- Executing a set of solution submodules in sequence
- For each problem found, the preprocessor lowers a confidence value for the generation output which measures the reliability of our result

© Tilman Becker, DFKI March 2002 (104)

How much robustness?

PRO:

In a dialog system, a poor translation might still be better than none at all,

CON:

one of the shallow modules can be selected when deep processing fails, so respect the *inherent limitations of robustness*.

⇒ Generation knows its limits and sometimes decides not to produce a string

 Selection module: uses training corpus and confidence values to select from the different translation paths

© Tilman Becker, DFKI March 2002 (105)

Microplanning: Create Syntactic Building Blocks

Method: Mapping of dependency structures

Example: Time Expressions

DEF (L,I,G,H)

DOWF (L1,I,mo)

ORD (L2,I,11)

MOFY (L3,I,may)

Semantical dependency: VIT

Syntactical dependency: TAG

© Tilman Becker, DFKI March 2002 (106)

Multilingual Generation for Translation in Speech-to-Speech Dialogues and its Realization in Verbmobil

Tilman Becker . Anne Kilger . Peter Poller . Patrice Lopez

DFKI GmbH

Stuhlsatzenhausweg 3

66123 Saarbrücken

Tilman.Becker@dfki.de

VM-GECO: VerbMobil's GEneration COmponents

- Multilingual Generation: German, English, Japanese
- Language-independent kernel algorithms
- Language-specific knowlegde sources
- Extended "standard" pipeline architecture:
 - Microplanning
 - Syntactic Realization
 - Surface Realization

Annotated String

Standard Architecture

VIT (Verbmobil Interface Term)

© Tilman Becker, DFKI

March 2002 (109)

VIT: Verbmobil Interface Term

```
vit(vitID(sid(...),
                                          %Segment ID
                                          %WHG-String
    index(1250,1234,i72),
                                          %Index
    [start v(1248,i72),
                                          %Conditions
     arg1(1248, i72, i75),
     nop(1240,h85),
     quest(1249,h84),
     time(1238, i73),
     abstr vacation(1247, i75),
                                      When do your vacations begin?
     pron(\overline{1}242,i74),
     poss(1244,i75,i74),
     temp_loc(1239, i72, i73),
     def(\overline{1}245, i75, h87, h86),
     whq(1235, i73, h83, h82)],
                                          %Constraints
    [in g(1235,1237), ...
     leq(1234,h85), ...],
    [s_{class}(1240,mp), ...],
                                          %Sorts
    [ana_ante(i74,[i75,i69,i67,i66]),
                                          %Discourse
     prontype(i74,third,std), ...],
    [gend(i75,masc), num(i75,sg)],
                                          %Syntax
                                          %Tense and Aspect
    [ta mood(i72,ind), ...],
    [\ldots]
                                          %Prosody
```

© Tilman Becker, DFKI March 2002 (110)

VIT: Verbmobil Interface Term

We meet at the station.

© Tilman Becker, DFKI March 2002 (111)

Microplanning: deriving a sentence plan

- Microplanning tasks:
- determine type of utterance
- determine syntactic structure
- execute word choice
- Microplanning rules map parts of VIT input to partial dependency structures
- Implemented as constraint solving problem
- Approx. 7,200 microplanning rules (German)

© Tilman Becker, DFKI March 2002 (112)

Microplanning: deriving a sentence plan

An example: "the eleventh of May"

DEF (L,I,G,H)

DOWF (L1,I,mo)

ORD (L2,I,11)

MOFY (L3,I,may)

Semantic dependency: VIT

Syntactic dependency: TAG

© Tilman Becker, DFKI March 2002 (113)

Syntactic Realization

- Tasks of syntactic realization:
- selecting lexicalized (TAG) trees
- constructing a phrase structure tree
- provide all information for surface realization:
 - inflection and annotation for CTS (content to speech) synthesis
- Based on FB-LTAG:
 - Feature-Based Lexicalized Tree Adjoining Grammars
- Compiled from HPSG grammars

Syntactic Realization:

An example: "the eleventh of May"

Syntactic dependency:

TAG derivation tree

Syntactic phrase structure:

TAG derived tree

HPSG to TAG Compilation

- HPSG: context-free rules (schemas)
- TAG: extended local lexical structures (trees)
- Off-line compilation computes all projections from lexical types
- Generates approx. 2,300 TAG trees from 250 lexical types
 - Reuse existing Resources:
 - Spontaneous speech, syntactic/lexical coverage of Verbmobil domain
 - Speed vs. space
 - TAG captures dependencies
 - HPSG include syntax-semantics interface, vast body of linguistic work

© Tilman Becker, DFKI March 2002 (116)

Problems for generation

Technical problems

- should be eliminated
- hard to eliminate in a large-scale system
- better to be robust

Task-inherent problems

- Spontaneous speech input
- Insufficiencies in the analysis and translation
- Generation gap:
 mismatch between semantic input and coverage of the grammar

→ Robust generator necessary

Problems for generation (2)

(Task-inherent) problems manifest themselves as fault wrt. the interface language definition

- Problems with the *structure* of the semantic representation:
 - unconnected subgraphs
 - multiple predicates referring to the same object
 - omission of obligatory arguments
- Problems with the content of the semantic representation:
 - contradicting information
 - missing information (e.g. agreement information)

© Tilman Becker, DFKI March 2002 (118)

Extended Architecture

VIT (Verbmobil Interface Term)

Robustness Preprocessing

- •Repairing structural problems
- ·Heuristics for generation gap

Microplanning Module

- Microplanning | Selecting planning rules
 - Lexical choice constraints

Syntactic Realization Module

- •Selecting LTAG trees
- Tree combination

Surface Realization Module

- Inflection
- Synthesis Annotation

Annotated String

© Tilman Becker, DFKI March 2002 (119)

Extended Architecture (2)

Why *pre*-pocessing:

- Check and repair inconsistencies as early as possible
- Keep robustness and standard modules separate
- Alternative: relax constraints

Preprocessing for robustness means:

- Executing a set of solution submodules in sequence
- For each problem found, the preprocessor lowers a confidence value for the generation output which measures the reliability of our result

© Tilman Becker, DFKI March 2002 (120)

How much robustness?

PRO:

In a dialogue system,
a poor translation might still be better than none at all,

CON:

one of the shallow modules can be selected when deep processing fails, so respect the *inherent limitations of robustness*.

 Selection module: uses training corpus and confidence values to select from the different translation paths

© Tilman Becker, DFKI March 2002 (121)

Content-to-Speech (CTS) Output

- Output annotated with information like speech act, syntactic grouping, word classes, prominence, ...
- Enhances synthesis quality
- Example:

```
{SpeechAct:begin}{SpeechActType: Inform}{Language:English}{Utterance:begin}
{SentenceType:Aussagesatz}{WordClass:N}Verbmobil{WordClass:AUX}is {WordClass: DET-ART}
a{Prominence:2} {WordClass:ADJ}speaker_independent{WordClass:N}
system{BorderProminence:5} {WordClass:CONJ-SYN}that {Prominence:15}{WordClass:V}offers
{Prominence:4}{WordClass:N}translation_assistance{BorderProminence:2} {WordClass:PREP-SYN}in {Prominence:4}{WordClass:N}dialog {WordClass:N}situations {Utterance:end}
```

© Tilman Becker, DFKI March 2002 (122)

Minutes and Summaries

- Dialog module keeps track of the dialog:
 dialog model, context extraction, translations: dialog history
- Three types of "protocols":
- Minutes: relevant exchanges
- Summary: dialog results
- Scripts: complete dialog script

Multilingual Minutes and Summaries

Multilinguality: Integration of transfer module:

Conclusion

- Multilingual generation:
 - kernel algorithms
 - multilingual knowledge sources
- Robustness is necessary and useful
 - within limits
- Output of classified, graded quality
- Generation of minutes and summaries

The Verbmobil book: 2 articles on Generation

© Tilman Becker, DFKI March 2002 (125)

Selection and Speech Synthesis

Selection of Translations

Task:

Select the "best" translation out of all deep and shallow translation paths

• Input:

Translations (text or content)

Method:

Learning inequalities

Result:

Selected Translation (text or content)

Benefit:

Use the expertise of all translation paths for a particular utterance

Responsible:

TU Berlin

© Tilman Becker, DFKI March 2002 (127)

Integrating Deep and Shallow Processing

The Selection Problem

Selection is a difficult business:

- confidence values are difficult to compare
 - probabilistic vs. knowledge based approaches
 - no bird's eyes view possible
- re-training necessary after changes in the engines
- training data must be produced

Speech Synthesis

Task:

Synthesize the translation

• Input:

text or content

Method:

Multilevel selection and concatenation of speech units from large speech corpora

Result:

Audio signal

• Benefit:

"End of the chain" of the speech-tospeech system

Responsible:

Universität Bonn

TU Dresden

Universität Bochum

Daimler Chrysler

© Tilman Becker, DFKI March 2002 (130)

Different Types of Synthesis

- Text-to-Speech (TTS): reading machine from arbitrary text in orthographic form. Unlimited domain. The machine does not know what it is saying.
- Concept-to-Speech [or content-to-speech] (CTS): spoken out-put from a
 database inquiry or from a dialog system. The input of the synthesizer
 comes from a semantic representation via a generation module. The
 machine should have full knowledge of what it is saying.
- Reproductive Speech Synthesis: spoken output from pre-recorded samples. For strictly limited domains.

© Tilman Becker, DFKI March 2002 (131)

Corpus-Based Synthesis

- Target utterances are synthesized from a corpus of utterances from within the domain.
- All units whatever they are have multiple instances in the corpus.
- No predefined units: the unit selection algorithm selects contiguous chunks of speech from the data base – the longer, the better.
- When units of word size and above are applied, much of the natural prosody is preserved.
- Problem: coverage. Words not in the database cannot be synthesized in this way.

© Tilman Becker, DFKI March 2002 (132)

Unit Selection Algorithm

Sentence to synthesize

have

time

on

monday.

Edge direction

Implementation

- Word is the central unit and the starting point for all processing.
- Only if no suitable instance of a word is available in the database, an algorithm is invoked that composes a word from subword units which are currently phones.
- The principal strategy on both the word and the sub-word levels is to concatenate chunks that are as long as possible (up to a whole sentence).
- Like in CHATR, no prosodic manipulation is performed in this synthesis.
- In principle each word is needed in up to three positions (initial/medial, final declarative, final interrogative) and in both accented and unaccented mode.
- For Verbmobil this would mean that we need about 80000 word tokens to be recorded (which is prohibitive).
- Good coverage is reached by a selection of typical phrases from within the domain (dialogs from the Verbmobil dialog database).
- Additional utterances realize frequent words in relevant contexts (e.g., opening phrase, names of big cities).

© Tilman Becker, DFKI March 2002 (134)

Architecture

Verbmobil From a Software Engineering Point of View

System Design and Software Integration

Software Technology Challenges

The goal

Build an integrated system

The situation

- Researchers do research
- Using different programming languages
- Researchers don't want to be bothered with technical details

The solution

- Introducing: the System Group
- Maximal technical support for the researchers/developers

© Tilman Becker, DFKI March 2002 (137)

The System Architecture

Verbmobil I

Multi-Agent Architecture

- Modules know all communication partners
- Direct communication between modules
- Reconfiguration difficult
- Software: ICE and ICE Master
- Basic Platform: PVM

Verbmobil II

Multi-Blackboard Architecture

- Modules know their I/O data pools
- No direct communication between modules
 198 blackboards vs. 2380 direct comm. paths
- Reconfiguration easy
- Several instances of one module/functionality
- Software: PCA and Module Manager
- Basic Platform: PVM

© Tilman Becker, DFKI March 2002 (138)

Sample Pool Structure

Distributed Execution Supports Distributed Development

Support from the System Group (1)

Integration framework (Testbed) with

- common communication mechanism for all used programming languages (C, C++, Lisp, Prolog, Java, Fortran, Tcl/Tk)
- Narrow interface for all used programming languages
- Overall system control infrastructure
- Standards on various levels
 - Installation
 - Compilation
 - Communication formats between modules
 - ...
- Toolbox for recording, replaying, testing, inspecting data exchanged between modules, ...

© Tilman Becker, DFKI March 2002 (141)

The Testbed is the Integration Framework for the Verbmobil System

© Tilman Becker, DFKI March 2002 (142)

The Testbed controls the System: Module States

The GUI- Visualization and Debug Tool

.... and much more

© Tilman Becker, DFKI March 2002 (144)

Support from the System Group (2): Regular Integration Cycles

Human Factors

A Remark about Project Duration

8 years is a long time, especially since the invention of Internet time

1993 2000

- "You will need special hardware!"
- "1500 words speaker independent is impossible!"
- "Aren't your goals unrealistic?"

- "Does it run on my notebook?"
- "Only 10 000 words?"
- "Why can't it also translate in the domains X, Y, and Z?"

but

it is a unique chance for

- large scale, continuous research and development
- training people, collaborating, gaining experience
- collecting and annotating data

Management Challenges

The goal

Build an integrated system

The situation

- Partners distributed and pretty independent
- Great variation in project and background experience
- Adjustment of project plan and goals over time needed

The solution

- Define a flat management structure
- Create a group spirit

© Tilman Becker, DFKI March 2002 (148)

Project Organization

© Tilman Becker, DFKI March 2002 (149)

Module Managers

- Have technical hands on experience
- Responsible for one module, even if it is developed at different sites
- Volunteers (sort of ...)
- Meet regularly, despite e-mail, phone and other devices
- Define next milestones
- Define data and software integration plans

Module coordinator coordinates the efforts and is the link to the scientific management

© Tilman Becker, DFKI March 2002 (150)

Example: Optimization Schedule 2000

- 21.02. Delivery of CeBit system
- 21.02. 30.04. Optimization phase
 - 15.03. 28.04. End-To-End evaluation with feedback to developers
 - 27.03. 07.04. Workshop Deep **Processing**

- 09.05. Delivery Verbmobil System 1.0
- starting 09.05
 - speech recognizer evaluation
 - turn evaluation

© Tilman Becker, DFKI March 2002 (151)

Experience

- The group of module managers is a Good Thing™
- Common goals motivate
- Friendly peer pressure works most of the time
- Early problem detection and resolution in most cases
- Regular integration cycles focus and motivate
- □ Proactive consensus management (PCM)

© Tilman Becker, DFKI March 2002 (152)

Experience

- The System Group is a Good Thing™
- The multi blackboard architecture is a Good Thing™
- Crucial for the success of Verbmobil
- Software foundation for (almost) hassle free module development

☐ Controlled distributed development possible

© Tilman Becker, DFKI March 2002 (153)

Verbmobil-Symposium

Programm

(Keine Teilnahmegebühr)

30.7.2000,10:30-18:00 Saarbrücken, Kongresshalle

Zeitraster für das Verbmobil-Abschlussymposium

Datum: 30.07.2000

Ort: Neue Congresshalle Saarbrücken

10:30 - 10:35 Eröffnung

10:35 - 10:45 Grußworte des BMBF (B. Reuse, BMBF)

10:45 - 11:30 Verbmobil (W. Wahlster)

11:30 - 12:00 Präsentation des Verbmobil-Systems (R. Karger)

12:00 - 12:45 Spracherkennung und Prosodieanalyse (A. Waibel, E. Noth)

12:45 - 13:30 Imbiss

13:30 - 14:15 Multilinguale Analyse (U. Block, H. Uszkoreit)

14:15 - 15:00 Symbolische und Statistische Übersetzung (C. Rohrer, H.Ney)

15:00 - 15:30 Kaffee

15:30 - 16:15 Generierung und Synthese (T. Becker, W. Hess)

16:15 - 16:45 Evaluierung der End-to-End-Übersetzungsleistung des Systems (W. v.Hahn)

16:45 - 17:00 Verlesen des schriftlichen Abschlussgutachtens

17:00 - 18:00 Podiumsdiskussion: Sprachtechnologie und New Economy

SmartKom

- Overview
- Architecture
- Core Areas: Analysis, Fusion, Generation, ...
- Dialogue Processing

Overview

Introduction

- Why Multimodal Interaction Systems?
- Reference Architecture for Multimodal Systems

SmartKom: A Multimodal Interaction System

- SmartKom: A Transportable Interface Agent
- Situated Delegation-oriented Dialog Paradigm: Collaborative Problem Solving
- Modes in SmartKom
- More About the System
- M3L: XML based Multimodal Markup Language
- Multimodal Coordination

Why Multimodal Interaction Systems? (Oviatt&Cohen, CACM March 2000)

Accessibility for diverse users and usage contexts

Selection of modes by the user and by the system
 e.g. lean- forward/lean-backward mode in a home environment, car

Performance stability and robustness

- Users can select robust mode
- Mutual disambiguation and presentation

Expressive power and efficiency

- Interface more powerful
- Faster
- Increased task completion

© Tilman Becker, DFKI March 2002 (157)

Overview

- Introduction
- SmartKom: A Multimodal Interaction System
 - SmartKom: A Transportable Interface Agent
 - Situated Delegation-oriented Dialog Paradigm: Collaborative Problem Solving
 - Modes in SmartKom
 - More About the System
 - M3L: XML based Multimodal Markup Language
 - Multimodal Coordination
- MIAMM
 - Main Objectives
 - Interaction using Haptics
- Research Roadmap of Multimodality
- Conclusion

© Tilman Becker, DFKI March 2002 (159)

Human-Technology Interaction Lead Projects

Project	Title	Coordinator	Funding Period
INVITE	Intuitive Mensch-Technik- Interakt. für die vernetzte Informationswelt der Zukunft	ISA GmbH, Stuttgart	07/99 - 06/03
<u>MORPHA</u>	Intelligente anthropomorphe Assistenzsysteme	Delmia GmbH, Fellbach	07/99 - 06/02
<u>EMBASSI</u>	Elektronische Multimediale Bedien- und Service-Assistenz	Grundig GmbH, Fürth	07/99 - 06/03
ARVIKA	Augmented Reality für Entwicklung, Produktion und Service	Siemens AG, Nürnberg	07/99 - 06/03
<u>SMARTKOM</u>	Dialogische Mensch-Technik- Interaktion durch koordinierte Analyse und Gener. multipler Modalitäten	DFKI GmbH, Saarbrücken	09/99 - 09/03
<u>MAP</u>	Multimedia Arbeitsplatz der Zukunft	AlcatelSel AG, Stuttgart	04/00 - 03/03

© Tilman Becker, DFKI March 2002 (160)

The SmartKom Consortium

Small Control of the control of the

Project Budget: € 25.5 million

Project Duration: 4 years (September 1999 – September 2003)

SmartKom: A Transportable Interface Agent

SmartKom-Home/Office:

Multimodal Portal to Information Services

A Multimodal Communication

Kiosk

© Tilman Becker, DFKI

March 2002 (162)

An Example Interaction with SmartKom Mobile

© Tilman Becker, DFKI March 2002 (163)

Situated Delegation-oriented Dialog Paradigm: Collaborative Problem Solving

User

specifies goal

delegates task

cooperate

on problems

asks questions

presents results

Personalized Interaction Agent

Service 1

IT Services

Service 2

Service 3

© Tilman Becker, DFKI March 2002 (164)

Modes in SmartKom

Speech

- Speaker independent speech recognition
- Prosodic input processing
- Synthesis

Gesture

- Input
 - Natural gestures (SIVIT)
 - · Pen-based
- Presentation agent

Facial/body expression

- User state recognition
- System state presentation

The Main Modules on the Control GUI

© Tilman Becker, DFKI March 2002 (166)

More About the System

- Modules realized as independent processes
- Not all must be there (critical path: speech or graphic input to speech or graphic output)
- (Mostly) independent from display size
- Pool Communication Architecture (PCA) based on PVM for Linux and NT
 - Modules know only about their I/O pools
 - Literature:
 - Andreas Klüter, Alassane Ndiaye, Heinz Kirchmann: Verbmobil From a Software Engineering Point of View: System Design and Software Integration. In Wolfgang Wahlster: Verbmobil -Foundation of Speech-To-Speech Translation. Springer, 2000.
- Data exchanged using M3L documents
- All modules and pools are visualized here ...

© Tilman Becker, DFKI March 2002 (167)

An Example of the M3L Representation of the Multimodal Discourse Context

"No presentation without representation!"

```
<?xml version="1.0"?>
ontent>
  <abstractPresentationContent>
    <movieTheater structId="pid3072">
       <entityKey> cinema_17a </entityKey>
       <name> Europa </name>
         ≤<del>geoCoordinate></del>
          <x> 225 </x> <y> 230 </y>
         </geoCoordinate>
      </movieTheater>
  </abstractPresentationContent>
[...]
  <map structld="PM23">
     <br/>
<br/>
dingShape>
      <leftTop>
       <x> 0.5542 </x> <y> 0.1950 </y>
      </leftTop>
      <rightBottom>
       <x> 0.9892 </x> <y> 0.7068 </y>
      </rightBottom>
     </boundingShape>
     <contentReference> pid3072 </contentReference>
    </map>
   </panelElement>
entationContent>
```

© Tilman Becker, DFKI March 2002 (170)

Mode Processing: The Data Flow

User State

Domain Information

System State

Processing the User's State

© Tilman Becker, DFKI March 2002 (172)

Processing the User's State

Different reference levels:

Object level	Meta level
This is great! Show me more!	That was quick!
One moment, let me think.	OK now, what are you doing?
Oh no, that's ugly! A new one!	What the is going on?

- Annotated in the data from the data collection
- Recognized using mimics and prosody
- In case of anger activate the dynamic help

Wizard of Oz Data Collection (LMU Munich)

Data distributed on DVD (1 DVD per 5 minute dialogue)

User States Annotated in 45 dialogues

Neutral	681
Joy/success	31
Reflection	59
Perplexity	31
Surprise/Astonishment	11
Annoyance/Failure	16

Only about 18% emotional user state events

User Independent Classification of Facial Expressions (Univ. Erlangen)

Media Fusion

© Tilman Becker, DFKI March 2002 (177)

Gesture Processing

Objects on the screen are tagged with IDs and bounding boxes

Gesture input

- Natural gestures recognized by SIVIT
- Touch sensitive screen

Gesture recognition

- Location
- Type of gesture: pointing, tarrying, encircling

Gesture Analysis

- Reference object in the display described as domain model (sub-)objects (M3L schemata)
- Compute distance to bounding boxes
- Output: gesture lattice with hypotheses

© Tilman Becker, DFKI March 2002 (178)

Speech Processing

Word lattice

- Prosody inserts boundary and stress information
- Speech analysis creates intention hypotheses

which movies are playing at the Metropol

hypothesis(action:info,performance(cinema(name:Metropol)) ..)

Media Fusion

- Integrates gesture hypotheses in the intention hypotheses of speech analysis
- Information restriction possible from both media
- Possible but not necessary correspondence of gestures and placeholders (deictic expressions/ anaphora) in the intention hypothesis
- Necessary: Time coordination of gesture and speech information
- Time stamps in ALL M3L documents!!
- Output: sequence of intention hypothesis

© Tilman Becker, DFKI March 2002 (180)

Presentation

© Tilman Becker, DFKI March 2002 (181)

Presentation

- Starts with action planning
- Definition of an abstract presentation goal
- Presentation planner:
 - Selects presentation, style, mode, and agent's general behaviour
 - Activates natural language generator which activates the speech synthesis which returns audio data and time-stamped phoneme/viseme sequence
- Character animation realizes the agent's behaviour
- Synchronized presentation of audio and visual information

© Tilman Becker, DFKI March 2002 (182)

Partial view of SK architecture: Multimodal Presentation

User Perspective

Monitor: frontal view

Table: angled view

© Tilman Becker, DFKI March 2002 (184)

Lip Synchronization with Visemes

- Goal: present a speech prompt as natural as possible
- Viseme: elementary lip positions
- Correspondence of visemes and phonemes
- Examples:

Behavioural Schemata

 Goal: the agent (Smartakus) is always active to signal the state of the system

Four main states

- Wait for user's input
- User's input
- Processing
- System presentation

Current body movements

- 9 vital, 2 processing, 9 presentation (5 pointing, 2 movements, 2 face/mouth)
- About 60 basic movements

New animations

Examples for complex movements and speech-synchronized gestures

Pointing to the right

Enumeration of items

Moving in a circle

Example: Pointing Gestures

base position

preparation

stroke

retraction

composed gesture:

Details:

Natural Language Generation in SmartKom

Discourse Updates in Interactive Dialogues

AT&T Research 2 Aug 2001

Natural Language Generation in SmartKom

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Stuhlsatzenhausweg 3, Geb. 43. 1 - 66123 Saarbrücken

Tel.: (0681) 302-5271

Fax.: (0681) 302-5020

Email: becker@dfki.de

www.smartkom.org

Overview

- Architecture
- Presentation Goals
- Natural Language Generation for Speech Synthesis
 - Architecture
 - Selection of data, sentence templates
 - "fully specified templates"
 - Concept-To-Speech information
- A short look aside: graphics and gestures
- Outlook

© Tilman Becker, DFKI March 2002 (191)

Presentation Begins in Action Planning

Presentation as planning of a multi-modal dialog act

Abstract presentation goals

(defined in an XML Schema

presentation.xsd

Natural Language Generation: Overview

- Input, Output
- Architecture
- Knowledge Bases
- The steps of generation
- Templates
 - Tree Adjoining Grammars
 - "fully specified templates"
- Concept-To-Speech information

Typical Abstract Presentation Goals

Presentation of information (usu. With an implicit request): "Here you can

```
see...": <inform>
```

Explicit Request to fill a slot: "Please show me where you want to sit":

```
<request>
```

- Feedback: "Your reservation is secured..." <feedback>
- Canned presentations:

```
<goodbye>
```

© Tilman Becker, DFKI March 2002 (194)

Input for Natural Language Generation

```
<speechGenerationTask goalKey="11">
 <speechPresentationGoal>
  <inform>
                    commentTyp="onGraphicalPresentation">
   <comment
      <graphicalRealisationType> list <
deepFocus structReference="struct201"/>
                                                 </graphicalRealisationType>
     <content
<content</pre>
                    structReference="struct17"/>
                    structReference="struct18"/>
   </comment>
  </inform>
 </speechPresentationGoal>
 <abstractPresentationContent>
      <performance>
       <avMedium>
        <title structId="struct18"> Schmalspurganoven </title>
       </avMedium>
       <cinema>
        <movieTheatre structId="struct17">
         <name> Europa </name>
        </movieTheatre>
       </cinema>
      <beginTime structId="struct201"/>
    </performance>
 </abstractPresentationContent>
</speechGenerationTask>
```

© Tilman Becker, DFKI March 2002 (195)

Sketch of the Architecture

Knowledge Bases in NLG

- Defining the goal (XSLT Stylesheet, What?)
- Planning rules (PrePlan, How?)
- (Template-)grammar (TAG, Realizer How?)
- (Morphology)
- Lexicon (TAG, Realizer)
- Discourse memory (anaphora etc.)
- User model ("Interaktionsmodellierung") (register etc.)

First Step: Defining the Goal

XSLT: Mapping abstract goals to realization goals, e.g.:


```
<xsl:template match="request/slotFill/select[normalize-space(modality/text())='gesture']">
    (showme
    <xsl:apply-templates select="requestFocus/deepFocus"/>
    )
    </xsl:template>
```

© Tilman Becker, DFKI March 2002 (199)

First Step (2): Using Context Information

XSLT: Creation of a generation knowledge base from the input, e.g.:

```
(GKB (
    (performance mf745)
    (entitykey
        mf746
        performance_1000030)
...
    (title
        mf747
        "O Brother..")
...
)
```

Second Step: Sentence Planning with Templates

- Result is a derivation tree
- PrePlan (a simple planning tool in Java):
 - (Text and) sentence planning
 - Selection of templates and filling of slots, e.g.:

```
(overview mf42)
  ->
(select "You can see an overview")
(adjoin "Node Overview-4711")
(np-realize mf42)
```

Select and adjoin refer to trees and nodes of the (TAG) Grammar

© Tilman Becker, DFKI March 2002 (201)

TAG Grammars

- Tree Adjoining Grammars (Joshi et al 1975)
- A grammar
 - consists of partial trees,
 - that are combined by two operations:
 - Adjunction
 - Substitution
 - Lexicalized grammars:
 - A set of possible partial trees for every word
 - · Every partial tree is a "maximal projection" of the word

© Tilman Becker, DFKI March 2002 (202)

TAG: Initial Trees

Substitution as in context-free grammars:

© Tilman Becker, DFKI March 2002 (203)

TAG: Auxiliary Trees

Adjunction is more powerful than context-free grammars:

© Tilman Becker, DFKI March 2002 (204)

TAG with Templates

Instead of lexicalized trees:

- A template tree contains the entire structure of a template
- ...including all words
- A simplistic "template Grammar" consists of complete sentences
- Can smoothly be developed into a complete grammar

Problem:

- What are the right syntactic(?) structures?
- General problem with CTS

Planning a Derivation Tree

Commenting on a graphical presentation

you-see-tree NP_22 an-overview-Baum derivation trees

Referring to a list NP Det overview an derived tree

Concept-To-Speech

- Syntactic Information is used to compute Prosodic Information
- Sentences are combined to discourse tree
- Filtering of irrelevant syntactic features

- Synthesis is based on Festival
- Preprocessing traverses syntactic structure (Scheme)

 Work carried out at IMS, Stuttgart, Germany Gregor Möhler, Antje Schweitzer (Prof. Dogil)

© Tilman Becker, DFKI March 2002 (207)

CTS versus TTS

Templates

- Where do we get the templates from?
 - Ideally from existing grammars:
 - consistent
 - short development time
 - no/less expertise required
 - Data collection for a new application:
 - example dialogues
 - Wizard of Oz experiments
 - dialogue models
 - Growing collection of "standard templates" (will lead to a real grammar)

© Tilman Becker, DFKI March 2002 (209)

Current work

- Complete TAG implementation with unification:
 - Porting an existing Unifier (LISP)
 - XML-Representation of the grammar:
 - Graphical tools
 - XSLT mapping to/from other formats (LISP)
- Structure of planning rules:
 - Separate text and sentence planning
- Extending the set of templates

Future Work

- Generating referring expressions
- Generating text for graphics, esp. for mobile scenario "no audio"
- Text planning
- Abstract "sentence plans":
 - Module within syntactic realization
- Various tools (next slide)
- Language independent steps of NLG

© Tilman Becker, DFKI March 2002 (211)

Future Work

Tools for:

- PrePlan planning rules
- Lexicon (morphology)

Template tree development scenario:

- Parser (with a German grammar -- Kim Gerdes) produces derivation trees
- (Graphical) tool to
 - select correct analysis
 - relate to existing templates
 - mark fixed/variable parts

MIAMM

- Multidimensional Information Access using Multiple Modalities (IST-2000-29487)
 - Cross Programme Action 2 User Friendliness, Human Factors, Multi-Lingual, Multi-Modal dialog modes
- Duration: September 2001 February 2004
- Participants
 - INRIA (Laboratoire Loria), FR [Coord.]
 - Speech recognition, language analysis, contextual interpretation
 - Deutsches Forschungszentrum für Künstliche Intelligenz, DE
 - Graphical interface, language analysis, dialogue management
 - Netherlands Organization for Applied Scientific Research (TNO), NL
 - Task analysis, interaction scenarios, evaluation
 - Sony International Europe GmbH, DE
 - Multilingual speech recognition (en, de), software for haptic interaction, domain modeling, hardware interaction
 - CANON Research Centre Europe (CRE), UK
 - Multimedia database and search application

The Haptic Device

Phantom (<u>www.sensable.com</u>)

3 degrees of freedom force feedback unit

Research Roadmap of Multimodality

Research Roadmap of Multimodality

2006-2010

Research Roadmap of Multimodality 2001-2010

Formal Ontologies

Enabling Technologies and Important Contributing Research Areas

2 Nov. 2001

Dagstuhl Seminar Fusion and Coordination in Multimodal Interaction edited by: W. Wahlster

Multimodal Input	Multimodal Interaction	Multimodal Output
Sensor Technologies	User Modelling	Smart Graphics
• Vision	Cognitive Science	Design Theory
Speech & Audio Technology	Discourse Theory	Embodied Conversational Agents
Biometrics	• Ergonomics	Speech Synthesis

Pattern Recognition

Planning

March 2002 (217)

© Tilman Becker, DFKI

Machine Learning

Multimodal Interaction in SmartKom

Scenario:

public (mobile, home)

Application:

movie information (EPG, email, phone, fax, address book, tv and vcr control, routing/tourist info)

U: I want to make a reservation in (\$\omega\$) this movie theater

S: This theater does not take reservations

U: Then a different one, (♥) this one perhaps

IJCAI 2001 Workshop TASK-4 Seattle, WA, USA

Overlay as the basic operation in discourse processing

Jan Alexandersson

Tilman Becker

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Stuhlsatzenhausweg 3, Geb. 43.8 - 66123 Saarbrücken

Tel.: (0681) 302-5271

Email: {janal,becker}@dfki.de www.dfki.de

Discourse modelling tasks

Construct a discourse memory of contextual information

- Hypotheses:
 - enrich w/ context information
 - compute scores
- discourse memory:
 - enrich
 - retract
 - (partially) overwrite

Architecture

Dialog memory

A typical dialog situation:

User: I want to see Matrix

Sytem: Ok, it runs at 8 and at 10

- User: At 8

Dialog memory:

structured storage for utterances (and their meaning)

"current context:"

- data structure representing the currently active context
- e.g.: Matrix at 8

Putting the user in context

New information is added to current context,

Result:

updated current context

• used, e.g. for a database query

Unification-based Integration of Speech and

Gesture

© Tilman Becker, DFKI March 2002 (224)

Updating current context with Unification

- Representing complex discourse objects as typed feature structures (TFS),
 e.g. Johnston 1998
- Used, e.g. in media fusion:
 - User: I want to see this one [pointing to movie "Matrix"]
 - Speech: "I want to see X"
 - Gesture: "When is Matrix showing?"
 - "I want to see Matrix."
 - Media Fusion: "I want to see Matrix."
- Problem: enumeration of all structures (in deixis)

© Tilman Becker, DFKI March 2002 (225)

Typed feature structures and XML

- In the SmartKom project, discourse objects are represented in XML
- Mapping from XML to TFS assumed
- Example:

© Tilman Becker, DFKI March 2002 (226)

The limits of unification

- Not all new information is consistent with current context
- Even for Mediafusion:
 - User: This one, (but) in green
- Some parts must be kept, some be overwritten
 - "keep and overwrite", M. Streit
- Provide a principled method, based on unification

© Tilman Becker, DFKI March 2002 (227)

Overlay to the rescue

- Unification is monotonic, reflexive operation
- old information from the current context can be changed, new information is more important
- ☐ we need a non-monotonic, non-reflexive operation: overlay

© Tilman Becker, DFKI March 2002 (228)

Overlay to the rescue

- Task: compare new (intention) hypothesis against discourse history
- new information consistent with focus:
 - **廿** Unifikation
- new in formation (partially) inconsistent with focus:
 - **Overlay**

Example for Unification

U: I want to go to the movies tonight

S: Here is a list of the films that are shown in Heidelberg tonight: (SmartKom shows a list)

U: *I* want to see (♥) this one, where is it playing?

Unification: monotonic operation

	<domainobject></domainobject>		
<domainobject></domainobject>	<entertainment></entertainment>	<domainobject></domainobject>	
	<performance></performance>	<entertainment></entertainment>	
	<begintime></begintime>	<performance></performance>	
<entertainment></entertainment>	<function></function>	 deginTime>	
<pre><pertainment> <pertainment> <pertainment></pertainment></pertainment></pertainment></pre>	<between></between>		
	<from></from>		
	2000-12-13T12:34:56	⇒ <cinema></cinema>	
	()	<movietheater></movietheater>	
	<to></to>	<contact></contact>	
	2000-12-13T23:59:59	<address></address>	
,		<town></town>	
		Heidelberg	
<domainobject></domainobject>	_{I I} <cinema></cinema>		
<entertainment></entertainment>			
 broadcast>	<contact></contact>		
Schmalspurganoven	<address></address>	<avmedium></avmedium>	
	<town></town>		
	Heidelberg	<title></td></tr><tr><td></town></td><td>Schmalspurganoven</td></tr><tr><td></address></td><td></title>	
	© Tilman Becker, DFKI		March 2002

March 2002 (232)

Unification: compatibility condition

Overlay: nonmonotonic operation, that always

Example for Overlay

U: I want to make a reservation in (♥) this movie theater

S: This theater does not take reservations

U: Then a different one, (♥) this one perhaps

Type Hierarchy

© Tilman Becker, DFKI March 2002 (237)

Overlay and Typed Feature Structures (TFS)

Two non-unifiable structures (type clash):

- Cover is more important than background
- Keep information from background:
 - Find lub (most specific common supertype)
 - "reduce" background to this type
 - recursively apply overlay on features
 - for atomic values: ignore background

An Example

U: What films are showing on TV tonight?

S: [shows list of films]

U: That's a boring program, I'll rather go to the movies.

Q: How do we save "tonight"?

An Example

U: What films are showing on TV tonight?

 \Rightarrow Context of type *TV*

S: [shows list of films]

U: That's a boring program, I'll rather go to the movies.

- ⇒ Analysis finds data of type *Movie*
- incompatible with context
- abstract context to lub TV_or_Movie (keeps "tonight")
- unifiable with analysis

© Tilman Becker, DFKI March 2002 (240)

Does TFS solve all your problems?

- An adequate type hierarchy must exist
 - "most specific common supertype"
 - Carpenter and others on default unification
- Overlay (and unification) of lists and sequences is not well defined -- and content dependent
- What about "semantics", e.g. DRS, Verbmobil VIT/MRS?

© Tilman Becker, DFKI March 2002 (241)

Implementation

- Mapping of XML Schema to Java classes see data binding:
 - Castor Project
 - Java 1.4: JAXB
- XML documents are represented internally as instances of these classes
- Unification and overlay are realized using the Java meta protocol

© Tilman Becker, DFKI March 2002 (242)

Next steps

- Treatment of subobjects
 - find relation to context
- Grounding
 - model the presentation-acceptance cycle of discourse objects
- Inclusion of dialog management plans
 - expected vs. Possible next states
 - better interpretation in context
- Fully formalize XML schema to tfs mapping

© Tilman Becker, DFKI March 2002 (243)

Summary of the Talk

- Two large-scale spoken dialogue projects: Verbmobil, SmartKom
- Spotlight on Aspects of NLG, Discourse Processing

Conclusion:

- Large Scale projects offer new insights'
 See also upcoming 6th framework of EU
- Modular Architecture (data pool driven middleware)
- combine shallow and deep approaches
 - multi-engine approach
 - fully specified template approach
- emerging multi-modal markup language

© Tilman Becker, DFKI March 2002 (244)

Finally

Thank you very much for your kind attention.

Verbmobil -The Project

Some information for those who haven't heard of Verbmobil recently

 speaker independent speech-to-speech translation system for appointment scheduling and travel planning:

German ↔ English (10 175 words German, 6871 words English)
German ↔ Japanese (2566 words Japanese)

- 69 modules, full configuration 3.5 GB
- 23 participating institutions (in Verbmobil II)
- over 900 full workers and students involved
- project duration: 1993 2000
 - ☐ scientific, software technology, and management challenges

© Tilman Becker, DFKI March 2002 (246)

Scientific Results

There are over 600 refereed papers on the various aspects of and achievements in Verbmobil.

See also W. Wahlster (ed.): Verbmobil: Foundations of Speech-to-Speech Translation, Springer Verlag, to appear July 2000 ... at any shop near your office :-)

Some highlights

- Speaker independent speech recognition over various channels
- Language ID
- Unknown words
- Prosodic information (segmentation, stress etc.) used in various modules
- Repair of hesitations, repetitions
- Combination of parser analysis fragments
- Semantic representation: VIT

- Context and dialog knowledge supports translation
- Efficient semantic transfer
- Content to speech generation
- Word concatenative speech synthesis
- Dialog minutes and summaries
- Large data collection with annotation on various levels (e.g. tree-banks, dialog acts)
-

© Tilman Becker, DFKI March 2002 (247)

Multi-Engine for Translation (DOE)

- Large-Scale Web-based Evaluation: 25 345 Translations, 65 Evaluators
- Sentence Length 1 60 Words

Translation Thread	Word Accuracy ≥ 50% 5069 Turns	Word Accuracy ≥ 75% 3267 Turns	Word Accuracy ≥ 80% 2723 Turns
Case-based Translation	37%	44%	46%
Statistical Translation	69%	79%	81%
Dialog-Act based Translation	40%	45%	46%
Semantic Transfer	40%	47%	49%
Substring-based Translation	65%	75%	79%
Automatic Selection	57% / 78% *	66% / 83% *	68% / 85% *
Manual Selection	88%	95%	97%

^{*} After Training with Instance-based Learning Algorithm

© Tilman Becker, DFKI March 2002 (248)

Agreement between Different Labels

	В3	-B3	D3	-D3
МЗ	79	21	52	48
-M3	3	97	0	100
	В3	-B3	M3	-M3
D3	B3 91	-B3	M3 97	-M3 48

B3	prosodic boundary
-----------	-------------------

- **M3** syntactic boundary
- D3 dialog act boundary

- Most M- (79%) and D-bound. (91%) are prosodically marked
- About half of the M-boundaries (52%) are D-boundaries
- Practically all D-boundaries (97%) are M-boundaries
- High agreement between the non-boundaries (92-100%)
- Even a prosody with a recognition rate of 100% will not find 21% of the M-boundaries and 9% of the D-boundaries!

© Tilman Becker, DFKI March 2002 (249)

Results of End-to-End Evaluation Based on Dialog Task Completion for 31 Trials

			Percentage	
	Successful		of Successful	Frequency-Based
Topic	Completions	Attempts	Task Completions	Weighting Factor
Meeting time	25	28	89,3	0,90
Meeting place	21	27	77,8	0,87
Means of transport	30	30	100	0,97
Departure place	22	25	88	0,81
Arrival time	22	26	84,6	0,84
Place of arrival	17	19	89,5	0,61
Who reserves the hotel	28	31	90,3	1
How to get to departure place	7	9	77,8	0,29
Means of return transportation	23	24	95,8	0,77
Departure place for return trip	16	17	94,1	0,55
Meeting time for return trip	3	4	75	0,13
Meeting place for return trip	3	4	75	0,13
Arriving place for return trip	10	11	90,9	0,35
Total Number of Dialog Tasks	227	255		
Average Percentage of Successful Task Completions			86,8	
Weighted Average Percentage of Successful Task Completions			89,6	March 2002 (251)

Test Results for the current Repair Module

	Detection		Correct scope		gen. correct scope	
	Recall	Precision	Recall	Recall Precision		Precision
Test 1	49%	70%	47 %	70%	_	
Test 2	71%	85%	62%	83%	64%	84%

Remember:

The output of the Repair module are additional hypotheses for the linguistic analysis. The original hypotheses remain in the WHG

© Tilman Becker, DFKI March 2002 (252)

Examples

Text	Wie wäre es denn mit dem achtzehnten, weil ich am siebzehnten noch verhindert bin.
Transl.	How about the eighteenth, because I am still booked on the seventeenth.
Speech	Wie wäre es denn mit dem achtzehnten, weil ich am siebzehnten noch verhindert, dann
Transl.	How about the eighteenth, because I still booked on the seventeenth then.
Text	Sehr gut, ja. dann fahren wir da los. alles klar. danke schön.
Transl.	Very good, yes. then we will go then leave. all right. thank you.
Speech	Sehr gut , ja ich dann fahren wir da uns , alles klar dann schon
Transl.	Very good, well then we will go then I us, all right then already.
Text	Mittwoch, den sechsten, geht nicht. Montag, der elfte.
Transl.	Wednesday, the sixth, isn't possible. Monday, the eleventh.
Speech	Wie Mittwoch den sechsten geht, nicht, Montag, der elfte?
Transl.	How is, not Wednesday the sixth, Monday, the eleventh?
Text	Ah, ja, ja, die haben einen guten Service.
Transl.	Oh, well, well, they have a good service.
Speech	Ah, ja, die ja guten Service.
Transl.	Oh, yes, good yes the service.
Text	Genau, das wäre dann eine Übernachtung.
Transl.	Exactly, then, that would be an overnight stay.
Speech	Genau, das wäre dann eine Übernachtung.
Transl.	Exactly, then, that would be an overnight stay.

