Jiti Chmelik, Jan Cejka
Fakulta informatiky Masarykovy univerzity

3. 12. 2019

Modern OpenGL and Vulkan

@ Theory
» Modern OpenGL
* Briefly look at some not-yet-covered areas
» Vulkan
* Briefly look at the basic concepts
o Practice
» Try some methods in OpenGL

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 2/24

Modern OpenGL

Separate shader objects

Immutable storage for buffers/textures
Texture views

Separating format of vertex shader inputs
Indirect drawing

Direct State Access (DSA)

© ©6 06 06 0 o

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 3/24

Separate shader objects

@ Since OpenGL 4.1, see extension
GL_ARB_separate_shader_objects

o Allows the programmer to use separate shaders without
combining them into shader programs

@ No linking — checking the input/output correctness on the fly

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019

4/24

Immutable storage

@ New way of allocating the memory for buffers/textures

» Memory allocated only when the object is created
» Delete and recreate the object to reallocate the memory

@ Saves many checks of the driver
o Buffers

» Since OpenGL 4.4, see extension GL_ARB_buffer _storage
» The type of memory to be allocated is specified better than with
glBufferData
* Memory accessible by CPU and GPU (for copies)
* Memory accessible only by GPU (for rendering)
o Textures
Since OpenGL 4.2, see extension GL_ARB_texture_storage
Allocates the texture with all mipmaps
Texture is always complete
The data is uploaded with g/TexSublmage*

\4

vvyy

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 5/24

Texture views

©

Since OpenGL 4.3, see extension GL_ARB_texture _view
Treat a part of a texture as a separate texture

» 2D texture from a slice of an array of 2D textures

» Cube texture from six slices of an array of 2D textures

> ..
Change the interpretation of the pixel data

» Treat GL_RGBA32F as GL_RGBA32UI!

|

(%)

(%)

©

No allocation of memory, uses the memory of the original texture

©

Saves number of combination of shaders, ...

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 6/24

Separating vertex format

@ Since OpenGL 4.3, see extension GL_ARB_vertex_attrib_binding

o Separates the format of vertex shader input (e.g. 3 floats without
normalization) and the buffer in which the data is stored

o Binds separately the format and the buffers

@ Changing the format is more complicated for the driver than
setting the buffers

@ Many geometries have the same format — when being rendered,
only the buffers are changed

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 7/24

Indirect drawing

@ Since OpenGL 4.0, see extension GL_ARB_draw _indirect

o Stores the parameters of the draw commands (first vertex to draw,
number of vertices to draw, etc.) on the GPU.

@ No need to transfer the parameters from CPU to GPU every frame
@ The buffers can be changed from GPU, e.g. by compute shaders

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 8/24

Direct State Access (DSA)

o Extension GL_EXT direct _state _access

o Present OpenGL since version 4.5, but only subpart for the core
profile and newest methods

o Allows us to query/change/.. . parameters of
buffers/textures/. . . without binding them

» Example: instead of
g/BindTexture(GL_TEXTURE_2D, my_tex);
glTexParameteri(GL_TEXTURE_2D, xxx, yyy);

use:
glTextureParameteri(my _tex, xxx, yyy);

@ Functions have very similar names

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019

9/24

Vulkan

@ Very brief introduction into Vulkan and similar APls (Direct3D 12,
Metal)

@ Many concepts can be found in OpenGL via extensions
o Topics
» Target platforms
Devices, rendering contexts, layers
Swap chain
Command queues and synchronization
Command lists
Pipeline state
Buffers and textures
Shaders

vV vy vy VY VY VY

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 10/24

Vulkan vs. OpenGL

L. (Vul\kanm

GoonGLES.

Application

Single thread per context

v

High-level Driver

Abstraction
Context management
Memory allocation
Full GLSL compiler
Error detection

Layered GPU Control

Application
Memory allocation
Thread management
Multi-threaded generation
of command buffers
Multi-queue work
submission

Language Front-end

Compilers
Initially GLSL

v v v

Thin Driver
Explicit GPU Control

SPIR-V pre-compiled
shaders

GPU

GPU

Loadable debug and
validation layers

Vulkan vs. OpenGL, from Khronos: Vulkan Overview

PV227 — GPU Rendering (FI MUNI)

Lesson 12 — Vulkan

3. 12. 2019

11/24

Target platforms

@ Cross-platform like OpenGL
o For desktops and mobiles (OpenGL and OpenGL ES together)
» Mobiles (and NV Maxwell and newer) use tiled archtecture

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 12/24

Devices, rendering contexts, layers

@ Choosing proper rendering device (graphics card)
» Better cooperation between multiple devices
» Can be done in OpenGL, but harder
o Vulkan uses layers as “plugins”
Debug layers for checking correctness of parameters
» Layers for profiling
» Third-party libraries, not a part of the driver
» No layer — no checking, no debugging, fast code

v

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019

13/24

Swap chain

@ Mostly the same as swap chain in Direct3D
o Represents the back buffer of the window

@ Accessible in rendering as a texture
o Parameters

» Number of buffers in swap chain
» What to do when the buffers swap

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019

14/24

Command queues and synchronization

@ Commands processed by multiple queues

» Graphics queues (rendering)
» Compute queues (compute shaders)
» Transfer queues (copying the data)

o Queues run parallel between each other

@ Synchronization objects

» Synchronization between GPU and CPU
» Synchronization between GPU queues

@ The programmer cares about the synchronzation, not the driver

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 15/24

Command lists

o Individual commands for the API
Setting states

» Draw commands

» Copying data
»

v

@ Created on CPU, possibly in parallel
@ Grouped into command lists
o Inserted into command queues to be processed

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 16/24

Pipeline state

©

All rendering states in one pipeline state object

» Shaders, vertex format

» Parameters of blending, depth test, rasterization
> ..

(%)

The correctness is checked once when the object is created

Very small amount of parameters can be changed after the
creation

» Viewports, scissors, stencil ref values, polygon offset, . ..

Contains the parameters of the data (e.g. vertex input format,
number of attachments of FBO), but not the data itself

Data (buffers, textures) are set separately

©

o

©

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 17/24

Buffers and textures

o Buffers and textures separated from the underlying memory
» Memory allocated in large chunks
» Buffers and textures are “bound” to subparts
» The programmer manages suballocations, deals with fragmentation
of the memory, ...
» The programmer handles updates of asynchronously used buffers.

@ Sparse resources
» Only a part of a buffer/texture has the underlying memory, the
programmer must ensure that the regions accessed by shaders
have the memory
» Allows us to create very large textures (e.g. million x million pixels)
» Useful e.g. for heightmaps — the whole heightmap is usually not
accessed at the same time

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 18/24

Shaders

@ Vulkan uses SPIR-V
» Binary language
» Basically any language can be compiled into SPIR-V
» GLSL — SPIR-V compilers are available

@ The code is precompiled — faster to load

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 19/24

Vulkan — Conclusion

o Itis not about new functions / shaders / hardware features
o Itis more about better cooperation with the driver
o Many features available in OpenGL via extensions
» Start using new way of setting input vertex format
» Start using buffer/texture storage
» Update the data from CPU to GPU via persistent buffers (accessible
by both CPU and GPU, but not synchronized by the driver)
» Look up bindless buffers and textures
» Look up extension GL_NV_command_list

» Look up presentations on “Approaching Zero Driver Overhead”
(AZDO)

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 20/24

Practice

o Update the data of camera without implicit OpenGL
synchronization

@ Render the whole scene with a single draw command

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 21/24

Task: Update camera data

CPU UPD1 UPD2 UPDO UPD1
GPU [Reno] [Reni] [Renz]
o Use multiple buffers, and switch them like with a circular buffer

o Use multiple fences to check that the data that you change is not
used anymore

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 22/24

Task: Update camera data

o Task 1: Update the data of the camera without implicit OpenGL
synchronization

Look into the code on how to use buffers in a new way

Look into the code on how to use fences

Set TASK_ ONE_METHOD to

TASK ONE_METHOD NEW WAY NEW UPDATE CORRECT

Use multiple buffers and multiple fences.

v

v

v

\4

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 23/24

Task: Draw the whole scene with one draw command

o Task 2: Use NV extension and indirect drawing to create a list of
draw calls and draw the whole scene with one draw command

Inspect the source code.

Set TASK_TWO_METHOD to TASK_TWO_METHOD_USE.

There are two places in shaders that needs to be changed.

Setup a new VAO object VertexFormat_VAO with the format of the

geometry.

Create a rendering command for each object in the scene

(including the floor)

vvyVvYy

v

PV227 — GPU Rendering (FI MUNI) Lesson 12 — Vulkan 3.12. 2019 24/24

