MUNI

HCI LAB

PV182 Human Computer Interaction

Lecture 5 Evaluating Interfaces

> Fotis Liarokapis liarokap@fi.muni.cz

30th September 2019

HCI LAB-

-HCI LAE

Importance

- · Tied to the usability engineering lifecycle
- Pre-design
 - Investing in new expensive system requires proof of viability
- Initial design stages
 - Develop and evaluate initial design ideas with the user

evaluation implementation

Evaluation Methods

-HCI LAB

Importance.

- Iterative design
 - Does system behavior match the user's task requirements?
 - Are there specific problems with the design?
 What solutions work?
- Acceptance testing
 - Verify that system meets expected user performance criteria
 - 80% of 1st time customers will take 1-3 minutes to withdraw \$50 from the automatic teller

Overview

- Evaluation tests the usability, functionality and acceptability of an interactive system
- Evaluation may take place
 - In the laboratory

-HCI LAB.

- In the field
- Some approaches are based on expert evaluation
 - Analytic methods
 - Review methods
- Model-based methodsSome approaches involve users
- Some approaches involve us
 - Experimental methods
 Observational methods
 - Query methods
- An evaluation method must be chosen carefully and must be suitable for the job

Naturalistic Approach

- Observation occurs in realistic setting – Real life
- Problems

- Hard to arrange and do
- Time consuming
- May not generalize

Experimental Approach

- Experimenter controls all environmental factors
 - Study relations by manipulating independent variables
 - Observe effect on one or more dependent variables
 - Nothing else changes

-HCI LAB

 There is no difference in user performance (time and error rate) when selecting an item from a pull down or a pull right menu of 4 items

File	Edit	View	Insert	
New				
Open				
Clos	se			
Sav	re .			

Validity

External validity

-HCI LA

- Confidence that results applies to real situations
 Usually good in natural settings
- Internal validity
 - Confidence in our explanation of experimental results
 - Usually good in experimental settings
- Trade-off: Natural vs Experimental
 - Precision and direct control over experimental design versus
 - Desire for maximum generalizability in real life situations

HCI LAB-

Usability Engineering Approach

- Observe people using systems in simulated settings
 - People brought in to artificial setting that simulates aspects of real world setting

- Observations / measures made as people do their tasks
- Look for problem areas / successes
- Good for uncovering 'big effects'

Usability Engineering Approach.

- Is the test result relevant to the usability of real products in real use outside of lab?
- Problems

HCI LAB.

- Non-typical users tested
- Non-typical tasks
- Different physical environment
- Different social context
 - motivation towards experimenter vs motivation towards boss
- Partial Solution
- Use real users
- Task-centered system design tasks
- Environment similar to real situation

Usability Engineering Approach ..

- · How many users should you observe?
 - Observing many users is expensive
 - But individual differences matter
 - best user 10x faster than slowest
 - best 25% of users ~2x faster than slowest 25%
- Partial solution

-HCI LAB

- Reasonable number of users tested
- Reasonable range of users
- Big problems usually detected with handful of users
- Small problems / fine measures need many users

Discount Usability Evaluation

- Low cost methods to gather usability problems

 Approximate: capture most large and many minor
 - Approximate: capture most large and many minor problems
- Qualitative:

- Observe user interactions
- Gather user explanations and opinions
- Produces a description, usually in non-numeric terms
- Anecdotes, transcripts, problem areas, critical incidents...
- Quantitative
 - Count, log, measure something of interest in user actions
 - Speed, error rate, counts of activities, etc

Discount Usability Evaluation .

• Methods

-HCI LAB,

- Inspection/cognitive walkthrough
- Extracting the conceptual model
- Direct observation
 - Think-aloud
 - Constructive interaction
- Query techniques
 - Interviews and questionnaires
- Continuous evaluation
 - User feedback and field studies

Inspection

- · Designer tries the system (or prototype)
 - Does the system "feel right"?
 - Benefits

-HCI LAB.

- Can catch some major problems in early versions
 Problems
- Not reliable as completely subjective
- Not valid as introspector is a non-typical user
- Intuitions and introspection are often wrong
- Inspection methods help
 - Task centered walkthroughs
 - Heuristic evaluation

Cognitive Walkthrough

• Given:

-HCI LA

- a specification of the system (not neccesarily complete, but fairly detailed)
- a description of the task the user is to perform on the system (representative for most users ...)
- a complete, written list of the actions needed to complete the task
- an indication of who the users are and what kind of experience and knowledge the evaluators can assume about them

.....

-HCI LAB

Cognitive Walkthrough.

- Step through the action sequence and critique the system using questions:
 - Is the effect of the action the same as the user's goal at that point ?
 - Will users see that the action is available ?
 - Once users found the correct action, will they know it is the one they need ?
 - After the action is taken, will users understand the feedback they get ?

Conceptual Model Extraction

How?

-HCI LAB

- Show the user static images of
 The prototype or screens during use
- The prototype or scree
 Ask the user explain
- Ask the user explain
 The function of each screen element
- How they would perform a particular task
- What?
 - Initial conceptual model
 - How person perceives a screen the very first time it is viewed
 - Formative conceptual model
 How person perceives a screen after its been used for a while
- Value?
 - Good for eliciting people's understanding before & after use
 - Poor for examining system exploration and learning

Direct Observations

- Evaluator observes users interacting with system
 - In lab:

- User asked to complete a set of pre-determined tasks
- In field:
 - User goes through normal duties
- Value
 - Excellent at identifying gross design/interface problems
 - Validity depends on how controlled/contrived the situation is

Simple Observation Method

User is given the task

-HCI LAB,

- Evaluator just watches the user
- Problem
 - Does not give insight into the user's decision process or attitude

Think Aloud Method

- Users speak their thoughts while doing the task

-HCI LAB.

- What they are trying to do
- Why they took an action How they interpret what the system
- did
- Gives insight into what the user is thinking
- Most widely used evaluation method in industry
- May alter the way users do the task Unnatural (awkward and
- uncomfortable)
- Hard to talk if they are concentrating

-HCI LAB Constructive Interaction Method

- · Two people work together on
 - a task
 - Monitor their normal conversations
 - Removes awkwardness of think-aloud

Oh, I think you clicked on the

wrong icon

- Co-discovery learning
 - Use semi-knowledgeable "coach" and novice
 - Only novice uses the interface novice ask questions
 - · coach responds

-HCI

- Gives insights into two user groups

Recording Observations

- How do we record user actions for later analysis?
 - Otherwise risk forgetting, missing, or misinterpreting events
 - Paper and pencil

-HCI LA

- · Primitive but cheap
- Observer records events, comments, and interpretations
- Hard to get detail (writing is slow) · 2nd observer helps...
- Audio recording
 - Good for recording think aloud talk · Hard to tie into on-screen user actions
- Video recording

-HCI LAB.

- Can see and hear what a user is doing • One camera for screen, rear view mirror useful...
- Initially intrusive

Coding Sheet Example

Tracking a person's use of an editor

Interviews

- Good for pursuing specific issues
 - Vary questions to suit the context - Probe more deeply on interesting issues as they
 - arise Good for exploratory studies via open-ended
 - questioning
- Often leads to specific constructive suggestions Problems:
- Accounts are subjective
- Time consuming
- Evaluator can easily bias the interview
- Prone to rationalization of events/thoughts by user
- User's reconstruction may be wrong
- Sometimes difficult to find people!

How to Interview

- Plan a set of central questions
 - A few good questions gets things started
 Avoid leading questions
 - Focuses the interview

-HCI LAB

 Could be based on results of user observations

- Let user responses lead follow-up questions
 - Follow interesting leads vs bulldozing through question list

Retrospective Testing Interviews

- Post-observation interview to
 - Perform an observational test
 - Create a video record of it

-HCI LAB

- Have users view the video and comment on what they did
 - Clarify events that occurred during system use
 - Excellent for grounding a posttest interview
 - Avoids erroneous reconstruction
 - Users often offer concrete suggestions

Critical Incidence Interviews

 People talk about incidents that stood out

-HCI LA

- Usually discuss extremely annoying problems with passionate feeling
- Not representative, but important to them
- Often raises issues not seen in lab tests

Questionnaires and Surveys

• Questionnaires / Surveys

-HCI LAE

- Preparation "expensive," but administration cheap
 Can reach a wide subject group (e.g. mail)
- Does not require presence of evaluator
- Results can be guantified
- But
 - Only as good as the questions asked

Questionnaires and Surveys .

• How

-HCI

- Establish the purpose of the questionnaire
 - What information is sought?
 - How would you analyze the results?
 - What would you do with your analysis?
- Do not ask questions whose answers you will not use!
- Determine the audience you want to reach
- Determine how would you will deliver / collect the questionnaire
- On-line for computer users
- Web site with forms
- Surface mail
 - Pre-addressed reply envelope gives far better response

Styles of Questions

Open-ended questions

- Asks for unprompted opinions
- Good for general subjective information
 But difficult to analyze rigorously
- Can you suggest any improvements to the interfaces?

Styles of Questions .

Closed questions

-HCI LAB.

- Restrict respondent's responses by supplying alternative answers
- Makes questionnaires a chore for respondent to fill in
- Can be easily analyzed
- Watch out for hard to interpret responses!
 Alternative answers should be very specific

Do you use computers at work: often O sometimes

O sometimes O rarely

vs In your typical work day, do you use computers: O over 4 hrs a day O between 2 and 4 hrs daily

- between 1and 2 hrs daily
- O less than 1 hr a day

Styles of Questions ..

Scalar

-HCI LAB.

- Ask user to judge a specific statement on a numeric scale
- Scale usually corresponds with agreement or disagreement with a statement

Characters on the computer screen are:

hard	to read	b	easy to read		
1	(2)	3	4	5	

-HCI LAB-

Styles of Questions ...

- Multi-choice
 - Respondent offered a choice of explicit responses

How do you most often get help with the system? (tick one)

on-line manual

- O paper manual
- O ask a colleague

Which types of software have you used? (tick all that apply)

- & word processor
- O data base
- Spreadsheet

-HCI LAB

O compiler

Styles of Questions

- Ranked
 - Respondent places an ordering on items in a list
 - Useful to indicate a user's preferences
 - Forced choice

-HCI

Rank the usefulness of these methods of issuing a command

(1 most useful, 2 next most useful..., 0 if not used

- __2__ command line
- _1 __ menu selection
- _3__ control key accelerator

Styles of Questions

- · Combining open-ended and closed questions
 - Gets specific response, but allows room for user's opinion

It is easy to recover from mistakes:

disagree agree comment: <u>undo facility is really helpful</u> 1 **(2)** 3 4 5

Continuous Evaluation

- Monitor systems in actual use
 - Usually late stages of development
 - i.e. beta releases, delivered system
 Fix problems in next release
 - User feedback via gripe lines
 - Users can provide feedback to designers while using the system
 - Help desks

- Bulletin boards
- Email
- Built-in gripe facility
- Best combined with trouble-shooting facility
 - Users always get a response (solution?) to their gripes

Continuous Evaluation .

Case/field studies

-HCI LAB.

- Careful study of "system usage" at the site
- Good for seeing "real life" use
- External observer monitors behavior
- Site visits

Ethics

- Testing can be a distressing experience
 - Pressure to perform, errors inevitable
 - Feelings of inadequacy
 - Competition with other subjects
- Golden rule

-HCI LAB.

- Subjects should always be treated with respect

Ethics - During the Test

Ethics - Before the Test

- Don't waste the user's time
 - Use pilot tests to debug experiments, questionnaires etc
 - Have everything ready before the user shows up
- Make users feel comfortable
 - Emphasize that it is the system that is being tested, not the user
 - Acknowledge that the software may have problems
 - Let users know they can stop at any time
- Maintain privacy
 - Tell user that individual test results will be completely confidential
- Inform the user
 - Explain any monitoring that is being used
 - Answer all user's questions (but avoid bias)
- Only use volunteers
 - User must sign an informed consent form

HCI LAB

- Don't waste the user's time

 Never have the user perform unnecessary tasks
- Make users comfortable
 - Try to give user an early success experience
 - Keep a relaxed atmosphere in the room
 - Coffee, breaks, etc
 - Hand out test tasks one at a time
 - Never indicate displeasure with the user's performance
 - Avoid disruptions
 - Stop the test if it becomes too unpleasant
- Maintain privacy

-HCI LAB

- Do not allow the user's management to observe the test

Ethics - After the Test

- · Make the users feel comfortable
 - State that the user has helped you find areas of improvement
- · Inform the user

-HCI LAB,

- Answer particular questions about the experiment that could have biased the results before
- Maintain privacy
 - Never report results in a way that individual users can be identified
 - Only show videotapes outside the research group with the user's permission

What you Now Know

- Debug designs by observing how people use them
 - Quickly exposes successes and problems
 - Specific methods reveal what a person is thinking
 - But naturalistic vs laboratory evaluations is a trade-off
- Methods:
 - Conceptual model extraction
 - Direct observation
 - Think-aloud
 - Constructive interaction
 - Query via interviews, retrospective testing and questionnaires
 - Continuous evaluation via user feedback and field studies
- Ethics are important

Questions

-HCI LAB,

Acknowledgements

• Prof. Ing. Jiří Sochor