MUNI

HCI LAB

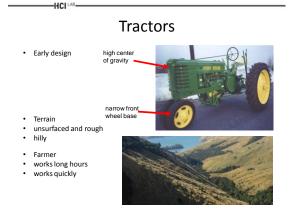
PV182 Human Computer Interaction

Lecture 7 Psychopathology and Psychology

> Fotis Liarokapis liarokap@fi.muni.cz

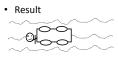
07th October 2019

Psychopathology


-HCI LAB,

-HCI LAB.

-HCI LAB


Pathological Designs

• Many human errors result from design errors bad conceptual model

-HCI LAB-

Tractors.

- Quotes from National AG Safety Database
 - Older tractors have narrow front ends that are easily upset
 - Tractor upsets cause more fatalities than other farm accidents
 - Injuries often include a broken or crushed pelvis

Tractors ..

- Used to be called driver's error
- But
 - Accidents less frequent as modern designs have
 - Roll cage

-HCI LAB-

- Low center of gravityWider wheel bases
- wider wheel bas

Lessons

Lesson 1

-HCI LA

- Many failures of human-machine system result from designs

that don't recognize peoples' capabilities and fallibilities - This leads to apparent machine misuse and human error

- Lesson 2
 - Good design always accounts for human capabilities

· How you can train yourself

- Look for examples of 'human error'
- Critique them for possible 'design error'
- Propose designs that limit / remove these errors

Psychopathology of Everyday Things

Typical frustrations

-HCI LA

- The engineer who founded DEC confessed at the annual meeting that he can't figure out how to heat a cup of coffee in the company's microwave oven
- · How many of you can program or use all aspects of your
 - Digital watch?
 - VCR?
 - Sewing machine?
 - Washer and dryer?
 - Stereo system
 - Cell phones?

-HC

-HCI LA

Remote Controls

- The phone rings...
 - Hit pause

-HCI LAB.

Remote Controls.

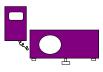
· The phone rings...

-HCI LAB.

- Hit pause
- Why is it easier?
 - Big button easier to hit (Fitt's Law)
 - Visually distinctive (color)
 - Reasonably different from other buttons
 - Shape and central position means its easy to
- find by feel in zero light conditions
- · TiVo designed for usability
 - Part of early product development

Remote Controls ..

• But of course I'll just learn it quickly...



cable box digital video reg DVD television audio amplifier VCR six remote controls required to operate a modest home theater

Other Pathological Examples

- Remote control from Leitz slide projector
 - How do you forward/reverse?

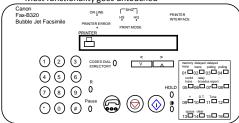
• Instruction manual:

-HCI LA

- Short press: slide change forward
- Long press: slide change backward

More Pathological Examples

- Modern telephone systems
 - Standard number pad
 - Two additional buttons * and #
- Problem


-HCI

- Many hidden functions
- Operations and outcome completely invisible
 - *72+number = call forward
 - Can I remember that combination?
 - If I enter it, how do I know it caught?
 - How can I remember if my phone is still forwarded?
 - Ok, I'll read the manual
 - But what does call park mean? what's a link?
 - Where is that manual anyway?

-HCI LAB-

More Pathological Examples .

- VCR's, camcorders, fax machines, ...
 - Most people learn only basic functions
 Most functionality goes untouched

Getting Serious About Design

World War II

-HCI LAE

- Complex machines (airplanes, submarines...)
 Taxed people's sensorimotor abilities to control them
- Harris
- Frequent (often fatal) errors occurred even after high training "
 Example airplane errors:
 - If booster pump fails, turn on fuel valve within 3 seconds
 - Test shows it took ~five seconds to actually do
- Spitfire: narrow wheel base
 - · Easy to do violent ground loops which breaks undercarriage
- Altimeter gauges difficult to read
- Caused crashes when pilots believe they are at a certain altitude
- Result

-HCI LAB

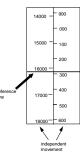
- Human factors became critically important

What's the Altitude?

Early days (< 1000'):
 – Only one needle needed

-HCI LA

- As ceilings increased over 1000'
 - Small needle added
- As they increased beyond 10,000'
 - Box indicated 10,000' increment through color change



< 10.000'

> 10,000

- Human factors test showed:
 Eliminated reading errors
 - Was faster to read
- But not in standard use! Why?

Harvard Airplane (World War II)

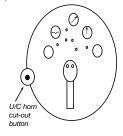
• Undercarriage crashes

-HCI LA

- Pilots landed without dropping undercarriage!
- Undercarriage warning horn
- Sounds if wheels up and power low (landing condition)Stalls
 - Plane airspeed drops too low to maintain lift
 - If occurs just before landing, will crash
- Training

-HCI

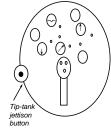
- Deliberately stall and recover
- But sometimes similar to landing with undercarriage up
 Horn sounds, annoyance
- Installed "undercarriage horn cut-out button"


The Harvard Control Panel

HCL

HCI

Problem #1: Conditioned response


 stall -> push button; therefore stimulus nullified

The T-33 Control Panel

• Problem #2: Negative transfer

- T-33's: tip-tank jettison button in same location

Darn these hooves! I hit the wrong switch again! Who designs these instrument panels, raccoons?

Some Quotes

The Psychopathology of Computers

• Britain 1976

-HCI

- Motorway communication system operated 40% of it's highways
- Police controlled it in real time to change lane signs, direction signs, speed limits, etc
- On December 10th, police failed to change the

speed limit signs when fog descended – 34 vehicles crashed

- 3 people killed
- 11 people injured and trapped in their vehicles
- Motorway closed for 6.5 hours

-HCI LAB

- Police (at inquest)
- "The system did not accept the instruction"
- Dept of Transport (after examining computer logs)
 "There is no evidence of technical failure"
- System designers
 - After emphasizing that they have no responsibility for the system
 - "We supplied it over 5 years ago and have never been called to look at that problem"
- The Coroner's court
 - Judged it as "operator error"
 - The police operator: "failed to follow written instructions for entering the relevant data"
- Where have we heard this before?

Example Problems

· Cryptic input codes

-HCI LAB.

- XR300/1: change (X) sign 300 on highway M5 (R) to code 1
- i.e. change particular sign to indicate fog condition
- No feedback
 - Operator entered command, no visible effect of system response
- Cryptic error messages – "Error code 7"
- Teletype machine was old, text illegible
- People could not see what they typed or system's reply
- Operator overloaded with other chores
 Also handled radio and telephone traffic

Psychopathology of the Single Key Press

- From InfoWorld, Dec '86
 - "London—

An inexperienced computer operator pressed the wrong key on a terminal in early December, causing chaos at the London Stock Exchange. The error at [the stockbrokers office] led to systems staff working through the night in an attempt to cure the problem"

Psychopathology of the Single Key Press .

From Science magazine

-HCI LAB.

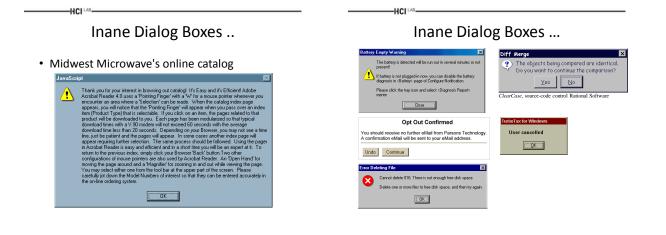
 In 1988, the Soviet Union's Phobos 1 satellite was lost on its way to Mars, when it went into a tumble from which it never recovered.

"not long after the launch, a ground controller omitted a single letter in a series of digital commands sent to the spacecraft. And by malignant bad luck, that omission caused the code to be mistranslated in such a way as to trigger the [ROM] test sequence [that was intended to be used only during checkout of the spacecraft on the ground]"

The PC Cup Holder

- A true (?) story from a Novell NetWire SysOp
 - Caller: Hello, is this Tech Support?"
 - Tech Rep: Yes, it is. How may I help you?
 - Caller: The cup holder on my PC is broken and I am within my warranty period. How do I go about getting that fixed?
 - Tech Rep: I'm sorry, but did you say a cup holder?
 - Caller: Yes, it's attached to the front of my computer.
 - Tech Rep: Please excuse me if I seem a bit stumped, it's because I am. Did you receive this as part of a promotional, at a trade show? How did you get this cup holder? Does it have any trademark on it?
- Caller: It came with my computer, I don't know anything about a promotional. It just has '4X' on it.
- At this point the Tech Rep had to mute the call, because he couldn't stand it
- The caller had been using the load drawer of the CD-ROM drive as a cup holder, and snapped it off the drive

Inane Dialog Boxes



Inane Dialog Boxes .

These are too good not to show

-HCI LAB

Hit Any Key To Continue

Psychology

Design of Everyday Things

• Pathological designs

-HCI

- Many human errors result from design errors
- Designers help through a good conceptual model

Why Should You Care?

Today: Usability sells

-HCI

HCI

- Product reviews emphasize usability (e.g., Consumer Reports)
- Customers have used related products, and can often download trial versions (including competitors)
 Today's users are impatient and intolerant of bad design
- Consequences of bad design now large
 - Costly errors in serious systems (e.g., financial institutes)
 - Widespread effects (e.g., incorrect billing, failures)
 - Life-critical systems (medical, air traffic control)
 - Safety (in-car navigation systems)

Why Should You Care?.

• Professionalism

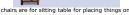
-HCI LAB.

- Software engineers are designers
- We are ultimately responsible for the products we build
- A history of 'hack' designs does not excuse our responsibilities
- · Compared to civil engineers
 - What would happen to an engineer who built a bridge where people fell off of it into the river (because the guard rails were too low), and where accidents were high (because the bridge was too narrow)?
 - We would call this incompetence
 - The same standard should apply to software engineers

Design of Everyday Things

- Important <u>concepts</u> for designing everyday things
 - Perceived affordances

HCL


- Causality
- Visible constraints
- Mapping
- Transfer effects
- Idioms & population stereotypes
 Conceptual models
- Individual differences
- Why design is hard

-HCI LAB-----

Perceived Affordances

• The perceived properties of the object that suggest how one could use it

Perceived Affordances .

• Product design

-HCI LAB

-HCI LAB

- Perceived affordances:
 - Design invites people to take possible actions
- Actual affordances:
 - The actual actionable properties of the product
- Problems occur when
 - These are not the same
 - People's perceptions are not what the designer expects

Perceived Affordance Problems

More Perceived Affordances

• GUI design

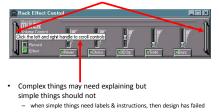
-HCI LAB.

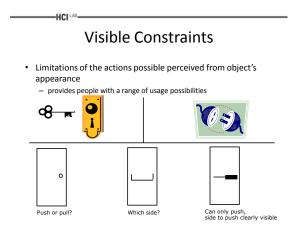
- Perception only through visuals
- Designer creates appropriate visual affordances via
 - Familiar idiomsMetaphors

More Perceived Affordances.

-HCI LAB-

More Perceived Affordance Problems




More Perceived Affordance Problems .

 Handles are for lifting, but these are for scrolling!

-HCI LAB,

-HCI LAB.

Which Side Do You Use for Cutting?

• Knife example

-HCI LAB.

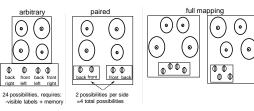
Visible constraints: Entering a Date

• The more constraints, the less opportunity for error

🖷, Form1 📃 🖂 🗙	Appointment
Date: Month Day Year Mey 22 1997 Month Day Year May var	General Attendees Notes Plannel When Start 8:30AM Wed 5:714.472 Image: Comparison of the start

ontrols constructed in Visual Basic

-HCI LAB



Mapping

- · The set of possible relations between objects
- Control-display compatibility

-HCI LAB

- the natural relationship between controls and displays
- e.g., visual mapping of stove controls to elements

Mapping

• Control-display compatibility

-HCI LAB.

 Mimic diagrams for feedback / control imitates physical layout

Mapping.

• Control-display compatibility

-HCI LAB.

steering wheelturn left, car turns left

-HCI LAB -HCI LAB Mapping Mapping · Palette controls and active objects Action feedback Cursor re-enforces selection of current item Only controls that can operate on a picture are fully visible Others are grayed out-Depressed button indicates current mapped item Selected picture

Mapping Problems



hotograph courtesy of www.baddesigns.com

-HCI LAB.

Mapping Problems

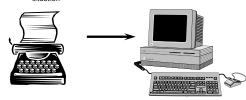
Causality

- The thing that happens right after an action is assumed by people to be caused by that action
 - Interpretation of "feedback"
 - False causality
 - Incorrect effect
 - Invoking unfamiliar function just as computer hangs
 - Causes "superstitious" behaviors
 - Invisible effect
 - Command with no apparent result often re-entered repeatedly
 - e.g., mouse click to raise menu on unresponsive system

Causality Problems

- Effects visible only after Exec button is pressed
 - Ok does nothing!

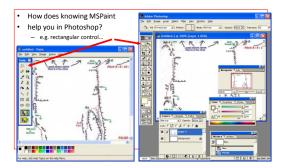
-HCI LAB.


- awkward to find appropriate color level

Transfer Effects

- People transfer their learning/expectations of similar objects to the current objects
 - positive transfer: previous learning's also apply to new situation
 - negative transfer: previous learning's conflict with the new situation

Transfer Effect Problems

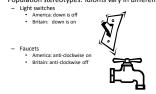


Idioms and Population Stereotypes

-HCI LAB-

-HCI LAB.

Transfer Effect Problems



- Interface idioms:

 'standard' interface features we learnt, use and remember
- Idioms may define arbitrary behaviours

 red means danger
 green means safe
- Population stereotypes: Idioms vary in different cultures

-HCI LAB

Idioms and Population Stereotypes

- Ignoring/changing idioms?
 - home handyman

-HCI LAE

- light switches installed upside down
 calculators vs. phone number pads
- which did computer keypads follow and why?
- Difficulty of changing stereotypes
 - Qwerty keyboard: designed to prevent jamming of keyboard
 - Dvorak keyboard ('30s): provably faster to use

Cultural Associations

Because a trashcan in Thailand may look like this:

a Thai user is likely to be confused by this image popular in Apple interfaces:

Sun found their email icon problematic for some American urban dwellers who are unfamiliar with rural mail boxes

-HCI LAB.

Conceptual model

- · People have "mental models" of how things work, built from
 - affordances
 - causality
 - constraints
 - mapping - positive transfer
 - population stereotypes/cultural standards
 - instructions
 - interactions
- · models allow people to mentally simulate operation of device
- models may be wrong
 - particularly if above attributes are misleading

Good example: Scissors

• Affordances:

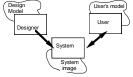
-HCI LA

- holes for something to be inserted
- Constraints:
- big hole for several fingers, small hole for thumb
- Mapping:
- between holes and fingers suggested and constrained by appearance
- Positive transfer and cultural idioms - learnt when young
- constant mechanism
- Conceptual model: implications clear of how the operating parts work

-HCI LAB,

-HCI

Bad example: Digital watch

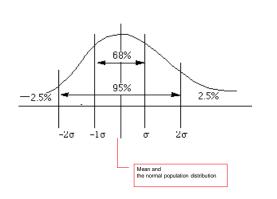

- Affordances:
- four push buttons to push, but not clear what they will do
- Constraints and mapping unknown
- no visible relation between buttons, possible actions and end result
- Transfer of training - little relation to analog watches
- · Cultural idiom
 - somewhat standardized core controls and functions - but still highly variable
- Conceptual model:
 - must be learnt

-HCI

Designing a good conceptual model

- communicate model through visual image
 - visible affordances, mappings, and constraints
 - visible causality of interactions
 - cultural idioms, transies instructions augments visuals
- all work together to remind a person of what can be done and how to do it

Who Do You Design For?



Who do you design for?

People are different

-HCI

- It is rarely possible to accommodate all people perfectly
 - design often a compromise
 - ceiling height: 8'
 but tallest man: 8' 11"!
- Rule of thumb:
 - cater to 95% of audience (5th or 95th percentile)
 - to 15% of adultice (51 of 55 of population may be (seriously!) compromised
 designing for the average a mistake
 may exclude half the audience
- Examples:
- cars and height: headroom, seat size
 - computers and visibility: font size, line thickness, color for color-blind people?

Proverbs on individual differences

- You do not necessarily represent a good average user of equipment or systems you design
- Do not expect others to think and behave as you do, or as you might like them to.
- People vary in thought and behaviour just as they do physically

HCI

-HCI

Who do you design for?

- walk up and use system: novices most kiosk + internet interface affords restricted set of tasks introductory tutorials to more complex uses casual standard idioms
- recognition (visual affordances) over recall reference guides interface affords basic task structure
- intermediate advanced idioms complex controls reminders and tips interface affords advanced tasks
- shortcuts for power use interface affords full task + task customization expert
- systems most shrink wrapped systems

custor softwa

Why design is hard

· Over the last century

-HCI LAB

-HCI LA

- the number of things to control has increased dramatically car radio: AM, FM1, FM2, 5 pre-sets, station selection, balance, fader, bass, treble, distance, mono/stereo, dolby, tape eject, fast forward and reverse, etc (while driving at night!)
- display is increasingly artificial red lights in car indicate problems vs flames for fire
- feedback more complex, subtle, and less natural · is your digital watch alarm on and set correctly?
- errors increasing serious and/or costly · airplane crashes, losing days of work...

Why design is hard

Marketplace pressures

-HCI LAB.

- adding functionality (complexity) now easy and cheap · computers
- adding controls/feedback expensive
 - physical buttons on calculator, microwave oven
 - · widgets consume screen real estate
- design usually requires several iterations before success
 - product pulled if not immediately successful

Why design is hard

- People consider cost and appearance over design - bad design not always visible
 - people tend to blame themselves when errors occur
 - "I was never very good with machines" "I knew I should have read the manual!"
 - "Look at what I did! Do I feel stupid!"
 - eg the new wave of cheap telephones:
 - accidentally hangs up when button hit with chin
 - bad audio feedback · cheap pushbuttons-mis-dials common
 - · trendy designs that are uncomfortable to hold
 - hangs up when dropped
 - · functionality that can't be accessed (redial, mute, hold)

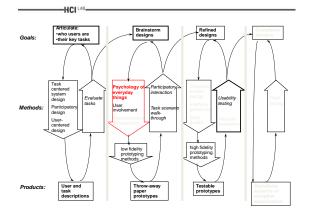
Human factors in computing systems

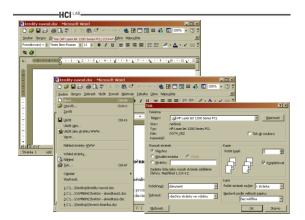
• What does this do?

-HCI LAB.

computers far more complex to control than everyday devices
 compared purpose computer control no patural concentual

- general purpose computer contains no natural conceptual model
- completely up to the designer to craft a conceptual model


What you now know


- Many human errors are actually errors in design

 don't blame the user!
- Designers help by providing a good conceptual model
 - affordances
 causality

-HCI LAB

- constraints
- mapping
- positive transfer
 population stereotypes and idioms
- Design to accommodate individual differences
 decide on the range of users
- Design is difficult for reasons that go beyond design

HCI^{LAD} Questions Acknowledgements • Prof. Ing. Jiří Sochor