
PV181 Laboratory of security

and applied cryptography

CryptoAPI

Marek Sýs, Danil Leksin, Zdeněk Říha

| PV1811

CAPI

CryptoAPI (Cryptographic Application Programming Interface, Microsoft

Cryptography API, MS-CAPI or simply CAPI) is an application programming interface

included with Microsoft Windows operating systems that provides services to enable

developers to secure Windows-based applications using cryptography. It is a set of

dynamically linked libraries that provides an abstraction layer which isolates programmers

from the code used to encrypt the data. (CryptoAPI supports both public-key and

symmetric key cryptography)

2 | PV181

CAPI provides:

1. Secure data storing

2. Ability to transfer data

3. Validation from 3rd party users

4. Work with cryptographic standards

5. Extension

CAPI functionality groups:

1. Basic cryptographic functions:

1. encoding / decoding

2. hash function

3. initializing CSP, working with context

4. key generation

5. key exchanging

2. Functions for working with certificates

3. High-level functions

4. Low-level functions

CSP

• CSP (Cryptography Service Provider) - is a software library that implements

the Microsoft CryptoAPI (CAPI). CSPs implement encoding and decoding

functions, which computer application programs may use.

• CSP provides:

– implementation of the standard interface

– work with encode / decode keys

– inability to interference from third parties

• 2 function groups for working with CSP:

– initialization of the context and getting CSP parameters

– Key generation and function for work with them

– encode / decode functions

– Hash functions

CAPI & CSP & Apps

CSP on current machine

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Defaults\Provider\

CAPI and terminology

• Work with: CSPs + keys

• Key containers

– store keys (symmetric, private or public)

– associated to CSP

• Context - session between CAPI and client App

• Session key – volatile objects never leave CSP

– import, export functions

• Key BLOB - contain an encrypted private key

6 | PV181

CAPI programming

1. Call CryptAcquireContext function (returns handle)

2. work with handle – potentially other objects should be created (e.g. hash

objects)

BOOL CryptAcquireContext(

HCRYPTPROV *phProv, // pointer to a handle of a CSP

LPCSTR szContainer, // key container name

LPCSTR szProvider, // name of the CSP

DWORD dwProvType, // type of provider to acquire

DWORD dwFlags // Flags)

See manual with examples:

https://docs.microsoft.com/en-us/windows/win32/seccrypto/cryptography-portal

7 | PV181

CNG

• Cryptography API: Next Generation(CNG)

– since Vista

• Two modes: kernel, user (same API)

– user mode – CNG provider in Bcrypt.dll

– kernel mode - Ksecdd.sys

• Functions: key funcs, crypto primitives

• Crypto agility:

– easy to add functions

CAPI vs CNG

• CAPI

– algs (numeric constants) defined in wincrypt.h

– hard to add new algorithm

• CNG

– algs are strings

– new CSP can be created – no need to sign it by MS

– possible to query CNG for supported algs

– Newer algs – NSA Suite B and several others

9 | PV181

CNG programming

Most of the CNG APIs require a provider or an object

created by a provider.

1. Opening the Algorithm Provider

2. Getting or Setting Algorithm Properties

3. Creating or Importing a Key

4. Performing Cryptographic Operations

5. Closing the Algorithm Provider

10 | PV181

CNG: Example

BCryptOpenAlgorithmProvider(&hAlg...)

BCryptGetProperty(hAlg, BCRYPT_BLOCK_LENGTH, &dwBlockSize...)

//allocate buffer, rounding up to next block size

BCryptGetProperty(hAlg, BCRYPT_OBJECT_LENGTH, &cbKeyObjectLen...)

//allocate buffer for key object

BCryptGenerateSymmetricKey(hAlg, &hKey...)

BCryptEncrypt(hKey,...) //data is now encrypted

BCryptDestroyKey(hKey)

BCryptCloseAlgorithmProvider(hAlg,0) //deallocate buffers

11 | PV181

