Secure Software Modeling Methods for Forensic Readiness

Lukáš Daubner, Tomáš Pitner

LAB OF SOFTWARE ARCHITECTURES AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS MASARYK UNIVERSITY, BRNO

Content

Security modelling

Security Modeling Methods

• Forensic Readiness

Security Modeling Methods for Forensic Readiness

Security by Design

•Defects in design

Lack of background in cybersecurity

• Security is often considered last

•Reactive patching is not enough

Security Modeling

Model-Driven Security

•UML profiles

Aspect-Oriented Modeling

• Domain Specific Languages

Security Modeling – Model-Driven Security

• Subset of Model-Driven Development

Semi-automatic transformations between models

Model verification

Security Modeling – UML profile

Extension to UML

•Stereotypes

•Tagged values

•Constraints

Security Modeling – Aspect-Oriented Modeling

Separation of concerns

Security concerns (aspects)
Independently modelled
Encapsulated
Access Control

Security Modeling Methods

UMLsec

• Formulated by J. Jürjens

•UML profile – an extension for security modeling

•Considered as most mature approach

Support for formal model verification

UMLsec – Concerns

Confidentiality

Access Control

Integrity
 Information Flow

•Authenticity •Fair Exchange

•Non-Repudiation •Etc.

lasaris

UMLsec – Example

Stereotype	Base class	Constraints	Description
secure links	subsystem	dependency security matched by links	enforces secure communication links
secrecy	dependency	read \notin Threats _A (s)	assumes secrecy
Internet	link		Internet connection
encrypted	link		encrypted connection

•Threat rules:

- Internet $Threats_A(s) \in \{delete, read, insert\}$
- encrypted $Threats_A(s) \in \{delete\}$

UMLsec – Example

UMLsec – Example

UMLsec – Example II

Stereotype	Base class	Constraints	Description
secure dependency	subsystem	«call» and «send» respect data security	structural interaction data security
critical	object		critical object

Тад	Stereotype	Description
secrecy	critical	Secrecy of data

UMLsec – Example II

UMLsec – Example II

SECTET

•UML profile

Object Constraint Language

•Aimed at distributed, inter-organizational workflows

Model-Driven

SECTET

- Workflow view
 - Global workflow
 - Local workflow
- Interface view
 - Document model
 - Interface model
 - •Role model
 - Access model

SECTET – Example

Global workflow model

SECTET – Example

•BPEL file for each partner-role

Security configuration

```
cprocess name="Sectino TaxAdvisor LWfM">
 <partnerLinks>
   <partnerLink name="MS Provider" partnerLinkType="Municipality LWfM"</pre>
    partnerRole="Municipality LWfM"/>
   <partnerLink name="TS Provider" partnerLinkType="TaxAdvisor LWfM"</pre>
   partnerRole="TaxAdvisor LWEMRequester"
   myRole="TaxAdvisor LWfMProvider"/>
 </partnerLinks>
 <variables>
   <variable name="input" messageType="AnnualStatement"/>
   <variable name="output" messageType="Confirmation"/>
   <variable name="input MU" messageType="ProcessedAS"/>
   <variable name="output MU" messageType="Notification"/>
 </variables>
 <sequence name="main">
  <receive name="receiveInput" partnerLink="TS Provider"
   portType="TaxAdvisor LWfM"
   operation="sendAnnualStatement" variable="input" createInstance="yes"/>
  <invoke // !!! INSERT CALLS TO LOCAL SERVICES !!! //>
  <invoke partnerLink="MS Provider" portType="Municipality LWfM"</pre>
   operation="sendProcessedAS" inputVariable="input MU"
   outputVariable="output_MU" name="sendProcessedAS"/>
   <invoke // !!! INSERT CALLS TO LOCAL SERVICES !!! //>
  <invoke name="callbackClient" partnerLink="TS Provider"</pre>
   portType="TaxAdvisor LWfMCallback"
   operation="onResult" inputVariable="output"/>
 </sequence>
</process>
```

```
PolicySet {(target=<AnnualStatement>)
PolicySet { target=<outbound>
PolicySet {(target=<processedAS>)
```

```
Policy (Aspect = "Confidentiality") {
  Rule {
    Signature-Algorithm = "RSA-SHA1",
    Node1 = "/self/annualIncome",
    Node2 = "/self/clientID",
    Recipient = "Municipality"} }
Policy (Aspect = "Integrity") {
    Rule {
    Signature-Algorithm = "RSA-SHA1",
    Node1 = "/self/",
    Recipient = "Municipality"}
```

```
}
PolicySet { target=<inbound>
PolicySet { (target=<processedAS>)
```

```
Policy (Aspect = "Qualified Sign") {
  Rule {
    Signature-Algorithm = "RSA-SHA1",
    Node1 = "/self/",
    Source = "Municipality"
    Signatories = 2}
```

```
}}}
```

lasaris

UML₄SOA-NFP

•UML profile

Extension to UML₄SOA

• Aimed on Service Oriented Architectures

•Non-functional requirements

UML₄SOA-NFP

Performance

Dependability

Reliable messaging

- Security
 - Confidentiality
 - Integrity
 - Non-repudiation
 - Privacy
 - Access Control

UML₄SOA-NFP – Example

UML₄SOA-NFP – Example

<?xml version='1.0'?> <service name="ApplicationValidationService"> <operations> </operations> <wsp:Policy wsu:Id="ApplicationValidationServiceSecurityPolicy"</pre> xmlns:wsu="http://docs.oasis-open.org/wss/ 2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:wsp="http://schemas.xmlsoap.org/ws/ 2004/09/policy"> <wsp:ExactlyOne> <wsp:All> <sp:Authentication xmlns:sp="http://schemas.xmlsoap.org/ws/ 2005/07/securitypolicy"> <wsp:Policy> <wsp:authToken> <wsp:Policy> <sp:Username/> </wsp:Policy> </wsp:authToken> </wsp:Policy> </sp:Authentication> $\sim \sim \sim$ <sp:Timestamp ... <wsp:Policy> <wsp:useTimestamp/> </wsp:Policv> </sp:Timestamp> </wsp:All> </wsp:ExactlyOne> </wsp:Policy> <wsp:Policy wsu:Id="ApplicationValidationServiceRMPolicy"</pre> xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401 -wss-wssecurity-utility-1.0.xsd" xmlns:wsrm="http://ws.apache.org/sandesha2/policy"> <wsp:ExactlyOne> <wsp:All> <wsrm:filterDuplicates>true</wsrm:filterDuplicates> <wsrm:needsAck>true</wsrm:needsAck> <wsrm:maxNumberOfRetrans>3</wsrm:maxNumberOfRetrans> <wsrm:retransInterval>10000</wsrm:retransInterval> <wsrm:timeout>60</wsrm:timeout> </wsp:All> </wsp:ExactlyOne> </wsp:Policy> </service>

AOMsec

Aspect-Oriented approach

•UML profile

•Non-functional requirements

Model-Driven

AOMsec – Example

AOMsec – Example

Sec@Runtime

Aspect-Oriented approach

•UML profile

Runtime weaving

• Platform and toolset

SecureDWs

•UML profile

•Aimed at Data Warehouses

Tackles auditing concern

•Access control, privacy, integrity, etc.

${\small Secure DWs-Example}$

Тад	Stereotype	Description	Туре
LogType	class	Specifies if access should be recorded	Attempt
LogCond	class	Specifies condition when is access recorded	OCLExpression
ExceptSign	class	Allow/deny access if constraint applies	{+,-}
InvolvedClasses	class	Constraint applicable if query contains given classes	Set(OCLType)

SecureDWs-Example

31

Forensic Readiness

What is Forensic Readiness?

- Definition by J. Tan (2001)
 - Maximizing the usefulness of incident evidence data
 - Minimizing the cost of forensics during an incident response
- •Systematic preparation for forensic investigation
- Proactive measures
 - Opposed to actual investigation, which is reactive
- Increases likelihood of successful investigation

Forensic Readiness in Software Engineering

• Formulated by Pasquale et al. (2018)

Prepare software system during its development
Forensic-by-design

•Support for:

- Proactive evidence securing
- Data provenance
- Ensuring chain of custody

Non-functional requirement

Forensic Readiness Concerns

- Availability
- Relevance
- Minimality
- Linkability
- Completeness
- Non-repudiation
- Data provenance
- Legal compliance

Forensic Readiness Concerns Meets Security

• Partial overlap with security concerns

• Typically specialized applications of concerns

Difference between technical and legal understanding
Both needs to be addressed

Forensic Readiness Concerns Meets Security

- Availability
- Relevance
- Minimality
- Linkability
- Completeness
- Non-repudiation
- Data provenance
- Legal compliance

Relevant Security Modeling Methods

Method	Domain	Approach	Security concerns
UMLsec	General	UML profile	Integrity, Non-repudiation
SECTET	Distributed workflows	UML profile	Integrity, Non-repudiation
AOMsec	General	AOM, UML profile	Integrity
Sec@Runtime	General	AOM, UML	Integrity
SecureDWs	Data Warehouses	UML profile	Integrity, Non-repudiation, Auditing
UML ₄ SOA-NFP	SOA	UML profile	General non-functional requirements

Relevant Security Modeling Methods

- UMLsec
 - Most promising basis
- AOMsec
 - Lower overhead for designer
 - Patterns
- SecureDWs
 - Auditing description

Conclusion

Security-by-design is important to avoid defects

• Similar motivation for forensic readiness

- •Secure modeling methods are promising in forensic readiness
 - There are overlaps in concerns
 - Although they are not directly applicable
 - They can be used as a basis for forensic readiness modeling

References

- Jürjens J. (2002) UMLsec: Extending UML for Secure Systems Development. In: Jézéquel JM., Hussmann H., Cook S. (eds) «UML» 2002 — The Unified Modeling Language. UML 2002. Lecture Notes in Computer Science, vol 2460. Springer, Berlin, Heidelberg
- Hafner, Michael, Ruth Breu, Berthold Agreiter and Andrea Nowak. "SECTET An Extensible Framework for the Realization of Secure Inter-Organizational Workflows." WOSIS (2006).
- Gilmore, Stephen & Gönczy, László & Koch, Nora & Mayer, Philip & Tribastone, Mirco & Varro, Daniel. (2010). Non-functional properties in the model-driven development of service-oriented systems. Software and System Modeling. 10. 287-311. 10.1007/s10270-010-0155-y.
- Sánchez, Pablo & Moreira, Ana & Fuentes, Lidia & Araújo, João & Magno, José. (2010). Modeldriven development for early aspects. Information & Software Technology. 52. 249-273. 10.1016/j.infsof.2009.09.001.
- Eduardo Fernández-Medina, Juan Trujillo, Rodolfo Villarroel, and Mario Piattini. 2007. Developing secure data warehouses with a UML extension. Inf. Syst. 32, 6 (September 2007), 826-856. DOI=http://dx.doi.org/10.1016/j.is.2006.07.003

