
Lesson 7 – Particle systems
Compute shaders, Geometry shaders

PV227 – GPU Rendering

Jiří Chmelík, Jan Čejka
Fakulta informatiky Masarykovy univerzity

22. 10. 2019

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 1 / 32

Particle systems

Particle systems are used for many effects:

Fire Smoke

water, wind, explosions, debris, leaves, birds, . . .

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 2 / 32

N-body simulation

N-Body simulation

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 3 / 32

Physics behind

Force between particles:

F = G
m1m2

r2

Acceleration:

a =
F
m

Position:

x =

∫
a dt2

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 4 / 32

Physics behind

Force from particle pother to partice p:

|F | =
constant
‖pother − p‖2

direction of ~F = direction of (pother − p)

Acceleration:

a = constant ·
∑

F

Position:

x1 = x0 + v0∆t +
1
2

a∆t2

v1 = v0 + a∆t

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 5 / 32

Physics – pseudocode

foreach particle p do
x0 ← read p’s position
v0 ← read p’s velocity
accel ← (0,0,0)
foreach other particle other do

xother ← read other ’s position
direction← xother − x0
dist2 ← dot(direction,direction)
if dist2 > threshold then

accel ← accel + normalize(direction)/dist2

end
end
accel ← accel · accel_factor
x1 ← x0 + v0∆t + 1

2 accel∆t2

v1 ← v0 + accel∆t
store x1
store v1

end

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 6 / 32

Task: Implement N-body simulation

Task 1: Implement N-body simulation on CPU
I See the comments in C++ code for the names of variable and

constants
I Don’t forget there are two arrays with particle positions, one to read

from and one to write into
I The complexity is O(n2), test on low number of particles. Once it all

works, try Release build.

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 7 / 32

General Purpose GPU (GPGPU)

Motivation: Use those many threads on GPU to speed up our
computation.
In this lecture, we will describe the very basics of GPGPU. For
more information:

I Loop up CUDA or OpenCL on the Internet
I See PV197 GPU Programming

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 8 / 32

History of GPGPU

Brief history:
I Since cca 2000: fragment shaders
I Since cca 2006: CUDA, OpenCL
I Now: Compute shaders

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 9 / 32

Basic principles of compute shaders

Similar to vertex/fragment shaders:
I Many (mostly independent) threads
I Threads do (mostly) the same

Different from vertex/fragment shaders:
I VS/FS processes one vertex/fragment
I Compute shaders may process whatever
I Each thread may process any number of items
I Threads can share the mid-results of the computation

Reading and writing data
I Buffers via SSBO
I Textures via image load/store
I Atomic operations
I OK, available in other shaders too

Can do (mostly) whatever, so beware of bugs in the code

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 10 / 32

Support in OpenGL

GLSL code like in other shaders:
I Access to uniform variables, UBOs, SSBOs, textures
I Structures vec4, mat4, . . .
I Functions dot, cross, . . .
I Runs the code in main function

Loading and using similarly as other shaders
I glCreateShader(GL_COMPUTE_SHADER)
I Attaching to programs, using programs

Outside rendering pipeline
I Use glDispatchCompute instead of glDraw*

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 11 / 32

Organization of threads

Threads are organized into work groups:

6 work groups, 24 threads
Threads in work group can share data via shared memory
Threads can be organized in 1D, 2D, and 3D. We will use 1D.
Up to 1024 threads in one work group.
Up to 65536 work groups.

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 12 / 32

Indexing of threads

Specifying number of threads in work group:
In GLSL: layout (local_size_x = 256) in;

Specifying number of work groups:
In C++: glDispatchCompute(#_of_work_groups_in_x, 1, 1);

Index of a thread in its work group:
In GLSL: gl_LocalInvocationID.x

Index of a thread in all work groups:
In GLSL: gl_GlobalInvocationID.x

Index of the work group a thread is a part of
In GLSL: gl_WorkGroupID.x

Size of one work group (as specified with layout):
In GLSL: gl_WorkGroupSize.x

Number of work groups (as specified with glDispatchCompute):
In GLSL: gl_NumWorkGroups.x

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 13 / 32

Indexing of threads

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 14 / 32

Task: Rewrite to compute shaders

Task 2: Implement N-body simulation in compute shaders
I See the comments in the code for the names of variable and

constants
I Use one thread to compute one particle.
I Copy and paste the code from C++ and do minor changes

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 15 / 32

Sharing data between threads

Sharing via shared memory, can be shared only between threads
in the same work group.
Specification in GLSL:

shared variable_type variable_name;
Stored values are visible to other threads
Threads run in parallel (!), so we must synchronize the threads
GLSL function barrier()

I Calling thread waits until all other threads in the work group reach
the barrier

I After the barrier, all threads can read the new values in shared
variables

I After the barrier, no threads will need the old data in shared
variables

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 16 / 32

Sharing data between threads – diagram

Without shared memory With shared memory

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 17 / 32

Sharing data between threads – pseudocode

foreach particle p do. . .
foreach gl_WorkGroupSize.x of other particles do

read position of one particle into shared memory
barrier() – wait until all other threads read their positions
foreach other particle other in shared memory do

process the particle
end
barrier() – wait until all other threads finish processing the data

end
. . .

end

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 18 / 32

Task: Share data between threads

Task 3: Share the positions between threads in work group
I Copy the code from nbody_compute.glsl to

nbody_shared_compute.glsl and rewrite it
I See the comments in the code for the names of variable and

constants

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 19 / 32

Pros and cons of using compute shaders

When compared to CPU:
I Pros: many threads, the data stays on GPU
I Cons: threads must run mostly the same code

When compared to other shaders
I Pros: more flexible
I Cons: more difficult

When compared to CUDA / OpenCL
I Pros: native access to buffers / textures
I Cons: less flexible

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 20 / 32

glMemoryBarrier

glMemoryBarrier
When the data is updated using outputs from vertex/fragment
shaders, memory copies etc., OpenGL knows which data is
update, what operations must wait and what operations may be
executed in parallel.
When we load/store the data using SSBO or texture images (in
compute or other shaders), OpenGL does not know what was
done. Delaying all operations may not be necessary.
Use glMemoryBarrier to tell OpenGL which memory reads
depend on the result of the (not only compute) shaders.
Look up its usage in Cv7_main.cpp.

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 21 / 32

Geometry shaders

New programmable stage (optional)
Between vertex shader and fragment shader
Takes the whole primitive on input
Creates new primitives on output
Use GL_GEOMETRY_SHADER in C++ to create a geometry
shader

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 22 / 32

Input Primitives

Defined in GLSL code:
layout (primitive_type) in;

Five supported types, each corresponds with different number of
vertices visible on input

primitive #vertices
points 1
lines 2
lines_adjacency 4
triangles 3
triangles_adjacency 6

Primitive type must match the draw command
I Input triangles, drawing triangles: OK
I Input triangles, drawing triangle strip: OK
I Input points, drawing triangles: not OK

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 23 / 32

Additional OpenGL primitives

GL_LINES_ADJACENCY

GL_LINE_STRIP_ADJACENCY

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 24 / 32

GL_TRIANGLES_ADJACENCY

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 25 / 32

GL_TRIANGLE_STRIP_ADJACENCY
PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 26 / 32

Output Primitives

Three options: points, line_strip, triangle_strip
Geometry shader must also specify maximum number of vertices
that can be generated.
Specification in GLSL:

layout (triangle_strip, max_vertices = 4) out;
Input primitive needs not to correspond with output primitive
Input primitive is discarded

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 27 / 32

Input Data

Data from vertex shader, in arrays.
Size of the array corresponds to the number of vertices of the
input primitive.
Build-in variables in array gl_in, e.g.:

gl_in[0].gl_Position
Other variables must be defined as arrays, e.g.:

in VertexData { ... } inData[];
Size of the array may either be not specified, or must correspond
to the number of vertices of the primitive.

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 28 / 32

Output Data

Output data specified in the same way as in vertex shader.
Once all data of a vertex is specified, call EmitVertex()
Always define values of all output variables!
Primitive can be closed and restarted with EndPrimitive()

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 29 / 32

Example: Render points as textured quads

Use geometry shaders to render quads with texture in place of
points.
Input primitive is point
Output primitive is one triangle strip of four vertices
Positions and texture coordinates can be computed very well in
view space:

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 30 / 32

Task: Render points as textured quads

Task 4: Use geometry shaders to render points as quads
I In vertex shader, transform the position into view space, and pass

the color.
I In geometry shader, derive the position, texture coordinate and

color of each vertex, and compute gl_Position
I Fragment shader is done.

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 31 / 32

More on geometry shaders

In the next lecture . . .

PV227 – GPU Rendering (FI MUNI) Lesson 7 – Particle system 22. 10. 2019 32 / 32

