Lesson 11 — Physically-based rendering
Image-based lighting
PV227 — GPU Rendering

Jiti Chmelik, Jan Cejka
Fakulta informatiky Masarykovy univerzity

26. 11. 2019

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 1/29



Physically-based rendering (PBR)

o Physically-based rendering: Theory (cont.)

» Light & Lights
» BRDF
» Sensors (cameras, eyes)

o Image-based lighting

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 2/29



Light — quantities and units

o Quantities and units
Radiant energy
Radiant flux
Irradiance
Intensity
Radiance

o Different equations use different quantities
o Convertible between each other

vy VvYyy

\4

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 3/29



Light — quantities and units (cont.)

o Radiant energy (Q)
» “Energy of one photon”
» Joule: J
o Radiant flux, radiant power (®)
“Energy per second”
dQ/dt
Watt: W =J/s

vvyVvYy

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019

Great to describe the power of lights like light bulb, area lights, . ..

4/29



Light — quantities and units (cont.)

o Irradiance (E)

“Flux through area”

do/dA

» Watt per square meter: W/m?

Drops with the square of the distance

» Great to describe the power of strong distant lights like the sun

o Intensity (/)

“Flux through a cone of directions”
do/dw

Watt per steradian: W/sr

Does not drop with the distance

vy

v

v

vvYyy

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 5/29



Light — quantities and units (cont.)

o Radiance (L)
» “Flux through a cone of directions from an area” or “Flux through an
area from a cone of directions”
> 020 /dApdw
» Watt per square meter: W/m?sr
» This is what sensors measure

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 6/29



BRDF

Bidirectional Reflectance Distribution Function

o Describes the relation between the incoming and outcoming light

f(7.v) = Ogg%’

—

o Surface is illuminated from direction / with irradiance dE(/)
o ltis reflected in various directions
o dLo(V) is the outcoming radiance in direction v

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019

7/29



Properties of BRDF

@ For non-area lights:

LW
. v) = E; cos(6;)

o Energy conservation (for each incoming direction 7 :

/ f(I, V) cos 80w, < 1
Q

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 8/29



BRDF — Examples

o BRDF of diffuse light:

(7. v) = “ar

s

o Note: this is what we use in shaders:
dif = max(0.0, dot(N, L)) * Cdiff;

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL

26. 11. 2019

9/29



BRDF — Examples

o BRDF in the Cook-Torrance paper

varv DussauL s UprIaTA s v savay Ui [PRURNN [

length dependence of the reflectance model.

DIRECTIONAL DISTRIBUTION OF THE REFLECTED LIGHT

The ambient and diffuse components reflect light equally in all directions. Thus
R, and R4 do not depend on the location of the observer. On the other hand, the
specular component reflects more light in some directions than in others, so that
R, does depend on the location of the observer.

The angular spread of the specular component can be described by assuming
that the surface consists of microfacets, each of which reflects specularly [23].
Only facets whose normal is in the direction H contribute to the specular
component of reflection from L to V. The specular component is

F DG

BT mDNY)

The Fresnel term F describes how light is reflected from each smooth microfacet.
It is a function of incidence angle and wavelength and is discussed in the next
section, The geometrical attenuation factor G accounts for the shadowing and

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 10/29



BRDF — Examples

@ BRDF in TriAce (presented at SIGGRAPH 2010 course)

2. Customized Blinn-Phong model

The following equation is our BRDF model based on the Blinn-Phong model™!

p= %((1 Fy () — 2 uFm(({“ )(L\\H;) ; @
47(2-27?)
Fp(fo) and F, (f,) areFresnel functions. We used Schlick’s approximation for them:
Fup(f) = fo+ (- f)A-N-L)’, )
Foo(f)=fo+U-f)1-E-H)’. ©)

The BRDF shown in Equation 4 basically follows the laws of energy conservation. However, the function

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019

11/29



BRDF — Examples

@ BRDF in Frostbite (presented at SIGGRAPH 2014 course)

3.1.2 Material models

In the context of this standard material model, a surface response f is often decomposed into two dif-
ferent terms: a low angular frequency signal called “diffuse” (fz) and a low to high angular frequency
part called “specular” (f,), see Figure 5. An interface separates two media: the air and the matter.
Surfaces made of a flat interface can easily be represented by the Fresnel law [Wikd] for both dielec-
tric and conductor surfaces. When the interface is irregular, see Figure 6, the literature shows that
microfacet based models [CT82] are well adapted to characterize the light interaction for these types
of surfaces. A microfacet model is described by Equation 1, for more details about the derivations see

[Heild]:
Fagr(v)

The term D models the microfacet distribution (i.e. the NDF, Normal Distribution Function). The G
term models the occlusion (shadow-masking) of the microfacets. This formulation is valid for both the
diffuse term f4 and the specular term f,. The difference between these two terms lies in the microfacet
BRDF f,,. For the specular term, f,, is a perfect mirror and thus is modeled with the Fresnel F law,
which leads to the well-known following formulation:

F(v,h, fo, fo) G(v,1,h) D(h,a)
4{n-v)(m-1)

The term D plays an important role in the appearance of surfaces, as shown by Figure 6. The literature,

[Wal+; Burl2] has recently pointed out that “long-tailed” NDFs, like the GGX distribution, are good

= Wl‘““ [ fm(,1,m) G, 1,m) Dm, ) (v )1 m) dim 1)

fr(v) = 2

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 12/29



Sensors

o Many small sensors, each measure irradiance (flux through an
area) over time

o System of lences and aperatures, which define the cone
» Lences in camera or eye, aperature of a camera, pupil in an eye
» So instead of irradiance, the system measures radiance
» Remember Depth-of-field techniques

o The result is the energy

@ Conversion to the output signal (logarithmic etc.)

» Linear color space (RGB) vs. non-linear spaces (sRGB)
» Remember HDR, gamma correction

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 13/29



Image-based lighting

Image-based lighting

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 14/29



Image-based lighting

o Use the light from a texture
» Environment textures, light probes
» Usually HDR cubemap textures

o Evaluate the integral using the BRDF to obtain the final color
» Sampling the directions

* Uniform sampling
* Non-uniform importance sampling

» Precomputation

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 15/29



Task: Implement image-based lighting

o Based on Real Shading in Unreal Engine 4 (presented at
SIGGRAPH 2013 Course)

o With some changes, we use:

» Uniform sampling for diffuse light
» Importance sampling for specular light
» Cook-Torrance based material
* Fresnel as at the previous lecture
* Geometry attenuation as at the previous lecture
* Microfacet distribution is not important (according to the paper)

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019

16/29



Legend to the following equations

o N, T, B are surface normal, tangent, and bitangent
o L is direction to the light, V is direction to the viewer
o H is half-vector, vector between the light and the viewer

o All dot products are non-negative, e.g.: max(0, N - L)
» For better result, clamp them to be non-zero, e.g. not less than
0.001, to avoid divisions by zero
o All vectors are normalized
o Fresnel(V - H) = Fo+ (1 — Fo)(1 —
1, 2008
(V-H

)5
N- \7) 2-(N-H)-(N-Z))
) v

o Geom. atten. G = min(1, , 5

—

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 17/29



Uniform sampling for diffuse lighting

Output: Random direction 7 on a hemisphere (in the direction of z)

Input: Two random numbers R.x and R.y, uniformly distributed in
(0,1)

begin

¢ <+ 27 - R.x

cos(f) + R.y

sin(6) < /1 — cos?(6)

F.x < sin(0) cos(¢)

r.y < sin(6)sin(¢)

.z + cos(f)

return r
end

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 18/29



Computation of diffuse lighting

Output: Diffuse color color

begin

color + (0,0,0)

forall diffuse samples / do
R.x, R.y < i-th pair of random numbers
r <+ random direction from R.x, R.y
L«Fx-T+Fy-B+Fz-N
light + SampleCubeTexture(L)/#samples
color « color + Cyiss - (N - L) - light

end

return color
end

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019

19/29



Non-uniform importance sampling for specular lighting

Output: Random direction 7 on a hemisphere (in the direction of z)

Input: Two random numbers R.x and R.y, uniformly distributed in
(0,1), roughtness m

begin

¢+ 21 - R.x

cos(f) « ( SRy )Ry

sin(f) < \/1 cos?(6)

F.x < sin(0) cos(¢)

ry%sm( )sin(¢)

F.z + cos(f)

return r
end

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 20/29



Computation of specular lighting

Output: Specular color color

begin

color < (0,0,0)

forall specular samples / do

R.x, R.y < another i-th pair of random numbers
r — random dlrec’non from R x,R.y

H<—rx T+ry B+rz-N

L « reflect(—V, H)

light < SampleCubeTexture(L) /#samples

F < Fresnel(...)

G « GeometricAttenuation(. . .)

color + color + F- G- (V- H)/((N- H) - (N - V)) - light
end

return color
end

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019

21/29



Task: Test scene

Test scene

o Materials: red/green/blue plastics, iron, copper, gold, alluminium,
silver

o Roughness: 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 22/29



Task: IBL with diffuse lighting

o Task 1: Implement diffuse lighting

» Fragment shader object fragment.gls/
» Try higher number of samples
» Try sampling higher mipmap-levels of cube map texture

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 23/29



Task: IBL with diffuse lighting

Result, metals have zero diffuse light

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 24/29



Task: IBL with specular lighting

o Task 2: Implement specular lighting

» Try higher number of samples
» Try sampling higher mipmap-levels of cube map texture
» Try using a mask texture to change the roughness

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 25/29



Task: IBL with specular lighting

Result, with masked roughness

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 26/29



Task: Layered material

o Task 3: Create a thin shiny layer
» The layer is completely transparent (except for the perfect
reflection)
» Set its base Fresnel reflectance to 0.04 (it is a dielectric material)
» Try using a mask texture to create parts of semitransparent white
areas.

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 27/29



Task: Layered material

Result, with masked semitransparent areas

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 28/29



Things we used

o Depth-prepass
» Some graphic cards reorder evaluation of fragment shaders and
evaluation of the depth test (when safe)
* Depth test is first, skipping FS when the fragment is hidden
» Sometimes, it is benefical to render the whole scene very simply
into depth buffer first, and then into the color buffer
* Each fragment is evaluated only once
* Rendering the objects from the closest also helps
o Early depth tests
Fragment shader: layout (early_fragment _tests) in;
Forces the above behaviour
Stencil test is also performed before running the fragment shader
Do not use this when you change the fragment depth or when you
discard the fragment

v

vvyy

PV227 — GPU Rendering (FI MUNI) Lesson 11 — PBR, IBL 26. 11. 2019 29/29



