
AN 717: Nios II Gen2 Hardware
Development Tutorial

Subscribe
Send Feedback

AN-717 | 2014.09.22
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=sfo1429055121571
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an717.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/sfo1429055121571.html

Contents

1. Nios II Gen2 Hardware Development Tutorial...3
1.1. Software and Hardware Requirements.. 3
1.2. OpenCore Plus Evaluation... 4
1.3. Nios II Design Example.. 4
1.4. Nios II System Development Flow..6

1.4.1. Analyzing System Requirements.. 6
1.4.2. Defining and Generating the System in Qsys... 7
1.4.3. Integrating the Qsys System into the Quartus II Project..................................7
1.4.4. Developing Software with the Nios II Software Build Tools for Eclipse................8
1.4.5. Running and Debugging Software on the Target Board....................................9
1.4.6. Varying the Development Flow.. 9

1.5. Creating the Design Example...10
1.5.1. Install the Design Files... 10
1.5.2. Analyze System Requirements... 10
1.5.3. Start the Quartus II Software and Open the Example Project......................... 11
1.5.4. Create a New Qsys System... 11
1.5.5. Define the System in Qsys.. 11
1.5.6. Integrate the Qsys System into the Quartus II Project.................................. 17
1.5.7. Download the Hardware Design to the Target FPGA...................................... 21
1.5.8. Develop Software Using the Nios II SBT for Eclipse.......................................21
1.5.9. Run the Program on Target Hardware... 23

1.6. Document Revision History..23

Contents

AN 717: Nios II Gen2 Hardware Development Tutorial Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Nios II Gen2 Hardware Development Tutorial
This tutorial describes the system development flow for the Altera® Nios® II processor.

Using the Quartus® II software and the Nios II Embedded Design Suite (EDS), you
can:

• build a Nios II hardware system design

• create a software program that runs on the Nios II system and interfaces with
components on Altera development boards

Building embedded systems in FPGAs involves system requirements analysis,
hardware design tasks, and software design tasks. This tutorial guides you through
the basics of each topic, with special focus on the hardware design steps.

1.1. Software and Hardware Requirements

The following are the requirements for the tutorial:

• Altera Quartus II software version 14.0 or later—The software must be installed on
a Windows or Linux computer that meets the Quartus II minimum requirements.

• Nios II EDS version 14.0 or later.

• Design files for the design example—Refer related information below for the
design example file.

You can build the design example with any Altera development board or your own
custom board that meets the following requirements:

• The board must have either Altera MAX® 10, Stratix® series, Cyclone® series, or
Arria® series FPGA.

• The FPGA must contain a minimum of 2800 logic elements (LE) or adaptive lookup
tables (ALUT).

• The FPGA must contain a minimum of 40 M9K memory blocks.

• An oscillator must drive a constant clock frequency to an FPGA pin. The maximum
frequency limit depends on the speed grade of the FPGA. Frequencies of 50 MHz
or less should work for most boards; higher frequencies might work.

• FPGA I/O pins can optionally connect to eight or fewer LEDs to provide a visual
indicator of processor activity.

• The board must have a JTAG connection to the FPGA that provides a programming
interface and communication link to the Nios II system. The JTAG connection can
be a dedicated 10-pin JTAG header for an Altera USB-Blaster™ download cable
(revision B or higher) or a USB connection with USB-Blaster circuitry embedded on
the board.

Note: Refer to the documentation for your board that describes clock frequencies and
pinouts. For Altera development boards, refer to the related information below.

AN-717 | 2014.09.22

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Related Information

• Altera Development Kits Documentation

• Altera Software Installation and Licensing

1.2. OpenCore Plus Evaluation

You can perform this tutorial on hardware without a license. With Altera's free
OpenCore Plus evaluation feature, you can perform the following actions:

• Simulate the behavior of a Nios II processor within your system

• Verify the functionality of your design

• Evaluate the size and speed of your design quickly and easily

• Generate time-limited device programming files for designs that include Nios II
processors

• Program a device and verify your design in hardware

You need to purchase a license for the Nios II processor only when you are completely
satisfied with its functionality and performance, and want to use your design in
production.

Related Information

OpenCore Plus Evaluation of Megafunctions
Provides more information about OpenCore Plus.

1.3. Nios II Design Example

The design example you build in this tutorial demonstrates a small Nios II system for
control applications, that displays character I/O output and blinks LEDs in a binary
counting pattern. This Nios II system can also communicate with a host computer,
allowing the host computer to control logic inside the FPGA.

The example Nios II system contains the following components:

• Nios II/e processor core

• On-chip memory

• Timer

• JTAG UART

• 8-bit parallel I/O (PIO) pins to control the LEDs

• System identification component

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

AN 717: Nios II Gen2 Hardware Development Tutorial Send Feedback

4

https://www.intel.com/content/www/us/en/programmable/support/literature/lit-devkits.html
http://www.altera.com/literature/manual/quartus_install.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an320.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1. Nios II Design Example Block Diagram
The block diagram shows the relationship between the host computer, the target board, the FPGA, and the Nios
II system.

Nios II System

Character
I/O

Instr
Data

Debug
control 8

Other logic

Altera FPGA

Target Board

LED5

LED0

LED1

LED2

LED3

LED4

LED6

LED7

VCC

Clock
oscillator

Sy
ste

m
 in

te
rco

nn
ec

t f
ab

ric

Timer

PIO

System
ID

On-chip
RAM

Nios II/s
core

JTAG
UART

JTA
G

co
nt

ro
lle

r

10-pin
JTAG

header

Other logic can exist within the FPGA alongside the Nios II system. In fact, most FPGA
designs with a Nios II system also include other logic. A Nios II system can interact
with other on-chip logic, depending on the needs of the overall system. This design
example does not include other logic in the FPGA.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

Send Feedback AN 717: Nios II Gen2 Hardware Development Tutorial

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4. Nios II System Development Flow

Figure 2. Nios II System Development Flow

Altera hardware
abstraction layer
and peripheral

drivers

Define and generate
system in Qsys

Analyze system
requirements

User C/C++
application code

and custom libraries

Custom instruction
and custom

peripheral logic

Custom hardware
modules

Nios II cores
and standard
peripherals

Integrate Qsys system
into Quartus II project

Develop software with
the Nios II Software

Build Tools for Eclipse

Assign pin locations,
timing requirements and
other design constraints

Download FPGA design
to target board

Compile hardware design
for target board

Run and debug software
on target board

Refine software
and hardware

Download software
executable to Nios II

system on target board

The Nios II development flow consists of three types of development:

• hardware design steps

• software design steps

• system design steps, involving both hardware and software

The design steps in this tutorial focus on hardware development, and provide only a
simple introduction to software development.

1.4.1. Analyzing System Requirements

The development flow begins with predesign activity which includes an analysis of the
application requirements, such as the following questions:

• What computational performance does the application require?

• How much bandwidth or throughput does the application require?

• What types of interfaces does the application require?

• Does the application require multithreaded software?

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

AN 717: Nios II Gen2 Hardware Development Tutorial Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Based on the answers to these questions, you can determine the concrete system
requirements, such as:

• Which Nios II processor core to use: smaller or faster.

• What components the design requires and how many of each kind.

• Which real-time operating system (RTOS) to use, if any.

• Where hardware acceleration logic can dramatically improve system performance.
For example:

— Could adding a DMA component eliminate wasted processor cycles copying
data?

— Could a custom instruction replace the critical loop of a DSP algorithm?

Analyzing these topics involve both the hardware and software point of view.

1.4.2. Defining and Generating the System in Qsys

After analyzing the system hardware requirements, you use Qsys to specify the Nios II
processor core(s), memory, and other components your system requires. Qsys
automatically generates the interconnect logic to integrate the components in the
hardware system.

You can select from a list of standard processor cores and components provided with
the Nios II EDS. You can also add your own custom hardware to accelerate system
performance. You can add custom instruction logic to the Nios II core which
accelerates CPU performance, or you can add a custom component which offloads
tasks from the CPU. This tutorial covers adding standard processor and component
cores, and does not cover adding custom logic to the system.

The primary outputs of Qsys are the following file types:

Table 1. Qsys Primary Output File Types

File Types Description

Qsys Design File (.qsys) Contains the hardware contents of the Qsys system

SOPC Information File (.sopcinfo) Contains a description of the contents of the .qsys file in Extensible Markup
Language File (.xml) format. The Nios II EDS uses the .sopcinfo file to create
software for the target hardware.

Hardware description language (HDL)
files

Are the hardware design files that describe the Qsys system. The Quartus II
software uses the HDL files to compile the overall FPGA design into an SRAM
Object File (.sof).

Related Information

Volume 1: Design and Synthesis of the Quartus II Handbook
Provides more information about Qsys and developing custom components

1.4.3. Integrating the Qsys System into the Quartus II Project

After generating the Nios II system using Qsys, you integrate it into the Quartus II
project. Using the Quartus II software, you perform all tasks required to create the
final FPGA hardware design.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

Send Feedback AN 717: Nios II Gen2 Hardware Development Tutorial

7

http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using the Quartus II software, you can:

• assign pin locations for I/O signals

• specify timing requirements

• apply other design constraints

• compile the Quartus II project to produce a .sof to configure the FPGA

You download the .sof to the FPGA on the target board using an Altera download
cable, such as the USB-Blaster. After configuration, the FPGA behaves as specified by
the hardware design, which in this case is a Nios II processor system.

1.4.4. Developing Software with the Nios II Software Build Tools for
Eclipse

You can perform all software development tasks for your Nios II processor system
using the Nios II Software Build Tools (SBT) for Eclipse™.

After you generate the system with Qsys, you can begin designing your C/C++
application code immediately with the Nios II SBT for Eclipse. Altera provides
component drivers and a hardware abstraction layer (HAL) which allows you to write
Nios II programs quickly and independently of the low-level hardware details. In
addition to your application code, you can design and reuse custom libraries in your
Nios II SBT for Eclipse projects.

To create a new Nios II C/C++ application project, the Nios II SBT for Eclipse uses
information from the .sopcinfo file. You also need the .sof file to configure the
FPGA before running and debugging the application project on target hardware.

The Nios II SBT for Eclipse can produce several outputs, listed below. Not all projects
require all of these outputs.

Table 2. Nios II SBT for Eclipse Outputs
The Nios II SBT for Eclipse can produce several outputs but not all projects require all of these outputs.

Output Description

system.h file • Defines symbols for referencing the hardware in the system.
• The Nios II SBT for Eclipse automatically create this file when you create a

new board support package (BSP).

Executable and Linking Format File
(.elf)

Is the result of compiling a C/C++ application project, that you can download
directly to the Nios II processor.

Hexadecimal (Intel-Format) File
(.hex)

• Contains initialization information for on-chip memories.
• The Nios II SBT for Eclipse generate these initialization files for on-chip

memories that support initialization of contents.

Flash memory programming data • Boot code and other arbitrary data you might write to flash memory.
• The flash programmer adds appropriate boot code to allow your program to

boot from flash memory.
• The Nios II SBT for Eclipse includes a flash programmer to allow you to write

your program or arbitrary data to flash memory.

This tutorial focuses on downloading only the .elf directly to the Nios II system.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

AN 717: Nios II Gen2 Hardware Development Tutorial Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.5. Running and Debugging Software on the Target Board

The Nios II SBT for Eclipse has the capability to download software to a target board,
and run or debug the program on hardware. The Nios II SBT for Eclipse debugger
allows you to start and stop the processor, step through code, set breakpoints, and
analyze variables as the program executes.

1.4.6. Varying the Development Flow

The development flow is not strictly linear. The following lost the common variations:

• Refining the Software and Hardware

• Iteratively Creating a Nios II System

• Verifying the System with Hardware Simulation Tools

Refining the Software and Hardware

After running software on the target board, you might discover that the Nios II system
requires higher performance. In this case, you can:

• return to software design steps to make improvements to the software algorithm;
or

• return to hardware design steps to add acceleration logic

If the system performs multiple mutually exclusive tasks, you might even decide to
use two (or more) Nios II processors that divide the workload and improve the
performance of each individual processor.

Iteratively Creating a Nios II System

A common technique for building a complex Nios II system is to start with a simpler
Qsys system, and iteratively add to it. At each iteration, you can verify that the
system performs as expected. You might choose to verify the fundamental
components of a system, such as the processor, memory, and communication
channels, before adding more complex components. When developing a custom
component or a custom instruction, first integrate the custom logic into a minimal
system to verify that it works as expected; then integrate the custom logic into a
more complex system.

Verifying the System with Hardware Simulation Tools

You can perform hardware simulation of software executing on the Nios II system,
using tools such as the ModelSim® RTL simulator. Hardware simulation is useful to
meet certain needs, including the following cases:

• To verify the cycle-accurate performance of a Nios II system before target
hardware is available.

• To verify the functionality of a custom component or a Nios II custom instruction
before trying it on hardware.

If you are building a Nios II system based on the standard components provided with
the Nios II EDS, the easiest way to verify functionality is to download the hardware
and software directly to a development board.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

Send Feedback AN 717: Nios II Gen2 Hardware Development Tutorial

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5. Creating the Design Example

First, you must install the Quartus II software and the Nios II EDS. You must also
download tutorial design files from the Altera web site. The design files provide a
ready-made Quartus II project to use as a starting point.

1.5.1. Install the Design Files

Perform the following steps to set up the design environment:

1. Locate the zipped design files on the Altera web site.

2. Unzip the contents of the zip file to a directory on your computer. Do not use
spaces in the directory path name.

The remainder of this tutorial refers to this directory as the <design files
directory>.

1.5.2. Analyze System Requirements

The system requirements are derived from the following goals of the tutorial design
example:

• Demonstrate a simple Nios II processor system that you can use for control
applications.

• Build a practical, real-world system, while providing an educational experience.

• Demonstrate the most common and effective techniques to build practical, custom
Nios II systems.

• Build a Nios II system that works on any board with an Altera FPGA. The entire
system must use only on-chip resources, and not rely on the target board.

• The design should conserve on-chip logic and memory resources so it can fit in a
wide range of target FPGAs.

These goals lead to the following design decisions:

• The Nios II system uses only the following inputs and outputs:

— One clock input, which can be any constant frequency.

— Eight optional outputs to control LEDs on the target board.

• The design uses the following components:

— Nios II/f core with 2 KB of instruction cache with static branch prediction

— 20 KB of on-chip memory

— Timer

— JTAG UART

— Eight output-only parallel I/O (PIO) pins

— System ID component

Related Information

Embedded Peripheral IP User Guide
Provides more information about the JTAG UART, timer, system ID peripheral, and
PIO.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

AN 717: Nios II Gen2 Hardware Development Tutorial Send Feedback

10

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.3. Start the Quartus II Software and Open the Example Project

The Quartus II project serves as an easy starting point for the Nios II development
flow. The Quartus II project contains all settings and design files required to create
the .sof. To open the Quartus II project, perform the following steps:

1. Start the Quartus II software.

2. Click Open Existing Project on the splash screen, or, on the File menu, click
Open Project.
The Open Project dialog box appears.

3. Browse to the <design files directory>.

4. Select the file nios2_quartus2_project.qpf and click Open.

5. To display the Block Diagram File (.bdf) nios2_quartus2_project.bdf,
perform the following steps:

a. On the File menu, click Open.
The Open dialog box appears.

b. Browse to the <design files directory>.

c. Select nios2_quartus2_project.bdf and click Open.

The .bdf contains an input pin for the clock input and eight output pins to drive
LEDs on the board.

Next, you create a new Qsys system, which you ultimately connect to these pins.

1.5.4. Create a New Qsys System

You use Qsys to generate the Nios II processor system, adding the desired
components, and configuring how they connect together. To create a new Qsys
system, click Qsys on the Tools menu in the Quartus II software. Qsys starts and
displays the System Contents tab.

1.5.5. Define the System in Qsys

You use Qsys to define the hardware characteristics of the Nios II system, such as
which Nios II core to use, and what components to include in the system. Qsys does
not define software behavior, such as where in memory to store instructions or where
to send the stderr character stream.

The Qsys design process does not need to be linear. The design steps in this tutorial
are presented in the most straightforward order for a new user to understand.
However, you can perform Qsys design steps in a different order.

1.5.5.1. Specify Target FPGA and Clock Settings

To specify target FPGA and clock settings, perform the following steps:

1. On the Project Settings tab, select the Device Family that matches the Altera
FPGA you are targeting.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

Send Feedback AN 717: Nios II Gen2 Hardware Development Tutorial

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If a warning appears stating the selected device family does not match the
Quartus project settings, ignore the warning. You specify the device in the Quartus
project settings later in this tutorial.

2. In the documentation for your board, look up the clock frequency of the oscillator
that drives the FPGA.

3. On the Clock Settings tab, double-click the clock frequency in the MHz column
for clk_0. clk_0 is the default clock input name for the Qsys system. The
frequency you specify for clk_0 must match the oscillator that drives the FPGA.

4. Type the clock frequency and press Enter.

Next, you begin to add hardware components to the Qsys system. As you add each
component, you configure it appropriately to match the design specifications.

Related Information

Altera Development Kits Documentation

1.5.5.2. Add the On-Chip Memory

Processor systems require at least one memory for data and instructions. This design
example uses one 20 KB on-chip memory for both data and instructions. To add the
memory, perform the following steps:

1. On the IP Catalog tab (to the left of the System Contents tab), expand Basic
Functions, expand On-Chip Memory, and then click On-Chip Memory (RAM
or ROM).

2. Click Add.
The On-Chip Memory (RAM or ROM) parameter editor appears.

3. In the Block type list, select Auto.

4. In the Total memory size box, type 20480 to specify a memory size of 20 KB.

Do not change any of the other default settings.

5. Click Finish. You return to Qsys.

6. Click the System Contents tab.
An instance of the on-chip memory appears in the system contents table.

7. In the Name column of the system contents table, right-click the on-chip memory
and click Rename.

8. Type onchip_mem and press Enter.

You must type these tutorial component names exactly as specified. Otherwise,
the tutorial programs written for this Nios II system fail in later steps. In general,
it is a good habit to give descriptive names to hardware components. Nios II
programs use these symbolic names to access the component hardware.
Therefore, your choice of component names can make Nios II programs easier to
read and understand.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

AN 717: Nios II Gen2 Hardware Development Tutorial Send Feedback

12

https://www.intel.com/content/www/us/en/programmable/support/literature/lit-devkits.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.5.3. Add the Nios II Processor Core

You will add the Nios II/f core and configure it to use 2 KB of on-chip instruction cache
memory, no data cache and use static branch prediction. For this tutorial, the Nios II/f
core is configured to provide a balanced trade-off between performance and resource
utilization. To add a Nios II/f core to the system, perform the following steps:

1. On the IP Catalog tab, expand Processors and Peripherals, and then click
Nios II Gen2 Processor.

2. Click Add.
The Nios II Processor parameter editor appears, displaying the Core Nios II tab.

3. In the Main Tab under Select an Implementation, select Nios II/f.

4. Click Finish and return to the Qsys System Contents tab.
The Nios II core instance appears in the system contents table. Ignore the
exception and reset vector error messages. You resolve these errors in future
steps.

5. In the Name column, right-click the Nios II processor and click Rename.

6. Type cpu and press Enter.

7. In the Connections column, connect the clk port of the clk_0 clock source to
both the clk1 port of the on-chip memory and the clk port of the Nios II
processor by clicking the hollow dots on the connection line. The dots become
solid indicating the ports are connected.

8. Connect the clk_reset port of the clk_0 clock source to both the reset1 port
of the on-chip memory and the reset_n port of the Nios II processor.

9. Connect the s1 port of the on-chip memory to both the data_master port and
instruction_master port of the Nios II processor.

10. Double-click the Nios II processor row of the system contents table to reopen the
Nios II Processor parameter editor.

11. Under Reset Vector in Vectors tab, select onchip_mem.s1 in the Reset vector
memory list and type 0x0 in the Reset vector offset box.

12. Under Exception Vector, select onchip_mem.s1 in the Exception vector
memory list and type 0x20 in the Exception vector offset box.

13. Click the Caches and Memory Interfaces tab.

14. In the Instruction cache list, select 2 Kbytes.

15. Choose None for Data Cache size and do not change other default settings.

16. In Advanced Features tab, select Static branch prediction type.

17. Click Finish. You will return to the Qsys System Contents tab.

Do not change any settings on the MMU and MPU Settings and JTAG Debug
tabs.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

Send Feedback AN 717: Nios II Gen2 Hardware Development Tutorial

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.5.4. Add the JTAG UART

The JTAG UART provides a convenient way to communicate character data with the
Nios II processor through the USB-Blaster download cable. To add the JTAG UART,
perform the following steps:

1. On the IP Catalog tab, expand Interface Protocols, expand Serial, and then
click JTAG UART.

2. Click Add.
The JTAG UART parameter editor appears and do not change the default settings.

3. Click Finish and return to the Qsys System Contents tab.
The JTAG UART instance appears in the system contents table.

4. In the Name column, right-click the JTAG UART and click Rename.

5. Type jtag_uart and press Enter.

6. Connect the clk port of the clk_0 clock source to the clk port of the JTAG
UART.

7. Connect the clk_reset port of the clk_0 clock source to the reset port of the
JTAG UART.

8. Connect the data_master port of the Nios II processor to the
avalan_jtag_slave port of the JTAG UART.

The instruction_master port of the Nios II processor does not connect to the
JTAG UART because the JTAG UART is not a memory device and cannot send
instructions to the Nios II processor.

Related Information

Embedded Peripheral IP User Guide
Provides more information about the JTAG UART, timer, system ID peripheral, and
PIO.

1.5.5.5. Add the Interval Timer

Most control systems use a timer component to enable precise calculation of time. To
provide a periodic system clock tick, the Nios II HAL requires a timer. To add the timer,
perform the following steps:

1. On the IP Catalog tab, expand Processors and Peripherals, expand
Peripherals, and then click Interval Timer.

2. Click Add.
The Interval Timer parameter editor appears.

3. Click Finish return to the Qsys System Contents tab.
The interval timer instance appears in the system contents table.

4. In the Name column, right-click the interval timer and click Rename.

5. Type sys_clk_timer and press Enter.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

AN 717: Nios II Gen2 Hardware Development Tutorial Send Feedback

14

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Connect the clk port of the clk_0 clock source to the clk port of the interval
timer.

7. Connect the clk_reset port of the clk_0 clock source to the reset port of the
interval timer.

8. Connect the data_master port of the Nios II processor to the s1 port of the
interval timer.

Related Information

Embedded Peripheral IP User Guide
Provides more information about the JTAG UART, timer, system ID peripheral, and
PIO.

1.5.5.6. Add the System ID Peripheral

The system ID peripheral safeguards against accidentally downloading software
compiled for a different Nios II system. If the system includes the system ID
peripheral, the Nios II SBT for Eclipse can prevent you from downloading programs
compiled for a different system. To add system ID peripheral, perform the following
steps:

1. On the IP Catalog tab, expand Basic Functions, expand Simulations; Debug
and Verifications and then click System ID Peripheral.

2. Click Add.
The System ID Peripheral parameter editor appears and do not change the
default setting.

3. Click Finish and return to the Qsys System Contents tab.
The system ID peripheral instance appears in the system contents table.

4. In the Name column, right-click the system ID peripheral and click Rename.

5. Type sysid and press Enter.

6. Connect the clk port of the clk_0 clock source to the clk port of the system ID
peripheral.

7. Connect the clk_reset port of the clk_0 clock source to the reset port of the
system ID peripheral.

8. Connect the data_master port of the Nios II processor to the control_slave
port of the system ID peripheral.

Related Information

Embedded Peripheral IP User Guide
Provides more information about the JTAG UART, timer, system ID peripheral, and
PIO.

1.5.5.7. Add the PIO

PIO signals provide an easy method for Nios II processor systems to receive input
stimuli and drive output signals. Complex control applications might use hundreds of
PIO signals which the Nios II processor can monitor. This design example uses eight
PIO signals to drive LEDs on the board. To add the PIO, perform the following steps:

Note: Perform these steps even if your target board doesn't have LEDs.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

Send Feedback AN 717: Nios II Gen2 Hardware Development Tutorial

15

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. On the IP Catalog tab, expand Processors and Peripherals, expand
Peripherals, and then click PIO .

2. Click Add.
The PIO (Parallel I/O) parameter editor appears and do not change the default
settings.

3. Click Finish and return to the Qsys System Contents tab.
The PIO instance appears in the system contents table.

4. In the Name column, right-click the PIO and click Rename.

5. Type led_pio and press Enter.

6. Connect the clk port of the clk_0 clock source to the clk port of the PIO.

7. Connect the clk_reset port of the clk_0 clock source to the reset port of the
PIO.

8. Connect the data_master port of the Nios II processor to the s1 port of the
PIO.

9. In the external_connection row, click Click to export in the Export column to
export the PIO ports.

Related Information

Embedded Peripheral IP User Guide
Provides more information about the JTAG UART, timer, system ID peripheral, and
PIO.

1.5.5.8. Specify Base Addresses and Interrupt Request Priorities

To specify how the components added in the design to interact to form a system, you
need assign base addresses for each slave component, and assign interrupt request
(IRQ) priorities for the JTAG UART and the interval timer.

Qsys provides the Assign Base Addresses command which makes assigning
component base addresses easy. For many systems, including this design example,
Assign Base Addresses is adequate. However, you can adjust the base addresses to
suit your needs. Below are some guidelines for assigning base addresses:

• Nios II processor cores can address a 31-bit address span. You must assign base
address between 0x00000000 and 0x7FFFFFFF.

Note: The Use most-significant address bit in processor to bypass data
cache option is enable by default. If disabled, the Nios II processor cores
supports full 32-bit address.

• Nios II programs use symbolic constants to refer to addresses. You do not have to
choose address values that are easy to remember.

• Address values that differentiate components with only a one-bit address
difference produce more efficient hardware. You do not have to compact all base
addresses into the smallest possible address range, because this can create less
efficient hardware.

• Qsys does not attempt to align separate memory components in a contiguous
memory range. For example, if you want an on-chip RAM and an off-chip RAM to
be addressable as one contiguous memory range, you must explicitly assign base
addresses.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

AN 717: Nios II Gen2 Hardware Development Tutorial Send Feedback

16

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys also provides an Assign Interrupt Numbers command which connects IRQ
signals to produce valid hardware results. However, assigning IRQs effectively requires
an understanding of how software responds to them. Because Qsys does not know the
software behavior, Qsys cannot make educated guesses about the best IRQ
assignment.

The Nios II HAL interprets low IRQ values as higher priority. The timer component
must have the highest IRQ priority to maintain the accuracy of the system clock tick.

To assign appropriate base addresses and IRQs, perform the following steps:

1. On the System menu, click Assign Base Addresses to make Qsys assign
functional base addresses to each component in the system. Values in the Base
and End columns might change, reflecting the addresses that Qsys reassigned.

2. In the IRQ column, connect the Nios II processor to the JTAG UART and interval
timer.

3. Click the IRQ value for the jtag_uart component to select it.

4. Type 16 and press Enter to assign a new IRQ value.

5. Click the IRQ value for the sys_clk_timer component to select it.

6. Type 1 and press Enter to assign a new IRQ value.

1.5.5.9. Generate the Qsys System

To generate the Qsys system, perform the following steps:

1. Click the Generation tab.

2. Select None in both the Create simulation model and Create testbench Qsys
system lists.

Because this tutorial does not cover the hardware simulation flow, you can select
these settings to shorten generation time.

3. Click Generate. Click Yes when the Save changes? dialog box appears.

4. Type first_nios2_system in the File name box and click Save.
The Generate dialog box appears and system generation process begins. The
generation process can take several minutes. When generation completes, Qsys
will prompt: Create HDL design files for synthesis.

5. Click Close to close the dialog box.

6. On the File menu, click Exit to close Qsys and return to the Quartus II software.

You are ready to integrate the system into the Quartus II hardware project and use
the Nios II SBT for Eclipse to develop software.

1.5.6. Integrate the Qsys System into the Quartus II Project

To complete the hardware design, you need to perform the following tasks:

• Instantiate the Qsys system module in the Quartus II project.

• Assign FPGA device and pin locations.

• Compile the Quartus II project.

• Verify timing.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

Send Feedback AN 717: Nios II Gen2 Hardware Development Tutorial

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.6.1. Instantiate the Qsys System Module in the Quartus II Project

Qsys outputs a design entity called the system module. The tutorial design example
uses the block diagram method of design entry, so you instantiate a system module
symbol first_nios2_system into the .bdf.

Note: How you instantiate the system module depends on the design entry method of the
overall Quartus II project. For example, if you were using Verilog HDL for design entry,
you would instantiate the Verilog module first_nios2_system defined in the file
first_nios2_system.v.

To instantiate the system module in the .bdf, perform the following steps:

1. Double-click in the empty space to the right of the input and output wires.
The Symbol dialog box appears.

2. Under Libraries, expand Project.

3. Click first_nios2_system.
The Symbol dialog box displays the first_nios2_system symbol.

4. Click OK. You return to the .bdf schematic. The first_nios2_system symbol
tracks with your mouse pointer.

5. Position the symbol so the pins on the symbol align with the wires on the
schematic.

6. Click to anchor the symbol in place.

7. If your target board does not have LEDs that the Nios II system can drive, you
must delete the LEDG[7..0] pins. To delete the pins, perform the following steps:

a. Click the output symbol LEDG[7..0] to select it.

b. On your keyboard, press Delete.

8. To save the completed .bdf, click Save on the File menu.

1.5.6.2. Add IP Variation File

You can add the Quartus II IP File (.qip) to the your Quartus II project by performing
the following steps:

1. On the Assignments menu, click Settings.
The Settings dialog box appears.

2. Under Category, click Files.
The Files page appears.

3. Next to File name, click the browse (...) button.

4. In the Files of type list, select Script Files (*.tcl, *.sdc, *.qip).

5. Browse to locate <design files directory>/first_nios2_system/
synthesis/ first_nios2_system.qip and click Open to select the file.

6. Click Add to include first_nios2_system.qip in the project.

7. Click OK to close the Settings dialog box.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

AN 717: Nios II Gen2 Hardware Development Tutorial Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.6.3. Assign FPGA Device

Before assigning FPGA pin locations to match the pinouts of your board, you need to
first assign a specific target device. To assign the device, perform the following steps:

1. On the Assignments menu, click Device.
The Device dialog box appears.

2. In the Family list, select the FPGA family that matches your board.

If prompted to remove location assignments, do so.

3. Under Target device, select Specific device selected in Available devices
list.

4. Under Available devices, select the exact device that matches your board.

If prompted to remove location assignments, do so.

5. Click OK to accept the device assignment.

1.5.6.4. Assign FPGA Pin Locations

Before assigning the FPGA pins, you must know the pin layout for the board. You also
must know other requirements for using the board, refer to related information below.
To assign the FPGA pin locations, perform the following steps:

1. On the Processing menu, point to Start, and click Start Analysis & Elaboration
to prepare for assigning pin locations.
The analysis starts by displaying a data not available message and can take
several minutes. A confirmation message box appears when analysis and
elaboration completes.

2. Click OK.

3. On the Assignments menu, click Pin Planner.
The Quartus II Pin Planner appears.

4. In the Node Name column, locate PLD_CLOCKINPUT.

5. In the PLD_CLOCKINPUT row, double-click in the Location cell to access a list
of available pin locations.

6. Select the appropriate FPGA pin that connects to the oscillator on the board.

If your design fails to work, recheck your board documentation for this step first.

7. In the PLD_CLOCKINPUT row, double-click in the I/O Standard cell to access a
list of available I/O standards.

8. Select the appropriate I/O standard that connects to the oscillator on the board.

9. If you connected the LED pins in the board design schematic, repeat steps 4 to 8
for each of the LED output pins (LEDG[0], LEDG[1], LEDG[2], LEDG[3],
LEDG[4], LEDG[5], LEDG[6], LEDG[7]) to assign appropriate pin locations.

10. On the File menu, click Close to save the assignments.

11. On the Assignments menu, click Device.
The Device dialog box appears.

12. Click Device and Pin Options.
The Device and Pin Options dialog box appears.

13. Click the Unused Pins page.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

Send Feedback AN 717: Nios II Gen2 Hardware Development Tutorial

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14. In the Reserve all unused pins list, select As input tri-stated with weak pull-
up. With this setting, all unused I/O pins on the FPGA enter a high-impedance
state after power-up.

Unused pins are set as input tri-stated with weak pull-up to remove contention
which might damage the board. Depending on the board, you might have to make
more assignments for the project to function correctly. You can damage the board
if you fail to account for the board design. Consult with the maker of the board for
specific contention information.

15. Click OK to close the Device and Pin Options dialog box.

16. Click OK to close the Device dialog box.

Related Information

Altera Development Kits Documentation

1.5.6.5. Set Timing

To ensure the design meets timing, perform the following steps:

1. On the File menu, click Open.

2. In the Files of type list, select Script Files (*.tcl, *.sdc, *.qip).

3. Browse to locate <design files directory>/hw_dev_tutorial.sdc and
click Open. The file opens in the text editor.

4. Locate the following create_clock command:create_clock -name
sopc_clk -period 20 [get_ports PLD_CLOCKINPUT]

5. Change the period setting from 20 to the clock period (1/frequency) in
nanoseconds of the oscillator driving the clock pin.

6. On the File menu, click Save.

7. On the Assignments menu, click Settings.
The Settings dialog box appears.

8. Under Category, click TimeQuest Timing Analyzer.

9. Next to File name, click the browse (...) button.

10. Browse to locate <design files directory>/hw_dev_tutorial.sdc and
click Open to select the file.

11. Click Add to include hw_dev_tutorial.sdc in the project.

12. Turn on Enable multicorner timing analysis during compilation.

13. Click OK.

1.5.6.6. Compile the Quartus II Project and Verify Timing

To create a .sof file, you have to compile the hardware design and then it download
to the board. After the compilation completes, you must analyze the timing
performance of the FPGA design to verify that the design will work in hardware. To
compile the Quartus II project, perform the following steps:

1. On the Processing menu, click Start Compilation.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

AN 717: Nios II Gen2 Hardware Development Tutorial Send Feedback

20

https://www.intel.com/content/www/us/en/programmable/support/literature/lit-devkits.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Tasks window and percentage and time counters in the lower-right corner
display progress. The compilation process can take several minutes. When
compilation completes, a dialog box displays the message "Full Compilation was
successful."

2. Click OK. The Quartus II software displays the Compilation Report tab.

3. Expand the TimeQuest Timing Analyzer category in the compilation report.

4. Click Multicorner Timing Analysis Summary.

5. Verify that the Worst-case Slack values are positive numbers for Setup, Hold,
Recovery, and Removal.

If any of these values are negative, the design might not operate properly in
hardware. To meet timing, adjust Quartus II assignments to optimize fitting, or
reduce the oscillator frequency driving the FPGA.

1.5.7. Download the Hardware Design to the Target FPGA

To download the .sof to the target board, perform the following steps:

1. Connect the board to the host computer with the download cable, and apply power
to the board.

2. On the Tools menu in the Quartus II software, click Programmer.
The Quartus II Programmer appears and automatically displays the appropriate
configuration file (nios2_quartus2_project.sof).

3. Click Hardware Setup in the upper left corner of the Quartus II Programmer to
verify your download cable settings.
The Hardware Setup dialog box appears.

4. Select the appropriate download cable in the Currently selected hardware list.

If the appropriate download cable does not appear in the list, you must first install
drivers for the cable.

5. Click Close.

6. In the nios2_quartus2_project.sof row, turn on Program/Configure.

7. Click Start.
The Progress meter sweeps to 100% as the Quartus II software configures the
FPGA.

At this point, the Nios II system is configured and running in the FPGA, but it does not
yet have a program in memory to execute.

Related Information

Altera Programming Cables Documentation

1.5.8. Develop Software Using the Nios II SBT for Eclipse

Developing software using the Nios II SBT for Eclipse consists the following tasks:

• Create new Nios II C/C++ application and BSP projects.

• Compile the projects.

To perform these steps, you must have the .sopcinfo file you created earlier in this
tutorial. Refer to related information for more information.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

Send Feedback AN 717: Nios II Gen2 Hardware Development Tutorial

21

https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/download-cables.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: This tutorial presents only the most basic software development steps to demonstrate
software running on the hardware system you created in previous sections.

Related Information

Define the System in Qsys on page 11

1.5.8.1. Create a New Nios II Application and BSP from Template

To create new Nios II C/C++ application and BSP projects, perform the following
steps:

1. Start the Nios II SBT for Eclipse. On Windows computers, click Start, point to
Programs, Altera, Nios II EDS <version>, and then click Nios II <version>
Software Build Tools for Eclipse. On Linux computers, run the executable file
<Nios II EDS install path>/bin/eclipse-nios2.

2. If the Workspace Launcher dialog box appears, click OK to accept the default
workspace location.

3. On the Window menu, point to Open Perspective, and then either click Nios II,
or click Other and then click Nios II to ensure you are using the Nios II
perspective.

4. On the File menu, point to New, and then click Nios II Application and BSP
from Template.
The Nios II Application and BSP from Template wizard appears.

5. Under Target hardware information, next to SOPC Information File name,
browse to locate the <design files directory>.

6. Select first_nios2_system.sopcinfo and click Open.
Nios II Application and BSP from Template wizard will show the current
information for the SOPC Information File name and CPU name fields.

7. In the Project name box, type count_binary.

8. In the Templates list, select Count Binary

9. Click Finish.

The Nios II SBT for Eclipse creates and displays the following new projects in the
Project Explorer view, typically on the left side of the window:

• count_binary—Your C/C++ application project

• count_binary_bsp—A board support package that encapsulates the details of
the Nios II system hardware

1.5.8.2. Compile the Project

You have to compile the project to produce an executable software image. For the
tutorial design example, you must first adjust the project settings to minimize the
memory footprint of the software, because your Nios II hardware system contains only
20 KB of memory. To adjust the project settings and compile the project, perform the
following steps:

1. In the Project Explorer view, right-click count_binary_bsp and click
Properties. The Properties for count_binary_bsp dialog box appears.

2. Click the Nios II BSP Properties page. The Nios II BSP Properties page contains
basic software build settings.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

AN 717: Nios II Gen2 Hardware Development Tutorial Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Though not needed for this tutorial, note the BSP Editor button in the lower right
corner of the dialog box. You use the Nios II BSP Editor to access advanced BSP
settings.

3. Adjust the following settings to reduce the size of the compiled executable:

a. Turn on enable_reduced_device_drivers.

b. Turn off enable_gprof.

c. Turn on enable_small_c_library.

d. Turn off enable_sim_optimize.

4. Click OK.
The BSP regenerates, the Properties dialog box closes, and you return to the
Nios II SBT for Eclipse.

5. In the Project Explorer view, right-click the count_binary project and click
Build Project.

The Build Project dialog box appears, and the Nios II SBT for Eclipse begins
compiling the project. When compilation completes, a count_binary build
complete message appears in the Console view.

1.5.9. Run the Program on Target Hardware

To download the software executable to the target board, perform the following steps:

1. Right-click the count_binary project, point to Run As, and then click Nios II
Hardware.

If the Run Configurations dialog box appears, verify that Project name and
ELF file name contain relevant data, then click Run.

The Nios II SBT for Eclipse downloads the program to the FPGA on the target
board and the program starts running. When the target hardware starts running
the program, the Nios II Console view displays character I/O output. If you
connected LEDs to the Nios II system in previous section, then the LEDs blink in a
binary counting pattern.

2. Click the Terminate icon (the red square) on the toolbar of the Nios II Console
view to terminate the run session and the Nios II SBT for Eclipse will disconnect
from the target hardware.

You can edit the count_binary.c program in the Nios II SBT for Eclipse text
editor and repeat these two steps to witness your changes executing on the target
board. If you rerun the program, buffered characters from the previous run
session might display in the Console view before the program begins executing.

Related Information

Integrate the Qsys System into the Quartus II Project on page 17

1.6. Document Revision History

Date Version Changes

September 2014 2014.09.22 Initial release.

1. Nios II Gen2 Hardware Development Tutorial

AN-717 | 2014.09.22

Send Feedback AN 717: Nios II Gen2 Hardware Development Tutorial

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20717:%20Nios%20II%20Gen2%20Hardware%20Development%20Tutorial%20(AN-717%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	AN 717: Nios II Gen2 Hardware Development Tutorial
	Contents
	1. Nios II Gen2 Hardware Development Tutorial
	1.1. Software and Hardware Requirements
	1.2. OpenCore Plus Evaluation
	1.3. Nios II Design Example
	1.4. Nios II System Development Flow
	1.4.1. Analyzing System Requirements
	1.4.2. Defining and Generating the System in Qsys
	1.4.3. Integrating the Qsys System into the Quartus II Project
	1.4.4. Developing Software with the Nios II Software Build Tools for Eclipse
	1.4.5. Running and Debugging Software on the Target Board
	1.4.6. Varying the Development Flow

	1.5. Creating the Design Example
	1.5.1. Install the Design Files
	1.5.2. Analyze System Requirements
	1.5.3. Start the Quartus II Software and Open the Example Project
	1.5.4. Create a New Qsys System
	1.5.5. Define the System in Qsys
	1.5.5.1. Specify Target FPGA and Clock Settings
	1.5.5.2. Add the On-Chip Memory
	1.5.5.3. Add the Nios II Processor Core
	1.5.5.4. Add the JTAG UART
	1.5.5.5. Add the Interval Timer
	1.5.5.6. Add the System ID Peripheral
	1.5.5.7. Add the PIO
	1.5.5.8. Specify Base Addresses and Interrupt Request Priorities
	1.5.5.9. Generate the Qsys System

	1.5.6. Integrate the Qsys System into the Quartus II Project
	1.5.6.1. Instantiate the Qsys System Module in the Quartus II Project
	1.5.6.2. Add IP Variation File
	1.5.6.3. Assign FPGA Device
	1.5.6.4. Assign FPGA Pin Locations
	1.5.6.5. Set Timing
	1.5.6.6. Compile the Quartus II Project and Verify Timing

	1.5.7. Download the Hardware Design to the Target FPGA
	1.5.8. Develop Software Using the Nios II SBT for Eclipse
	1.5.8.1. Create a New Nios II Application and BSP from Template
	1.5.8.2. Compile the Project

	1.5.9. Run the Program on Target Hardware

	1.6. Document Revision History

