MUNI

HCI LAB

PV182 Human Computer Interaction

Lecture 11 Heuristic Evaluation

> Fotis Liarokapis liarokap@fi.muni.cz

21st October 2019

-HCI LAB.

Usability Heuristics

- Avoid common design pitfalls by following 9 (10, 15, 14. ...) design principles
- Inspect an interface for usability problems with these principles

Heuristic Evaluation

HCI LAB.

-HCI LAB.

Design principles

- Broad usability statements that guide a developer's design efforts
 - use the users language
 - provide feedback...
- Derived from common design problems across many systems

Heuristic evaluation

- Systematic inspection to see if interface complies to guidelines
- Method
 - 3-5 inspectors

-HCI LAB.

- usability engineers, end users, double experts...
- inspect interface in isolation (~1–2 hours for simple interfaces)
- compare notes afterwards
 single evaluator only catches ~35% of usability problems
 - 5 evaluators catch 75%
- Works for paper, prototypes, and working systems

Heuristic evaluation

<u>Advantages</u>

- "Minimalist" approach
 - · a few guidelines identify many common usability problems
 - easily remembered, easily applied with modest effort
- Discount usability engineering
 - end users not required
 - cheap and fast way to inspect a system
 - can be done by usability experts, double experts, and end users
- Problems
 - Principles are more or less at the motherhood level
 - · can't be treated as a simple checklist
 - subtleties involved in their use

1 Simple and natural dialogue

- Use the user's conceptual model
- Match the users' task sequence
- Minimize mapping between interface and task

a a ma a mati a a	Network 🔳 🗵	TCP//P Properties
Semantics	Cargered Jamana Law Law Law Law Law Law Law Law Law La	Bindry Adversel ORE Configuration * Space Alling Space Alling Space Alling * State Alling Space Alling Space Alling
rom Microsoft applications	Conception TO/PF is the policid you use to connect to the interval and induces a retrieval. OK Cancel	DK Cool

1 Simple and natural dialogue

- Present exactly the information the user needs
 - less is more
 less to learn, to get wrong, to distract...
 - information should appear in natural order
 - related information is graphically clustered
 order of accessing information matches user's expectations
 - remove or hide irrelevant or rarely needed information
 competes with important information on screen
 - remove modes

-HCI LAB

-HCI LA

use windows frugally
 don't add unneeded navigation and window management

-HCI LAB-

-HCI LAB

2 Speak the users' language

• Terminology based on users' language for task – e.g. withdrawing money from a bank machine

a, Withdrawala	🖌 Withdrawals
Maximum withdrawal of \$50 at this time	X.25 connection discarded due to network congestion. Local limits now in effect
\$100 \$150	\$50 \$100 \$150

Use meaningful mnemonics, icons & abbreviations

– eg File / Save

-HCI LA

(abbreviation) (mnemonic for menu action) (tooltip icon)

3 Minimize user's memory load

- Computers good at remembering, people are not!
- · Promote recognition over recall
 - Menus, icons, choice dialog boxes vs commands, field formats
 - Relies on visibility of objects to the user (but less

3: Minimize user's memory load

• Gives input format, example and default

4: Be consistent

Consistent syntax of input

-HCI LAB.

Consistent language and graphics

 same visual appearance across the system (e.g. widgets)
 same information/controls in same location on all windows

Consistent effects - commands, actions have same effect in equivalent situations • predictability

-HCI LAE

5. Provide feedback

• Be as specific as possible, based on user's input

Best within the context of the action

-HCI LAB

5. Provide feedback

- Response time
 - how users perceive delays

<0.1s	perceived as "instantaneous"
-------	------------------------------

- 1s user's flow of thought stays uninterrupted, but delay noticed
- 10s limit for keeping user's attention focused on the dialog
- > 10s user will want to perform other tasks while waiting

5. Provide feedback

 \mathbb{Z}

• Dealing with long delays

-HCI LAB.

- Cursors • for short transactions
- Percent done dialogs time left
 estimated time
- Random · for unknown times

cancel

6. Provide clearly marked exits

- Users don't like to feel trapped by the computer! - should offer an easy way out of as many situations as possible
- Strategies:

- Cancel button (for dialogs waiting for user input)
- Universal Undo (can get back to previous state) - Interrupt (especially for lengthy operations)
- Quit (for leaving the program at any time)
- Defaults (for restoring a property sheet)

7. Provide shortcuts

- · Experienced users perform frequent operations quickly
- Strategies:

-HCI LAB.

- keyboard and mouse accelerators
 - abbreviations
 - command completion context menus
 - function keys
 - function keys
 double clicking vs menu selection
- type-ahead (entering input before the system is ready for it)
- navigation jumps
- e.g., going to window/location directly, and avoiding intermediate nodes
- history systems
 - WWW: ~60% of pages are revisits

Microsoft Powerpoint

8: Deal with errors in a positive manner

- People will make errors!
- · Errors we make
 - Mistakes
 conscious deliberations lead to an error instead of correct solution
 - Slips
 - unconscious behaviour gets misdirected en route to satisfying goal
 e.g. drive to store, end up in the office
 - shows up frequently in skilled behaviour

 usually due to inattention
 - often arises from similar actions

Designing for slips

General rules

-HCI LAB.

- prevent slips before they occur
- detect and correct slips when they do occur
- user correction through feedback and undo

Types of slips

Capture error

- frequently done activity takes charge instead of one intended
- occurs when common & rarer actions have same initial sequence
 - change clothes for dinner and find oneself in bed $_{\mbox{(William James, 1890)}}$
 - confirm saving of a file when you don't want to delete it
- minimize by
 - make actions undoable instead of confirmation
 - · allows reconsideration of action by user
 - e.g. open trash to undelete a file

Types of slips

Description error

-HCI LAB

- intended action similar to others that are possible
 - usually occurs when right & wrong objects physically near each other
 - pour juice into bowl instead of glass
 - throw sweaty shirt in toilet instead of laundry basket
 - move file to wrong folder with similar name

– minimize by

- rich feedback
- check for reasonable input, etc.
- undo

Types of slips

Loss of activation

-HCI LAB

- forget what the goal is while undergoing the sequence of actions
 - start going to room and forget why you are going there
 - navigating menus/dialogs & can't remember what you are looking for
 - but continue action to remember (or go back to beginning)!
- minimize by

-HCI LAB,

if system knows goal, make it explicit if not, allow person to see path taken

HCI LAB

Types of slips

- Mode errors
 - people do actions in one mode thinking they are in another
 - refer to file that's in a different directory
 - look for commands / menu options that are not relevant
 - minimize by
 - · have as few modes as possible (preferably none)
 - make modes highly visible

Generic system responses for errors

- General idea: Forcing functions

 prevent / mitigate continuation of wrongful action
- Gag
 - deals with errors by preventing the user from continuing
 eg cannot get past login screen until correct password entered
- Warn
 - warn people that an unusual situation is occurring
 when overused, becomes an irritant
 - e.g.,

Generic system responses for errors

Do nothing

-HCI LAB-

- illegal action just doesn't do anything
- user must infer what happened
 - enter letter into a numeric-only field (key clicks ignored)
 put a file icon on top of another file icon (returns it to original position)
- Self-correct
 - system guesses legal action and does it instead
 - but leads to a problem of trust
 - spelling corrector

Generic system responses for errors

• Lets talk about it

-HCI LAB-

- system initiates dialog with user to come up with solution to the problem
 - compile error brings up offending line in source code
- Teach me
 - system asks user what the action was supposed to have meant
 - action then becomes a legal one

8: Deal with errors in a positive

A problematic message to a nuclear power plant operator

8: Deal with errors in a positive manner

8: Deal with errors in a positive manner

- Provide meaningful error messages
 - error messages should be in the user's task language
 - don't make people feel stupid

Try again, bonehead!

Error 25

- Cannot open this document
- Cannot open "chapter 5" because the application "Microsoft Word" is not on your system
- Cannot open "chapter 5" because the application "Microsoft Word" is not on your system. Open it with "Teachtext" instead?

8: Deal with errors in a positive manner

Prevent errors

-HCI LAB-

- try to make errors impossible
- modern widgets: can only enter legal data

Freed Field 20 Date: Honk Day Yee May 22 [1997] Honk Day Year	Sorreral - Vulner Attenders Notes Pearer - State 6::30.04 g] Note 5::714:72 g] F14 day
May • 22 • 1997 •	© ≝bez

- Provide reasonableness checks on input data

 on entering order for office supplies
 - 5000 pencils is an unusually large order. Do you really want to order that many?

9. Provide help

- · Help is not a replacement for bad design!
- Simple systems:
 walk up and use; minimal instructions
- Most other systems
 - feature rich

-HCI LAB.

- simple things should be simple
- learning path for advanced features

Documentation and how it is used

- Many users do not read manuals

 prefer to spend their time pursuing their task
- Usually used when users are in some kind of panic
 paper manuals unavailable in many businesses!
 - e.g. single copy locked away in system administrator's office
 - online documentation better
 - good search/lookup tools
 - online help specific to current context
- Sometimes used for quick reference
 - syntax of actions, possibilities...
 - list of shortcuts …

HCI LAB

Types of help

Reminders

- short reference cards
 - expert user who just wants to check facts
 - novice who wants to get overview of system's capabilities
- keyboard templates
 - shortcuts/syntactic meanings of keys; recognition vs. recall; capabilities
- tooltips and other context-sensitive help
 - · text over graphical items indicates their meaning or purpose

Wizards

-HCI LAE

- walks user through typical tasks
- but dangerous if user gets stuck

Types of help

- Tips
 - migration path to learning system features
 - also context-specific tips on being more efficient

Nielsen's 10 heuristics

- 1. Visibility of system status
- 2. Match between system and the real world
- 3. User control and freedom
- 4. Consistency and standards
- 5. Error prevention

-HCI

- 6. Recognition rather than recall
- 7. Flexibility and efficiency of use
- 8. Aesthetic and minimalist design
- 9. Help users recognize, diagnose and recover from errors
- 10. Help and documentation

Usage of heuristics

Heuristic evaluation

-HCI LAB.

- Principles can be used to systematically inspect the interface for usability problems
- Principles can be expressed as a set of domain specific questions
- Evaluation may use checklists

Evaluating Heuristic evaluation

- Problems found by a single inspector
- Problems found by multiple inspectors
- Individuals vs. teams

Self guided or scenarios?

Problems found by multiple evaluators

• 3-5 evaluators find 66-75% of usability problems

-HCI LAB.

- different people find different usability problems
- only modest overlap between the sets of problems found

Problems found by multiple evaluators

• Where is the best cost/benefit?

Self Guided vs Scenario Exploration

Self-guided

-HCI LAB-

- open-ended exploration
 Not necessarily task-directed
- good for exploring diverse aspects of the interface, and to follow potential pitfalls
- Scenarios
 - step through the interface using representative end user tasks
 - ensures problems identified in relevant portions of the interface
 - ensures that specific features of interest are evaluated
 - but limits the scope of the evaluation problems can be missed

Questions

-HCI LAB-

-HCI LAB

Acknowledgements

• Prof. Ing. Jiří Sochor