
20/10/2019

1

PV182
Human Computer Interaction

Lecture 11

Heuristic Evaluation

Fotis Liarokapis
liarokap@fi.muni.cz

21st October 2019

Heuristic Evaluation

Usability Heuristics

• Avoid common design pitfalls by following 9
(10, 15, 14. …) design principles

• Inspect an interface for usability problems
with these principles

Design principles

• Broad usability statements that guide a
developer’s design efforts

– use the users language

– provide feedback…

• Derived from common design problems across
many systems

Heuristic evaluation

• Systematic inspection to see if interface complies to
guidelines

• Method
– 3-5 inspectors
– usability engineers, end users, double experts…
– inspect interface in isolation (~1–2 hours for simple

interfaces)
– compare notes afterwards

• single evaluator only catches ~35% of usability problems
• 5 evaluators catch 75%

• Works for paper, prototypes, and working systems

Heuristic evaluation

• Advantages
– “Minimalist” approach

• a few guidelines identify many common usability problems

• easily remembered, easily applied with modest effort

– Discount usability engineering
• end users not required

• cheap and fast way to inspect a system

• can be done by usability experts, double experts, and end users

• Problems
– Principles are more or less at the motherhood level

• can’t be treated as a simple checklist

• subtleties involved in their use

mailto:liarokap@fi.muni.cz

20/10/2019

2

1 Simple and natural dialogue

• Use the user’s conceptual model

• Match the users’ task sequence

• Minimize mapping between interface and task
semantics

From Microsoft applications

1 Simple and natural dialogue

• Present exactly the information the user needs
– less is more

• less to learn, to get wrong, to distract...

– information should appear in natural order
• related information is graphically clustered
• order of accessing information matches user’s expectations

– remove or hide irrelevant or rarely needed information
• competes with important information on screen

– remove modes

– use windows frugally
• don’t add unneeded navigation and window management

2 Speak the users’ language

• Terminology based on users’ language for task
– e.g. withdrawing money from a bank machine

•

Use meaningful mnemonics, icons & abbreviations
– eg File / Save

• Ctrl + S (abbreviation)
• Alt FS (mnemonic for menu action)
• (tooltip icon)

3 Minimize user’s memory load

• Computers good at remembering, people are
not!

• Promote recognition over recall

– Menus, icons, choice dialog boxes vs commands,
field formats

– Relies on visibility of objects to the user (but less
is more!)

From Microsoft applications

3: Minimize user’s memory load

• Gives input format, example and default

4: Be consistent

• Consistent syntax of input

• Consistent language and graphics
– same visual appearance across the system (e.g. widgets)
– same information/controls in same location on all windows

•
Consistent effects
– commands, actions have same effect in equivalent situations

• predictability

Ok Cancel Ok Cancel Accept Dismiss

Cancel

Ok

20/10/2019

3

From Peachpit website

5: Provide feedback

• Continuously inform the user about
– what it is doing
– how it is interpreting the user’s input
– user should always be aware of what is going on

•

•

> Doit

What’s it

doing?
> Doit

This will take

5 minutes...

Time for

coffee.

5. Provide feedback

• Be as specific as possible, based on user’s input

Best within the context of the action

5. Provide feedback

• Response time

– how users perceive delays

 <0.1s perceived as “instantaneous”

 1s user’s flow of thought stays uninterrupted, but
 delay noticed

 10s limit for keeping user’s attention focused on the dialog

> 10s user will want to perform other tasks while waiting

5. Provide feedback

• Dealing with long delays

– Cursors

• for short transactions

– Percent done dialogs
– time left
– estimated time

– Random
• for unknown times

cancel

Contacting host (10-60 seconds)

6. Provide clearly marked exits

• Users don’t like to feel trapped by the computer!
– should offer an easy way out of as many situations as possible

• Strategies:
– Cancel button (for dialogs waiting for user input)
– Universal Undo (can get back to previous state)
– Interrupt (especially for lengthy operations)
– Quit (for leaving the program at any time)
– Defaults (for restoring a property sheet)

Core
Dump

20/10/2019

4

7. Provide shortcuts

• Experienced users - perform frequent operations quickly

• Strategies:
– keyboard and mouse accelerators

• abbreviations

• command completion

• context menus

• function keys

• double clicking vs menu selection

– type-ahead (entering input before the system is ready for it)

– navigation jumps

• e.g., going to window/location directly, and avoiding intermediate nodes

– history systems

• WWW: ~60% of pages are revisits

Keyboard

accelerators for

menus

Customizable

toolbars and

palettes for

frequent actions

Split menu, with

recently used

fonts on top

Scrolling controls

for page-sized

increments

Double-click

raises object-

specific menu

Double-click

raises toolbar

dialog box

Microsoft Powerpoint

Alternate

representation for

quickly doing

different set of

tasks

Toolset brought in

appropriate to this

representation

Microsoft Powerpoint

8: Deal with errors in a positive
manner

• People will make errors!

• Errors we make
– Mistakes

• conscious deliberations lead to an error instead of correct solution

– Slips
• unconscious behaviour gets misdirected en route to satisfying goal

– e.g. drive to store, end up in the office

• shows up frequently in skilled behaviour
– usually due to inattention

• often arises from similar actions

Designing for slips

• General rules

– prevent slips before they occur

– detect and correct slips when they do occur

– user correction through feedback and undo

Types of slips

• Capture error
– frequently done activity takes charge instead of one

intended
– occurs when common & rarer actions have same

initial sequence
• change clothes for dinner and find oneself in bed (William James, 1890)

• confirm saving of a file when you don’t want to delete it

– minimize by
• make actions undoable instead of confirmation
• allows reconsideration of action by user

– e.g. open trash to undelete a file

20/10/2019

5

Types of slips

• Description error
– intended action similar to others that are possible

• usually occurs when right & wrong objects physically near
each other

– pour juice into bowl instead of glass

– throw sweaty shirt in toilet instead of laundry basket

– move file to wrong folder with similar name

– minimize by
• rich feedback

• check for reasonable input, etc.

• undo

Types of slips

• Loss of activation
– forget what the goal is while undergoing the sequence

of actions
• start going to room and forget why you are going there
• navigating menus/dialogs & can’t remember what you are

looking for
• but continue action to remember (or go back to beginning)!

– minimize by
• if system knows goal, make it explicit
• if not, allow person to see path taken

Types of slips

• Mode errors

– people do actions in one mode thinking they are
in another

• refer to file that’s in a different directory

• look for commands / menu options that are not
relevant

– minimize by

• have as few modes as possible (preferably none)

• make modes highly visible

Generic system responses for errors

• General idea: Forcing functions
– prevent / mitigate continuation of wrongful action

• Gag
– deals with errors by preventing the user from continuing

• eg cannot get past login screen until correct password entered

• Warn
– warn people that an unusual situation is occurring
– when overused, becomes an irritant

• e.g.,
– audible bell
– alert box

Generic system responses for errors

• Do nothing
– illegal action just doesn’t do anything

– user must infer what happened
• enter letter into a numeric-only field (key clicks ignored)

• put a file icon on top of another file icon (returns it to
original position)

• Self-correct
– system guesses legal action and does it instead

– but leads to a problem of trust
• spelling corrector

Generic system responses for errors

• Lets talk about it

– system initiates dialog with user to come up with
solution to the problem

• compile error brings up offending line in source code

• Teach me

– system asks user what the action was supposed to
have meant

– action then becomes a legal one

20/10/2019

6

A problematic message to a nuclear power plant operator

8: Deal with errors in a positive
manner

8: Deal with errors in a positive
manner

Adobe's ImageReady

AutoCAD Mechanical

Windows Notepad
Microsoft's NT Operating System

8: Deal with errors in a positive
manner

• Provide meaningful error messages
– error messages should be in the user’s task language
– don’t make people feel stupid

Try again, bonehead!

Error 25

Cannot open this document

Cannot open “chapter 5” because the application “Microsoft Word”

is not on your system

Cannot open “chapter 5” because the application “Microsoft Word”
is not on your system. Open it with “Teachtext” instead?

8: Deal with errors in a positive
manner

• Prevent errors
– try to make errors impossible
– modern widgets: can only enter legal data

• Provide reasonableness checks on input data
– on entering order for office supplies

• 5000 pencils is an unusually large order. Do you really want to order that
many?

9. Provide help

• Help is not a replacement for bad design!

• Simple systems:
– walk up and use; minimal instructions

• Most other systems
– feature rich

– simple things should be simple

– learning path for advanced features

Volume 37:

A user's
guide to...

Documentation and how it is used

• Many users do not read manuals
– prefer to spend their time pursuing their task

• Usually used when users are in some kind of panic
– paper manuals unavailable in many businesses!

• e.g. single copy locked away in system administrator’s office

– online documentation better
– good search/lookup tools
– online help specific to current context

• Sometimes used for quick reference
– syntax of actions, possibilities...
– list of shortcuts ...

20/10/2019

7

Types of help

• Tutorial and/or getting started manuals

– short guides that people are likely to read when
first obtaining their systems

• encourages exploration and getting to know the system

• tries to get conceptual material across and essential
syntax

– on-line “tours”, exercises, and demos

• demonstrates very basic principles through working
examples

Types of help

• Reference manuals

– used mostly for detailed lookup by experts

• rarely introduces concepts

• thematically arranged

– on-line hypertext

• search / find

• table of contents

• index

• cross-index

Microsoft Help

Types of help

• Reminders
– short reference cards

• expert user who just wants to check facts

• novice who wants to get overview of system’s capabilities

– keyboard templates
• shortcuts/syntactic meanings of keys; recognition vs. recall;

capabilities

– tooltips and other context-sensitive help
• text over graphical items indicates their meaning or purpose

Microsoft Word

Types of help

• Wizards
– walks user through typical tasks

– but dangerous if user gets stuck

What’s my
computer’s

name?
Fred?
Intel?
AST?

Microsoft Powerpoint

Types of help

• Tips

– migration path to learning system features

– also context-specific tips on being more efficient

– must be “smart”, otherwise boring and tedious

Microsoft Word

Nielsen’s 10 heuristics

1. Visibility of system status
2. Match between system and the real world
3. User control and freedom
4. Consistency and standards
5. Error prevention
6. Recognition rather than recall
7. Flexibility and efficiency of use
8. Aesthetic and minimalist design
9. Help users recognize, diagnose and recover from

errors
10.Help and documentation

http://www.apple.cz/cze/apple/hardware/ipod/index.html

20/10/2019

8

Usage of heuristics

• Heuristic evaluation

– Principles can be used to systematically inspect
the interface for usability problems

– Principles can be expressed as a set of domain
specific questions

– Evaluation may use checklists

Evaluating Heuristic evaluation

• Problems found by a single inspector

• Problems found by multiple inspectors

• Individuals vs. teams

• Self guided or scenarios?

Problems found by a single inspector

• Average over six case studies
– 35% of all usability problems;
– 42% of the major problems
– 32% of the minor problems

• Not great, but
– finding some problems with one evaluator is

much better than finding no problems with
no evaluators!

Problems found by a single inspector

• Varies according to
– difficulty of the interface being evaluated

– the expertise of the inspectors

• Average problems found by:
– novice evaluators - 22%

• no usability expertise

– regular specialists - 41%
• expertise in usability

– double specialists - 60%
• experience in both usability and the particular

kind of interface being evaluated

• also find domain-related problems

• Tradeoff
– novices poorer, but cheaper!

Problems found by multiple evaluators

• 3-5 evaluators find 66-75% of usability
problems

– different people find different usability problems

– only modest overlap between the sets of
problems found

Problems found by multiple evaluators

• Where is the best cost/benefit?

20/10/2019

9

Self Guided vs Scenario Exploration

• Self-guided
– open-ended exploration
– Not necessarily task-directed
– good for exploring diverse aspects of the interface, and to follow

potential pitfalls

• Scenarios
– step through the interface using representative end user tasks
– ensures problems identified in relevant portions of the interface
– ensures that specific features of interest are evaluated
– but limits the scope of the evaluation - problems can be missed

Questions

Acknowledgements

• Prof. Ing. Jiří Sochor

