
Lesson 12 – Modern OpenGL
Vulkan

PV227 – GPU Rendering

Jiří Chmelík, Jan Čejka
Fakulta informatiky Masarykovy univerzity

3. 12. 2019

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 1 / 24



Modern OpenGL and Vulkan

Theory
I Modern OpenGL

F Briefly look at some not-yet-covered areas
I Vulkan

F Briefly look at the basic concepts

Practice
I Try some methods in OpenGL

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 2 / 24



Modern OpenGL

Separate shader objects
Immutable storage for buffers/textures
Texture views
Separating format of vertex shader inputs
Indirect drawing
Direct State Access (DSA)

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 3 / 24



Separate shader objects

Since OpenGL 4.1, see extension
GL_ARB_separate_shader_objects
Allows the programmer to use separate shaders without
combining them into shader programs
No linking – checking the input/output correctness on the fly

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 4 / 24



Immutable storage

New way of allocating the memory for buffers/textures
I Memory allocated only when the object is created
I Delete and recreate the object to reallocate the memory

Saves many checks of the driver
Buffers

I Since OpenGL 4.4, see extension GL_ARB_buffer_storage
I The type of memory to be allocated is specified better than with

glBufferData
F Memory accessible by CPU and GPU (for copies)
F Memory accessible only by GPU (for rendering)

Textures
I Since OpenGL 4.2, see extension GL_ARB_texture_storage
I Allocates the texture with all mipmaps
I Texture is always complete
I The data is uploaded with glTexSubImage*

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 5 / 24



Texture views

Since OpenGL 4.3, see extension GL_ARB_texture_view
Treat a part of a texture as a separate texture

I 2D texture from a slice of an array of 2D textures
I Cube texture from six slices of an array of 2D textures
I . . .

Change the interpretation of the pixel data
I Treat GL_RGBA32F as GL_RGBA32UI
I . . .

No allocation of memory, uses the memory of the original texture
Saves number of combination of shaders, . . .

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 6 / 24



Separating vertex format

Since OpenGL 4.3, see extension GL_ARB_vertex_attrib_binding
Separates the format of vertex shader input (e.g. 3 floats without
normalization) and the buffer in which the data is stored
Binds separately the format and the buffers
Changing the format is more complicated for the driver than
setting the buffers
Many geometries have the same format – when being rendered,
only the buffers are changed

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 7 / 24



Indirect drawing

Since OpenGL 4.0, see extension GL_ARB_draw_indirect
Stores the parameters of the draw commands (first vertex to draw,
number of vertices to draw, etc.) on the GPU.
No need to transfer the parameters from CPU to GPU every frame
The buffers can be changed from GPU, e.g. by compute shaders

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 8 / 24



Direct State Access (DSA)

Extension GL_EXT_direct_state_access
Present OpenGL since version 4.5, but only subpart for the core
profile and newest methods
Allows us to query/change/. . . parameters of
buffers/textures/. . . without binding them

I Example: instead of
glBindTexture(GL_TEXTURE_2D, my_tex);
glTexParameteri(GL_TEXTURE_2D, xxx, yyy);

use:
glTextureParameteri(my_tex, xxx, yyy);

Functions have very similar names

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 9 / 24



Vulkan

Very brief introduction into Vulkan and similar APIs (Direct3D 12,
Metal)
Many concepts can be found in OpenGL via extensions
Topics

I Target platforms
I Devices, rendering contexts, layers
I Swap chain
I Command queues and synchronization
I Command lists
I Pipeline state
I Buffers and textures
I Shaders

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 10 / 24



Vulkan vs. OpenGL

Vulkan vs. OpenGL, from Khronos: Vulkan Overview

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 11 / 24



Target platforms

Cross-platform like OpenGL
For desktops and mobiles (OpenGL and OpenGL ES together)

I Mobiles (and NV Maxwell and newer) use tiled archtecture

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 12 / 24



Devices, rendering contexts, layers

Choosing proper rendering device (graphics card)
I Better cooperation between multiple devices
I Can be done in OpenGL, but harder

Vulkan uses layers as “plugins”
I Debug layers for checking correctness of parameters
I Layers for profiling
I Third-party libraries, not a part of the driver
I No layer – no checking, no debugging, fast code

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 13 / 24



Swap chain

Mostly the same as swap chain in Direct3D
Represents the back buffer of the window
Accessible in rendering as a texture
Parameters

I Number of buffers in swap chain
I What to do when the buffers swap

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 14 / 24



Command queues and synchronization

Commands processed by multiple queues
I Graphics queues (rendering)
I Compute queues (compute shaders)
I Transfer queues (copying the data)

Queues run parallel between each other
Synchronization objects

I Synchronization between GPU and CPU
I Synchronization between GPU queues

The programmer cares about the synchronzation, not the driver

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 15 / 24



Command lists

Individual commands for the API
I Setting states
I Draw commands
I Copying data
I . . .

Created on CPU, possibly in parallel
Grouped into command lists
Inserted into command queues to be processed

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 16 / 24



Pipeline state

All rendering states in one pipeline state object
I Shaders, vertex format
I Parameters of blending, depth test, rasterization
I . . .

The correctness is checked once when the object is created
Very small amount of parameters can be changed after the
creation

I Viewports, scissors, stencil ref values, polygon offset, . . .

Contains the parameters of the data (e.g. vertex input format,
number of attachments of FBO), but not the data itself
Data (buffers, textures) are set separately

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 17 / 24



Buffers and textures

Buffers and textures separated from the underlying memory
I Memory allocated in large chunks
I Buffers and textures are “bound” to subparts
I The programmer manages suballocations, deals with fragmentation

of the memory, . . .
I The programmer handles updates of asynchronously used buffers.

Sparse resources
I Only a part of a buffer/texture has the underlying memory, the

programmer must ensure that the regions accessed by shaders
have the memory

I Allows us to create very large textures (e.g. million × million pixels)
I Useful e.g. for heightmaps – the whole heightmap is usually not

accessed at the same time

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 18 / 24



Shaders

Vulkan uses SPIR-V
I Binary language
I Basically any language can be compiled into SPIR-V
I GLSL→ SPIR-V compilers are available

The code is precompiled – faster to load

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 19 / 24



Vulkan – Conclusion

It is not about new functions / shaders / hardware features
It is more about better cooperation with the driver
Many features available in OpenGL via extensions

I Start using new way of setting input vertex format
I Start using buffer/texture storage
I Update the data from CPU to GPU via persistent buffers (accessible

by both CPU and GPU, but not synchronized by the driver)
I Look up bindless buffers and textures
I Look up extension GL_NV_command_list
I Look up presentations on “Approaching Zero Driver Overhead”

(AZDO)

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 20 / 24



Practice

Update the data of camera without implicit OpenGL
synchronization
Render the whole scene with a single draw command

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 21 / 24



Task: Update camera data

Use multiple buffers, and switch them like with a circular buffer
Use multiple fences to check that the data that you change is not
used anymore

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 22 / 24



Task: Update camera data

Task 1: Update the data of the camera without implicit OpenGL
synchronization

I Look into the code on how to use buffers in a new way
I Look into the code on how to use fences
I Set TASK_ONE_METHOD to

TASK_ONE_METHOD_NEW_WAY_NEW_UPDATE_CORRECT
I Use multiple buffers and multiple fences.

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 23 / 24



Task: Draw the whole scene with one draw command

Task 2: Use NV extension and indirect drawing to create a list of
draw calls and draw the whole scene with one draw command

I Inspect the source code.
I Set TASK_TWO_METHOD to TASK_TWO_METHOD_USE.
I There are two places in shaders that needs to be changed.
I Setup a new VAO object VertexFormat_VAO with the format of the

geometry.
I Create a rendering command for each object in the scene

(including the floor)

PV227 – GPU Rendering (FI MUNI) Lesson 12 – Vulkan 3. 12. 2019 24 / 24


