MUNI

HCI LAB

PV182 Human Computer Interaction

Lecture 10 Cognitive Models

> Fotis Liarokapis liarokap@fi.muni.cz

14th October 2019

-HCI LAE

Cognitive Models (Low Level)

• Sources:

-HCI

- Marti Hearst (SIMS, UC Berkeley)
- Robert Stevens (www.cs.man.ac.uk)
- Susan E. Brennan (www.psychology.stonybrook.edu)
- Rebecca W. Boren (Arizona State University)

Cognitive Models

HCI™ Cognitive Modeling Based Evaluation

-HCI LAB

- Fitts' Law
 - Used to predict time needed to select a target
- Keystroke-Level Model
 - Low-level description of what users must do to perform a task
- GOMS
 - Structured, multi-level description of what users must do to perform a task

Model of Human Processing

The Model Human Processor

- Perceptual system
- SensorsCognitive system

-HCI LAB

- Processors
- Motor system
 Effectors

(Card, Moran, & Newell, 1983)

Important Parameters

Memory capacity

-HCI

- Decay
- Representation
- Processing cycle time

Sample Times

- Eye-movement = 230 [70~700] ms
 - Typical time = 230 ms

-HCI LAR

- "Fastman" = 70 ms"Slowman" = 700 ms
- Perceptual processor: 100 [50~200]
- Cognitive processor: 70 [25~170]
- Motor processor: 70 [30~100]

Model of Simple RT Problem

- Task: Press button
 - When symbol appears

Model of Simple RT Problem .

Task: Press button
 When symbol appears

-HCI

 1. Perceptual processor captures it in the visual image store & represents it in working memory - 100 [50~200]

Model of Simple RT Problem ..

Task: Press button

-HCI

- When symbol appears
- 2. Cognitive processor recognizes the presence of a symbol – 70 [25~170]

Model of Simple RT Problem ...

• Task: Press button

-HCI

- When symbol appears
- 3. Motor processor pushes the button
 - 70 [30~100]

Model of Simple RT Problem

- Task: Press button when symbol appears
- 1. The perceptual processor captures it in the visual image store and represents it in working memory - 100 [50~200]
- 2. The cognitive processor recognizes the presence of a symbol
 - 70 [25~170]

-HCI

- 3. The motor processor pushes the button – 70 [30~100]
- Total time?

-HCI LA

-HCI LAB

Model of Simple RT Problem

• Each of these action primitives takes some small amount of time (in msec.)

-HCI

 The Model Human Processor provides a range of parameters you can use to predict precisely how long something will take, or to compare the time needed for alternative actions

Hick's Principle of Uncertainty

 Predicts how long a response will take in a given situation, based on how likely (or uncertain) the different possibilities are

Decision Complexity

- The speed with which an action can be selected is strongly influenced by the number of possible alternative actions that could be selected
- Hick-Hyman Law of reaction time shows a logarithmic increase in reaction time (RT) as the number of possible stimulus-response alternatives (N) increases

- Humans process information at a constant rate

RT = a + bLog2N

The Hick-Hyman Law of reaction time. The figure shows the logarithmic increase in RT as the number of possible stimulus-response alternatives (N) increases. This can sometimes be expressed by the formula: $RT = a + b \log 2 N$.

Hick's Principle of Uncertainty

• RT = a + b log2N

-HCL

- RT = reaction time
- a, b = constants
- N = number of possible responses,
- assuming all are equally probable
- +1 is due to uncertainty whether to respond

Decision Making Process

- The most efficient way to deliver a given amount of information is by a smaller number of complex decisions rather than a large number of simple decisions
- An example is this decision making process:
 - Would you like to have a big long-hair dog or a small nervous dog or a black cat or a small no-hair cat ?
 - vs.

-HCI LAB

- Dog or a cat ? ... dog
- Big or small ? ... small
- Quiet or nervous ? ... quiet

Power Law of Practice

Power Law of Practice

• When something is done again and again, performance follows a power law:

-HCI LAR

 You keep improving with practice, but as you become an expert, you improve less and less

-HCI LAB

• The power law of practice describes *quantitative* changes in skilled behavior (both cognitive and motor), but not *qualitative* changes (changes in strategies)

Note:

Fitt's Law

- Moving a mouse to a target:
- What can vary?

-HCI LAB.

- how long it takes
- · how far you have to move
- how big the target is

Fitt's Law

Models movement time for selection tasks

- The $\underline{movement\ time}$ for a $\underline{well-rehearsed}$ selection task \bullet increases as the $\underline{distance}$ to the target
- increases
 decreases as the <u>size</u> of the target increases

• KLM is very low-level (tiny operations)

Only provides execution time and operator sequence

KLM times

•	operator	remarks	time(s)
•	к	Press key	
•		good typist (90wpm)	0.1
•		poor typist (40wpm)	0.2
•		non-typist	1.2
•	В	Mouse button press	
•		down or up	0.1
•		click	0.2
•	Р	Point with mouse	
•		Fitt's law	0.1 log ₂ (D/S+0.5)
•		average movement	1.1
•	н	home hands to/from kbd	0.40
•	D	drawing / domain dependent	-
•	м	mentally prepare	1.35
•	R	response from system – measure	-

KLM Example

• Replace all instances of a 4-letter word.

-HCI LAB.

example from Hochstein)		
Description	Operation	Time (sec)
Reach for mouse	H[mouse]	0.40
Move pointer to "Replace" buttor	n P[menu item]	1.10
Click on "Replace" command	K[mouse]	0.20
Home on keyboard	H[keyboard]	0.40
Specify word to be replaced	M4K[word]	2.15
Reach for mouse	H[mouse]	0.40
Point to correct field	P[field]	1.10
Click on field	K[mouse]	0.20
Home on keyboard	H[keyboard]	0.40
Type new word	M4K[word]	2.15
Reach for mouse	H[mouse]	0.40
Move pointer on Replace-all	P[replace-all]	1.10
Click on field	K[mouse]	0.20
Total		10.2

According to this KLM model, it takes 10.2 seconds to accomplish this task.

-HCI LAB.

GOMS model of a system usage

- A family of user interface modeling techniques
- Goals, Operators, Methods, and Selection rules
 - Higher-level than KLM
 - Input: detailed description of UI and task(s)
 - Output: various qualitative and quantitative measures

GOMS (Card, Moran, & Newell)

• Goal - what the user wants to achieve

-HCI LAB-

- Operator elementary perceptual, motor, or cognitive act
- Method a series of operators that forms a procedure for doing something
- Selection rule how the user decides between methods (*if...then...*).

GOMS (continued)

Examples:

-HCI LAB.

- Goal editing a paper (high level)
- cutting and pasting text (low level)
- Operator typing a keystroke
- Method set of operators for cutting
- Selection rule how the user chooses a method

Applications of GOMS analysis

Compare UI designs

-HCI LAB-

- Profiling
- Building a help system
 - GOMS modeling makes user tasks and goals explicit
 - Can suggest questions users will ask and the answers

What GOMS can model

Task must be goal-directed

-HCI LAB.

- Some activities are more goal-directed than others
- Even creative activities contain goal-directed tasks
- Task must a routine cognitive skill
- · Task can include serial and parallel tasks

GOMS Output

- Functionality coverage and consistency
 - Does UI contain needed functions?
 - Are similar tasks performed similarly?

Operator sequence

-HCI LAE

-HCI LAB

- In what order are individual operations done?
- Abstraction of operations may vary among models

-HCI LAB-

How to do GOMS Analysis

- Generate task description
 - Pick high-level user Goal
 - Write Method for accomplishing Goal
 - (may invoke subgoals)
 - Write Methods for subgoals
 This is recursive
 - Stops when Operators are reached
- · Evaluate description of task
- · Apply results to UI

-HCI LAB.

Iterate

Operators vs. Methods

- Operator: the most primitive action
- Method: requires several Operators or subgoal invocations to accomplish
- · Level of detail determined by
 - KLM level key press, mouse press
 - Higher level select-Close-from-File-menu
 - Different parts of model can be at different levels of detail

GOMS Example

Move text in a word processor

 (example from Hochstein)

GOAL:	MOVE-	TEXT				
	GOAL:	CUT-TEXT				
		GOAL: HIG	HLIGHT-TEXT			
			[select**:	GOAL	: HIGHLIGHT-WORD	
					MOVE-CURSOR-TO-WORD	
					DOUBLE-CLICK-MOUSE-BUTTON	
					VERIFY-HIGHLIGHT	
				GOAL	: HIGHLIGHT-ARBITRARY-TEXT	
					MOVE-CURSOR-TO-BEGINNING	1.10
					CLICK-MOUSE-BUTTON	0.20
					MOVE-CURSOR-TO-END	1.10
					SHIFT-CLICK-MOUSE-BUTTON	0.48
				-	VERIFY-HIGHLIGHT]	1.35
		GOAL:	ISSUE-CUT-COM	MAND		
			MOVE-CURSOR-	PO-ED	IT-MENU	1.10
			PRESS-MOUSE-1	BUTTO	N	0.10
			MOVE-CURSOR-	ro-cu	T-ITEM	1.10
			VERIFY-HIGHL:	IGHT		1.35
			RELEASE-MOUS	E-BUT	TON	0.10

GOMS Example

Move text in a word processor

 (example from Hochstein)

-HCI LAB.

	GOAL:	PASTE-TEXT			
		GOAL: POSITION-CURSOR-AT-INSERTION-POINT			
		MOVE-CURSOR-TO-INSERTION-POIONT	1.10		
		CLICK-MOUSE-BUTTON	0.20		
		VERIFY-POSITION	1.35		
		GOAL: ISSUE-PASTE-COMMAND			
		. MOVE-CURSOR-TO-EDIT-MENU	1.10		
		. PRESS-MOUSE-BUTTON	0.10		
		. MOVE-MOUSE-TO-PASTE-ITEM	1.10		
		. VERIFY-HIGHLIGHT	1.35		
		. RELEASE-MOUSE-BUTTON	0.10		
		TOTAL TIME PREDICTED (SEC)	14.38		
Based on the above GOMS analysis, it should take 14.38 seconds to move text.					

Advantages of GOMS

• Very general purpose

-HCI

- Allows for individual differences
- Much predictive power about timing
- Good at predicting "ideal" performance
- Gives several qualitative and quantitative measures
- Model explains **why** the results are what they are
- Less work than user study
- Easy to modify when interface is revised
- Research ongoing for tools to aid modeling process

Disadvantages of GOMS

- Not so good at predicting errors
- Takes a long time to conduct analysis
- Whole may not be the sum of the parts
- Ignores the nature of internal symbolic representations focus is very low-level
- Not as easy as heuristic analysis, guidelines, or cognitive walkthrough

Disadvantages of GOMS

- Only works for goal-directed tasks
- Assumes tasks are performed by expert users
- Evaluator must pick users' tasks/goals
- Does not address several important UI issues, such as
 - readability of text

-HCI LAB-

- memorability of icons, commands
- Does not address social or organizational impact

HCI LAB-

HCI

Summary

- We can use Cognitive Modeling to make predictions about interface usability
- Complementary to Usability Studies
- In practice:
 - GOMS not used often
 - Fitt's law often used for determining best case for new kinds of input methods

Questions

Acknowledgements

• Prof. Ing. Jiří Sochor

-HCI LAR