

HCI LAB

PV182 Human Computer Interaction

Lecture 5
Evaluating Interfaces

Fotis Liarokapis liarokap@fi.muni.cz

30th September 2019

Evaluation Methods

—HCI □

Importance

- Tied to the usability engineering lifecycle
- · Pre-design
 - Investing in new expensive system requires proof of viability
- · Initial design stages
 - Develop and evaluate initial design ideas with the user

,A0____

Importance.

- · Iterative design
 - Does system behavior match the user's task requirements?
 - Are there specific problems with the design?
 - What solutions work?
- · Acceptance testing
 - Verify that system meets expected user performance criteria
 - 80% of 1st time customers will take 1-3 minutes to withdraw \$50 from the automatic teller

-HCI LAB

Overview

- Evaluation tests the usability, functionality and acceptability of an interactive system
- Evaluation may take place
 - In the laboratory
 - In the field
- · Some approaches are based on expert evaluation
 - Analytic methods
 - Review methods
 - Model-based methods
- · Some approaches involve users
 - Experimental methods
 - Observational methods
 - Query methods
- An evaluation method must be chosen carefully and must be suitable for the job

—HCI LA

Naturalistic Approach

- Observation occurs in realistic setting
 - Real life
- Problems
 - Hard to arrange and do
 - Time consuming
 - May not generalize

-

Experimental Approach

- Experimenter controls all environmental factors
 - Study relations by manipulating independent variables
 - Observe effect on one or more dependent variables
 - Nothing else changes
- There is no difference in user performance (time and error rate) when selecting an item from a pull down or a pull right menu of 4 items

	File	Edit	View	Insert	
	New Open Close Save				
1					

	1		
File 🗭	New		
Fdit 🖒			
,	Open		
View ➪	01		
lanca d	Close		
Insert	Save		
	Ouvo		

-HCI LA

Usability Engineering Approach

- Observe people using systems in simulated settings
 - People brought in to artificial setting that simulates aspects of real world setting
 - People given specific tasks to do
 - Observations / measures made as people do their tasks
 - Look for problem areas / successes
 - Good for uncovering 'big effects'

-HCLLA

Usability Engineering Approach ..

- · How many users should you observe?
 - Observing many users is expensive
 - But individual differences matter
 - best user 10x faster than slowest
 - best 25% of users ~2x faster than slowest 25%
- · Partial solution
 - Reasonable number of users tested
 - Reasonable range of users
 - Big problems usually detected with handful of users
 - Small problems / fine measures need many users

-HCI

Validity

- External validity
 - Confidence that results applies to real situations
 - Usually good in natural settings
- · Internal validity
 - Confidence in our explanation of experimental results
 - Usually good in experimental settings
- Trade-off: Natural vs Experimental
 - Precision and direct control over experimental design versus
 - Desire for maximum generalizability in real life situations

—HCI

Usability Engineering Approach.

- Is the test result relevant to the usability of real products in real use outside of lab?
- · Problems
 - Non-typical users tested
 - Non-typical tasks
 - Different physical environment
 - Different social context
 - motivation towards experimenter vs motivation towards boss
- Partial Solution
 - Use real users
 - Task-centered system design tasks
- Environment similar to real situation

—HCI^{L/}

Discount Usability Evaluation

- Low cost methods to gather usability problems
 - Approximate: capture most large and many minor problems
- Qualitative:
 - Observe user interactions
 - Gather user explanations and opinions
 - Produces a description, usually in non-numeric terms
 - Anecdotes, transcripts, problem areas, critical incidents...
- · Quantitative
 - Count, log, measure something of interest in user actions
 - Speed, error rate, counts of activities, etc

-HCI

Discount Usability Evaluation.

- Methods
 - Inspection/cognitive walkthrough
 - Extracting the conceptual model
 - Direct observation
 - Think-aloud
 - Constructive interaction
- · Query techniques
 - Interviews and questionnaires
- Continuous evaluation
 - User feedback and field studies

1101

Inspection

- Designer tries the system (or prototype)
 - Does the system "feel right"?
 - Benefits
 - Can catch some major problems in early versions
 - Problems
 - · Not reliable as completely subjective
 - Not valid as introspector is a non-typical user
 Intuitions and introspection are often wrong
- Inspection methods help
 - Task centered walkthroughs
 - Heuristic evaluation

-HCI

Cognitive Walkthrough

- · Given:
 - a specification of the system (not neccesarily complete, but fairly detailed)
 - a description of the task the user is to perform on the system (representative for most users ...)
 - a complete, written list of the actions needed to complete the task
 - an indication of who the users are and what kind of experience and knowledge the evaluators can assume about them

—HCI□

Cognitive Walkthrough.

- Step through the action sequence and critique the system using questions:
 - Is the effect of the action the same as the user's goal at that point?
 - Will users see that the action is available?
 - Once users found the correct action, will they know it is the one they need?
 - After the action is taken, will users understand the feedback they get?

-HCILA

Conceptual Model Extraction

- How?
 - Show the user static images of
 - The prototype or screens during use
 - Ask the user explain
 - The function of each screen element
 - How they would perform a particular task
- What?
 - Initial conceptual model
 - How person perceives a screen the very first time it is viewed
 - Formative conceptual model
 - · How person perceives a screen after its been used for a while
- Value?
 - Good for eliciting people's understanding before & after use
 - Poor for examining system exploration and learning

—HCI □

Direct Observations

- Evaluator observes users interacting with system
 - In lab:
 - User asked to complete a set of pre-determined tasks
 - In field:
 - User goes through normal duties
- Value
 - Excellent at identifying gross design/interface problems
 - Validity depends on how controlled/contrived the situation is

-1101

Simple Observation Method

- · User is given the task
- · Evaluator just watches the user
- Problem

 Does not give insight into the user's decision process or attitude

1101

Think Aloud Method

- Users speak their thoughts while doing the task
 - What they are trying to do
 - Why they took an action
 - How they interpret what the system did
 - Gives insight into what the user is thinking
 - Most widely used evaluation method in industry
 - in industry

 May alter the way users do the task
 - Unnatural (awkward and uncomfortable)
 - Hard to talk if they are concentrating

-HCI

Constructive Interaction Method

- Two people work together on a task
 - Monitor their normal conversations
 - Removes awkwardness of think-aloud
- · Co-discovery learning
 - Use semi-knowledgeable "coach" and novice
 - Only novice uses the interface
 - novice ask questions
 - · coach responds
 - Gives insights into two user groups

01

Recording Observations

- · How do we record user actions for later analysis?
 - Otherwise risk forgetting, missing, or misinterpreting events
 - Paper and pencil
 - Primitive but cheap
 - Observer records events, comments, and interpretations
 - Hard to get detail (writing is slow)
 - 2nd observer helps...
 - Audio recording
 - Good for recording think aloud talk
 - Hard to tie into on-screen user actions
 - Video recording
 - Can see and hear what a user is doing
 - One camera for screen, rear view mirror useful...
 - Initially intrusive

-HCI

Coding Sheet Example

• Tracking a person's use of an editor

	General actions			Graph editing		Errors		
Time	text editing	scrolling	image editing	new node	delete node	modify node	correct	miss error
09:00	X							
09:02				×				
09:05							X	
09:10					X			
09:13								

-HCI LAB.

Interviews

- Good for pursuing specific issues
 - Vary questions to suit the context
 - Probe more deeply on interesting issues as they arise
 - Good for exploratory studies via open-ended questioning
 - Often leads to specific constructive suggestions
- · Problems:
 - Accounts are subjective
 - Time consuming
 - Evaluator can easily bias the interview
 - Prone to rationalization of events/thoughts by user
 - User's reconstruction may be wrong
 - Sometimes difficult to find people!

How to Interview

- · Plan a set of central questions
 - A few good questions gets things started
 - · Avoid leading questions
 - Focuses the interview
 - Could be based on results of user observations
- · Let user responses lead follow-up questions
 - Follow interesting leads vs bulldozing through question list

Critical Incidence Interviews

- People talk about incidents that stood out
 - Usually discuss extremely annoying problems with passionate feeling
 - Not representative, but important to them
 - Often raises issues not seen in lab tests

Retrospective Testing Interviews

- Post-observation interview to
 - Perform an observational test
 - Create a video record of it
 - Have users view the video and comment on what they did
 - · Clarify events that occurred during system use
 - Excellent for grounding a posttest interview
 - · Avoids erroneous reconstruction
 - Users often offer concrete suggestions

Questionnaires and Surveys

- · Questionnaires / Surveys
 - Preparation "expensive," but administration cheap
 - · Can reach a wide subject group (e.g. mail)
 - Does not require presence of evaluator
 - Results can be quantified
- But
 - Only as good as the questions asked

Questionnaires and Surveys.

- How
 - Establish the purpose of the questionnaire
 - · What information is sought?
 - · How would you analyze the results?
 - · What would you do with your analysis?
 - Do not ask questions whose answers you will not use!
 - Determine the audience you want to reach
 - Determine how would you will deliver / collect the questionnaire
 - On-line for computer users
 - Web site with forms
 - Surface mail
 - · Pre-addressed reply envelope gives far better response

Styles of Questions

- Open-ended questions
 - Asks for unprompted opinions
 - Good for general subjective information
 - But difficult to analyze rigorously
- · Can you suggest any improvements to the interfaces?

Styles of Questions.

- · Closed questions
 - Restrict respondent's responses by supplying alternative answers
 - Makes questionnaires a chore for respondent to fill in
 - Can be easily analyzed
 - Watch out for hard to interpret responses!
 - Alternative answers should be very specific

Do you use computers at work:

often O sometimes O ra

In your typical work day, do you use computers:

- O over 4 hrs a day
- O between 2 and 4 hrs daily
- between 1and 2 hrs daily
- O less than 1 hr a day

Styles of Questions ...

- Multi-choice
 - Respondent offered a choice of explicit responses

How do you most often get help with the system? (tick one)

- on-line manual
- O paper manual
- O ask a colleague

Which types of software have you used? (tick all that apply)

- O data base
- O compiler

hard to read

(2)

Styles of Questions

- Ranked
 - Respondent places an ordering on items in a list
 - Useful to indicate a user's preferences
 - Forced choice

Rank the usefulness of these methods of issuing a command

(1 most useful, 2 next most useful..., 0 if not used

- __2__ command line
- __1__ menu selection
- __3__ control key accelerator

—HCI LA

Styles of Questions

- · Combining open-ended and closed questions
 - Gets specific response, but allows room for user's opinion

It is easy to recover from mistakes:

disagree agree comment: <u>undo facility is really helpful</u>
1 ② 3 4 5

Continuous Evaluation

- Monitor systems in actual use
 - Usually late stages of development
 - i.e. beta releases, delivered system
 - Fix problems in next release
- User feedback via gripe lines
 - Users can provide feedback to designers while using the system
 - Help desks
 - Bulletin boards
 - Email
 - · Built-in gripe facility
 - Best combined with trouble-shooting facility
 - Users always get a response (solution?) to their gripes

- Scalar
 - Ask user to judge a specific statement on a numeric scale
 - Scale usually corresponds with agreement or disagreement with a statement

Characters on the computer screen are:

easy to read

3

4

5

-HCI LAI

Continuous Evaluation.

· Case/field studies

- Careful study of "system usage" at the site
- Good for seeing "real life" use
- External observer monitors behavior
- Site visits

Ethics

· Testing can be a distressing experience

- Pressure to perform, errors inevitable
- Feelings of inadequacy
- Competition with other subjects
- Golden rule
 - Subjects should always be treated with respect

---HCI

Ethics - Before the Test

- · Don't waste the user's time
 - Use pilot tests to debug experiments, questionnaires etc
 - Have everything ready before the user shows up
- Make users feel comfortable
 - Emphasize that it is the system that is being tested, not the user
 - Acknowledge that the software may have problems
 - Let users know they can stop at any time
- Maintain privacy
 - Tell user that individual test results will be completely confidential
- · Inform the user
 - Explain any monitoring that is being used
 - Answer all user's questions (but avoid bias)
- · Only use volunteers
 - User must sign an informed consent form

-HCI

Ethics - During the Test

- Don't waste the user's time
 - Never have the user perform unnecessary tasks
- Make users comfortable
 - Try to give user an early success experience
 - $\boldsymbol{-}$ Keep a relaxed atmosphere in the room
 - Coffee, breaks, etc
 - Hand out test tasks one at a time
 - Never indicate displeasure with the user's performance
 - Avoid disruptions
 - Stop the test if it becomes too unpleasant
- Maintain privacy
 - Do not allow the user's management to observe the test

—HCI LAB.

Ethics - After the Test

- · Make the users feel comfortable
 - State that the user has helped you find areas of improvement
- · Inform the user
 - Answer particular questions about the experiment that could have biased the results before
- Maintain privacy
 - Never report results in a way that individual users can be identified
 - Only show videotapes outside the research group with the user's permission

—HCI □

What you Now Know

- Debug designs by observing how people use them
 - Quickly exposes successes and problems
 - Specific methods reveal what a person is thinking
 - But naturalistic vs laboratory evaluations is a trade-off
- Methods:
 - Conceptual model extraction
 - Direct observation
 - Think-aloud
 - · Constructive interaction
 - Query via interviews, retrospective testing and questionnaires
 - Continuous evaluation via user feedback and field studies
- · Ethics are important

HCI LAB HCI LAB

Questions

Acknowledgements

3

• Prof. Ing. Jiří Sochor