
December 5, 2019

PV248 Python

Petr Ročkai

PV248 Python 2/306 December 5, 2019

Programming vs Languages
• python is unobtrusive (by design)
• if you can program, you can program in python
• there are idiosyncracies (of course)
• but you will mostly get by

PV248 Python 3/306 December 5, 2019

Programming vs Jobs
• we all want to write beautiful programs
∘ but you didn’t sleep for 2 nights
∘ and this thing is going into production tomorrow

• sometimes you get a chance to clean up later
∘ and sometimes you don’t

PV248 Python 4/306 December 5, 2019

Engineering Flowchart

duct tape
should it?

does it move? no problem

should it?
WD 40

no
yes

yes

no
no

yes

Python makes for decent duct tape andWD 40.

PV248 Python 5/306 December 5, 2019

In This Course
• you will not learn to write beautiful programs
• we will try to do things with minimum effort
∘ perfect is the enemy of good

• ugly comes in shades
∘ you should always write passable code
∘ there is a balance to strike

PV248 Python 6/306 December 5, 2019

... ugly, cont’d
• there are two main schools of writing software
∘ do the right thing
∘ worse is better

• https://www.jwz.org/doc/worse-is-better.html

PV248 Python 7/306 December 5, 2019

The Right Thing
• simplicity: interface first, implementation second
• correctness: required
• consistency: required
• completeness: more important than simplicity

PV248 Python 8/306 December 5, 2019

Worse is Better
• simplicity: implementation first
• correctness: simplicity goes first
• consistency: less important than both
• completeness: least important

PV248 Python 9/306 December 5, 2019

Design Schools
• there are pros and cons to both
• right thing is often expensive
• worse is better often wins
• which one do you think python belongs to?

PV248 Python 10/306 December 5, 2019

Disclaimer
• I am not a python programmer
• please don’t ask sneaky language-lawyer questions

Goals
• learn to use python in practical situations
• have a look at existing packages and what they can do
• code up some cool stuff, have fun

PV248 Python 11/306 December 5, 2019

Organisation
• the lecture and the seminars are every other week
• that’s 7 lectures + 7 seminars
• there will be 6 homework assignments
• seminar attendance is semi-compulsory

PV248 Python 12/306 December 5, 2019

Homework Grading
• grading will be fully automatic
∘ performed every Thursday at midnight
∘ starting 7 days after the assignment is given

• assignments are binary: pass/fail
• passing tests early gets you bonus points

PV248 Python 13/306 December 5, 2019

Obtaining Points
• you can get up to
∘ 12 points for assignments
∘ 6 points for passing tests early
∘ 2 points for seminar attendance
∘ 3 points for peer reviews
∘ 1 point for activity in the seminar

• you need 16 points to pass

PV248 Python 14/306 December 5, 2019

Semester Plan
1. Object and Memory Model
2. Text, JSON, SQL and Persistence
3. Advanced Language Constructs
4. Numeric & Symbolic Math, Statistics
5. Communication, HTTP, asyncio
6. Testing, Debugging, Profiling & Pitfalls
7. Quantum Computation

PV248 Python 15/306 December 5, 2019

Part 1: Object and Memory Model

PV248 Python 16/306 December 5, 2019

Objects
• the basic ‘unit’ of OOP
• they bundle data and behaviour
• provide encapsulation
• make code re-use easier
• also known as ‘instances’

PV248 Python 17/306 December 5, 2019

Classes
• templates for objects (class Foo: pass)
• each (python) object belongs to a class
• classes themselves are also objects
• calling a class creates an instance
∘ my_foo = Foo()

PV248 Python 18/306 December 5, 2019

Poking at Classes
• {}.__class__

• {}.__class__.__class__

• (0).__class__

• [].__class__

• compare type(0), etc.

• n = numbers.Number(); n.__class__

PV248 Python 19/306 December 5, 2019

Types vs Objects
• class system is a type system
• ‘duck typing’: quacks, walks like a duck
• since python 3, types are classes
• everything is dynamic in python
∘ you can create new classes at runtime
∘ you can pass classes as function parameters

PV248 Python 20/306 December 5, 2019

Encapsulation
• objects hide implementation details
• classic types structure data
∘ objects also structure behaviour

• facilitates weak coupling

PV248 Python 21/306 December 5, 2019

Weak Coupling
• coupling is a degree of interdependence
• more coupling makes things harder to change
∘ it also makes reasoning harder

• good programs are weakly coupled
• cf. modularity, composability

PV248 Python 22/306 December 5, 2019

Polymorphism
• objects are (at least in python) polymorphic
• different implementation, same interface
• only the interface matters for composition
• facilitates genericity and code re-use
• cf. ‘duck typing’

PV248 Python 23/306 December 5, 2019

Generic Programming
• code re-use often saves time
∘ not just coding but also debugging
∘ re-usable code often couples weakly

• but not everything that can be re-used should be
∘ code can be too generic
∘ and too hard to read

PV248 Python 24/306 December 5, 2019

Attributes
• data members of objects
• each instance gets its own copy
• like variables scoped to object lifetime
• they get names and values

PV248 Python 25/306 December 5, 2019

Methods
• functions (procedures) tied to objects
• they can access the object (self)
• implement the behaviour of the object
• their signatures (usually) provide the interface
• methods are also objects

PV248 Python 26/306 December 5, 2019

Class and Instance Methods
• methods are usually tied to instances
• recall that classes are also objects
• class methods work on the class (cls)
• static methods are just namespaced functions

• decorators @classmethod, @staticmethod

PV248 Python 27/306 December 5, 2019

Inheritance
shape

ellipse rectangle

circle square

• class Ellipse(Shape): ...

• usually encodes an is-a relationship

PV248 Python 28/306 December 5, 2019

Multiple Inheritance
• more than one base class is possible
• many languages restrict this
• python allows general M-I
∘ class Bat(Mammal, Winged): pass

• ‘true’ M-I is somewhat rare
∘ typical use cases: mixins and interfaces

PV248 Python 29/306 December 5, 2019

Mixins
• used to pull in implementation
∘ not part of the is-a relationship
∘ by convention, not enforced by the language

• common bits of functionality
∘ e.g. implement __gt__, __eq__ &c. using __lt__

∘ you only need to implement __lt__ in your class

PV248 Python 30/306 December 5, 2019

Interfaces
• realized as ‘abstract’ classes in python
∘ just throw a NotImplemented exception
∘ document the intent in a docstring

• participates in is-a relationships
• partially displaced by duck typing
∘ more important in other languages (think Java)

PV248 Python 31/306 December 5, 2019

Composition
• attributes of objects can be other objects
∘ (also, everything is an object in python)

• encodes a has-a relationship
∘ a circle has a center and a radius
∘ a circle is a shape

PV248 Python 32/306 December 5, 2019

Constructors
• this is the __init__method
• initializes the attributes of the instance
• can call superclass constructors explicitly
∘ not called automatically (unlike C++, Java)
∘ MySuperClass.__init__(self)

∘ super().__init__ (if unambiguous)

PV248 Python 33/306 December 5, 2019

Class and Object Dictionaries
• most objects are basically dictionaries
• try e.g. foo.__dict__ (for a suitable foo)
• saying foo.xmeans foo.__dict__["x"]
∘ if that fails, type(foo).__dict__["x"] follows
∘ then superclasses of type(foo), according to MRO

PV248 Python 34/306 December 5, 2019

Writing Classes
class Person:

def __init__(self, name):

self.name = name

def greet(self):

print("hello " + self.name)

p = Person("you")

p.greet()

PV248 Python 35/306 December 5, 2019

Modules in Python
• modules are just normal .py files
• import executes a file by name
∘ it will look into system-defined locations
∘ the search path includes the current directory
∘ they typically only define classes & functions

• import sys→ lets you use sys.argv

• from sys import argv→ you can write just argv

PV248 Python 36/306 December 5, 2019

Functions
• top-level functions/procedures are possible
• they are usually ‘scoped’ via the module system
• functions are also objects
∘ try print.__class__ (or type(print))

• some functions are built in (print, len, ...)

PV248 Python 37/306 December 5, 2019

Memory
• most program data is stored in ‘memory’
∘ an array of byte-addressable data storage
∘ address space managed by the OS
∘ 32 or 64 bit numbers as addresses

• typically backed by RAM

PV248 Python 38/306 December 5, 2019

Language vs Computer
• programs use high-level concepts
∘ objects, procedures, closures
∘ values can be passed around

• the computer has a single array of bytes
∘ and, well, a bunch of registers

PV248 Python 39/306 December 5, 2019

Memory Management
• deciding where to store data
• high-level objects are stored in flat memory
∘ they have a given (usually fixed) size
∘ can contain references to other objects
∘ have limited lifespan

PV248 Python 40/306 December 5, 2019

Memory Management Terminology
• object: an entity with an address and size
∘ not the same as language-level object

• lifetime: when is the object valid
∘ live: references exist to the object
∘ dead: the object unreachable – garbage

PV248 Python 41/306 December 5, 2019

Memory Management by Type
• manual: malloc and free in C
• static automatic
∘ e.g. stack variables in C and C++

• dynamic automatic
∘ pioneered by LISP, widely used

PV248 Python 42/306 December 5, 2019

Automatic Memory Management
• static vs dynamic
∘ when do we make decisions about lifetime
∘ compile time vs run time

• safe vs unsafe
∘ can the program read unused memory?

PV248 Python 43/306 December 5, 2019

Object Lifetime
• the time between malloc and free

• another view: when is the object needed
∘ often impossible to tell
∘ can be safely over-approximated
∘ at the expense of memory leaks

PV248 Python 44/306 December 5, 2019

Static Automatic
• usually binds lifetime to lexical scope
• no passing references up the call stack
∘ may or may not be enforced

• no lexical closures
• examples: C, C++

PV248 Python 45/306 December 5, 2019

Dynamic Automatic
• over-approximate lifetime dynamically
• usually easiest for the programmer
∘ until you need to debug a space leak

• reference counting, mark & sweep collectors
• examples: Java, almost every dynamic language

PV248 Python 46/306 December 5, 2019

Reference Counting
• attach a counter to each object
• whenever a reference is made, increase
• whenever a reference is lost, decrease
• the object is dead when the counter hits 0
• fails to reclaim reference cycles

PV248 Python 47/306 December 5, 2019

Mark and Sweep
• start from a root set (in-scope variables)
• follow references, mark every object encountered
• sweep: throw away all unmarked memory
• usually stops the program while running
• garbage is retained until the GC runs

PV248 Python 48/306 December 5, 2019

Memory Management in CPython
• primarily based on reference counting
• optional mark & sweep collector
∘ enabled by default
∘ configure via import gc

∘ reclaims cycles

PV248 Python 49/306 December 5, 2019

Refcounting Advantages
• simple to implement in a ‘managed’ language
• reclaims objects quickly
• no need to pause the program
• easily made concurrent

PV248 Python 50/306 December 5, 2019

Refcounting Problems
• significant memory overhead
• problems with cache locality
• bad performance for data shared between threads
• fails to reclaim cyclic structures

PV248 Python 51/306 December 5, 2019

Data Structures
• an abstract description of data
• leaves out low-level details
• makes writing programs easier
• makes reading programs easier, too

PV248 Python 52/306 December 5, 2019

Building Data Structures
• there are two kinds of types in python
∘ built-in, implemented in C
∘ user-defined (includes libraries)

• both kinds are based on objects
∘ but built-ins only look that way

PV248 Python 53/306 December 5, 2019

Mutability
• some objects can be modified
∘ we say they are mutable
∘ otherwise, they are immutable

• immutability is an abstraction
∘ physical memory is always mutable

• in python, immutability is not ‘recursive’

PV248 Python 54/306 December 5, 2019

Built-in: int
• arbitrary precision integer
∘ no overflows and other nasty behaviour

• it is an object, i.e. held by reference
∘ uniform with any other kind of object
∘ immutable

• both of the above make it slow
∘ machine integers only in C-based modules

PV248 Python 55/306 December 5, 2019

Additional Numeric Objects
• bool: True or False
∘ how much is True + True?
∘ is 0 true? is empty string?

• numbers.Real: floating point numbers
• numbers.Complex: a pair of above

PV248 Python 56/306 December 5, 2019

Built-in: bytes
• a sequence of bytes (raw data)
• exists for efficiency reasons
∘ in the abstract is just a tuple

• models data as stored in files
∘ or incoming through a socket
∘ or as stored in raw memory

PV248 Python 57/306 December 5, 2019

Properties of bytes
• can be indexed and iterated
∘ both create objects of type int

∘ try this sequence: id(x[1]), id(x[2])
• mutable version: bytearray
∘ the equivalent of C char arrays

PV248 Python 58/306 December 5, 2019

Built-in: str
• immutable unicode strings
∘ not the same as bytes
∘ bytes must be decoded to obtain str

∘ (and str encoded to obtain bytes)
• represented as utf-8 sequences in CPython
∘ implemented in PyCompactUnicodeObject

PV248 Python 59/306 December 5, 2019

Built-in: tuple
• an immutable sequence type
∘ the number of elements is fixed
∘ so is the type of each element

• but elements themselves may be mutable
∘ x = [] then y = (x, 0)

∘ x.append(1)→ y == ([1], 0)

• implemented as a C array of object references

PV248 Python 60/306 December 5, 2019

Built-in: list
• a mutable version of tuple
∘ items can be assigned x[3] = 5

∘ items can be append-ed
• implemented as a dynamic array
∘ many operations are amortised 𝑂(1)
∘ insert is 𝑂(𝑛)

PV248 Python 61/306 December 5, 2019

Built-in: dict
• implemented as a hash table
• some of the most performance-critical code
∘ dictionaries appear everywhere in python
∘ heavily hand-tuned C code

• both keys and values are objects

PV248 Python 62/306 December 5, 2019

Hashes and Mutability
• dictionary keys must be hashable
∘ this implies recursive immutability

• what would happen if a key is mutated?
∘ most likely, the hash would change
∘ all hash tables with the key become invalid
∘ this would be very expensive to fix

PV248 Python 63/306 December 5, 2019

Built-in: set
• implements the math concept of a set
• also a hash table, but with keys only
∘ a separate C implementation

• mutable – items can be added
∘ but they must be hashable
∘ hence cannot be changed

PV248 Python 64/306 December 5, 2019

Built-in: frozenset
• an immutable version of set
• always hashable (since all items must be)
∘ can appear in set or another frozenset
∘ can be used as a key in dict

• the C implementation is shared with set

PV248 Python 65/306 December 5, 2019

Efficient Objects: __slots__
• fixes the attribute names allowed in an object
• saves memory: consider 1-attribute object
∘ with __dict__: 56 + 112 bytes
∘ with __slots__: 48 bytes

• makes code faster: no need to hash anything
∘ more compact in memory→ better cache efficiency

PV248 Python 66/306 December 5, 2019

Part 2: Text, JSON, SQL and Persistence

PV248 Python 67/306 December 5, 2019

Transient Data
• lives in program memory
• data structures, objects
• interpreter state
• often implicit manipulation
• more on this next week

PV248 Python 68/306 December 5, 2019

Persistent Data
• (structured) text or binary files
• relational (SQL) databases
• object and ‘flat’ databases (NoSQL)
• manipulated explicitly

PV248 Python 69/306 December 5, 2019

Persistent Storage
• ‘local’ file system
∘ stored on HDD, SSD, ...
∘ stored somwhere in a local network

• ‘remote’, using an application-level protocol
∘ local or remote databases
∘ cloud storage &c.

PV248 Python 70/306 December 5, 2019

Reading Files
• opening files: open('file.txt', 'r')

• files can be iterated

f = open('file.txt', 'r')

for line in f:

print(line)

PV248 Python 71/306 December 5, 2019

Resource Acquisition
• plain open is prone to resource leaks
∘ what happens during an exception?
∘ holding a file open is not free

• pythonic solution: with blocks
∘ defined in PEP 343
∘ binds resources to scopes

PV248 Python 72/306 December 5, 2019

Detour²: PEP
• PEP stands for Python Enhancement Proposal
• akin to RFC documents managed by IETF
• initially formalise future changes to python
∘ later serve as documentation for the same

• <https://www.python.org/dev/peps/>

PV248 Python 73/306 December 5, 2019

Using with

with open('/etc/passwd', 'r') as f:

for line in f:

do_stuff(line)

• still safe if do_stuff raises an exception

PV248 Python 74/306 December 5, 2019

Finalizers
• there is a __del__method
• but it is not guaranteed to run
∘ it may run arbitrarily late
∘ or never

• not very good for resource management

PV248 Python 75/306 December 5, 2019

Context Managers
• with has an associated protocol
• you can use with on any context manager
• which is an object with __enter__ and __exit__

• you can create your own

PV248 Python 76/306 December 5, 2019

Representing Text
• ASCII: one byte = one character
∘ total of 127 different characters
∘ not very universal

• 8-bit encodings: 255 characters
• multi-byte encodings for non-Latin scripts

PV248 Python 77/306 December 5, 2019

Unicode
• one character encoding to rule them all
• supports all extant scripts and writing systems
∘ and a whole bunch of dead scripts, too

• collation, segmentation, comparison, ...
• approx. 137000 code points

PV248 Python 78/306 December 5, 2019

Code Point
• basic unit of encoding characters
• letters, punctuation, symbols
• combining diacritical marks
• not the same thing as a character
• code points range from 1 to 10FFFF

PV248 Python 79/306 December 5, 2019

Unicode Encodings
• deals with representing code points
• UCS = Universal Coded Character Set
∘ fixed-length encoding
∘ two variants: UCS-2 (16 bit) and UCS-4 (32 bit)

• UTF = Unicode Transformation Format
∘ variable-length encoding
∘ variants: UTF-8, UTF-16 and UTF-32

PV248 Python 80/306 December 5, 2019

Grapheme
• technically ‘extended grapheme cluster’
• a logical character, as expected by users
∘ encoded using 1 or more code points

• multiple encodings of the same grapheme
∘ e.g. composed vs decomposed
∘ U+0041 U+0300 vs U+0C00: À vs À

PV248 Python 81/306 December 5, 2019

Segmentation
• breaking text into smaller units
∘ graphemes, words and sentences

• algorithms defined by the unicode spec
∘ Unicode Standard Annex #29
∘ graphemes and words are quite reliable
∘ sentences not so much (too much ambiguity)

PV248 Python 82/306 December 5, 2019

Normal Form
• Unicode defines 4 canonical (normal) forms
∘ NFC, NFD, NFKC, NFKD
∘ NFC = Normal Form Composed
∘ NFD = Normal Form Decomposed

• K variants = looser, lossy conversion
• all normalization is idempotent
• NFC does not give you 1 code point per grapheme

PV248 Python 83/306 December 5, 2019

str vs bytes
• iterating bytes gives individual bytes
∘ indexing is fast – fixed-size elements

• iterating str gives code points
∘ slightly slower, because it uses UTF-8
∘ does not iterate over graphemes

• going back and forth: str.encode, bytes.decode

PV248 Python 84/306 December 5, 2019

Python vs Unicode
• no native support for unicode segmentation
∘ hence no grapheme iteration or word splitting

• convert everything into NFC and hope for the best
∘ unicodedata.normalize()

∘ will sometimes break (we’ll discuss regexes in a bit)
∘ most people don’t bother
∘ correctness is overrated→worse is better

PV248 Python 85/306 December 5, 2019

Regular Expressions
• compiling: r = re.compile(r"key: (.*)")

• matching: m = r.match("key: some value")

• extracting captures: print(m.group(1))

∘ prints some value

• substitutions: s2 = re.sub(r"\s*$", '', s1)

∘ strips all trailing whitespace in s1

PV248 Python 86/306 December 5, 2019

Detour: Raw String Literals
• the r in r"..." stands for raw (not regex)
• normally, \ is magical in strings
∘ but \ is also magical in regexes
∘ nobody wants to write \\s &c.
∘ not to mention \\\\ to match a literal \

• not super useful outside of regexes

PV248 Python 87/306 December 5, 2019

Detour²: Other Literal Types
• byte strings: b"abc"→ bytes

• formatted string literals: f"x {y}"

x = 12

print(f"x = {x}")

• triple-quote literals: """xy"""

PV248 Python 88/306 December 5, 2019

Regular Expressions vs Unicode
import re

s = "\u0041\u0300" # À

t = "\u00c0" # À

print(s, t)

print(re.match("..", s), re.match("..", t))

print(re.match("\w+$", s), re.match("\w+$", t))

print(re.match("À", s), re.match("À", t))

PV248 Python 89/306 December 5, 2019

Regexes and Normal Forms
• some of the problems can be fixed by NFC
∘ some go away completely (literal unicode matching)
∘ some become rarer (the ".." and "\w" problems)

• most text in the wild is already in NFC
∘ but not all of it
∘ case in point: filenames on macOS (NFD)

PV248 Python 90/306 December 5, 2019

Decomposing Strings
• recall that str is immutable
• splitting: str.split(':')
∘ None = split on any whitespace

• split on first delimiter: partition
• better whitespace stripping: s2 = s1.strip()

∘ also lstrip() and rstrip()

PV248 Python 91/306 December 5, 2019

Searching and Matching
• startswith and endswith

∘ often convenient shortcuts
• find = index

∘ generic substring search

PV248 Python 92/306 December 5, 2019

Building Strings
• format literals and str.format

• str.replace – substring search and replace
• str.join – turn lists of strings into a string

PV248 Python 93/306 December 5, 2019

JSON
• structured, text-based data format
• atoms: integers, strings, booleans
• objects (dictionaries), arrays (lists)
• widely used around the web &c.
• simple (compared to XML or YAML)

PV248 Python 94/306 December 5, 2019

JSON: Example
{

"composer": ["Bach, Johann Sebastian"],

"key": "g",

"voices": {

"1": "oboe",

"2": "bassoon"

}

}

PV248 Python 95/306 December 5, 2019

JSON: Writing
• printing JSON seems straightforward enough
• but: double quotes in strings
• strings must be properly \-escaped during output
• also pesky commas
• keeping track of indentation for human readability
• better use an existing library: `import json`

PV248 Python 96/306 December 5, 2019

JSON in Python
• json.dumps = short for dump to string
• python dict/list/str/... data comes in
• a string with valid JSON comes out

Workflow
• just convert everything to dict and list

• run json.dumps or json.dump(data, file)

PV248 Python 97/306 December 5, 2019

Python Example
d = {}

d["composer"] = ["Bach, Johann Sebastian"]

d["key"] = "g"

d["voices"] = { 1: "oboe", 2: "bassoon" }

json.dump(d, sys.stdout, indent=4)

Beware: keys are always strings in JSON

PV248 Python 98/306 December 5, 2019

Parsing JSON
• import json

• json.load is the counterpart to json.dump from above
∘ de-serialise data from an open file
∘ builds lists, dictionaries, etc.

• json.loads corresponds to json.dumps

PV248 Python 99/306 December 5, 2019

XML
• meant as a lightweight and consistent redesignof SGML
∘ turned into a very complex format

• heaps of invalid XML floating around
∘ parsing real-world XML is a nightmare
∘ even valid XML is pretty challenging

PV248 Python 100/306 December 5, 2019

XML: Example
<Order OrderDate="1999-10-20">

<Address Type="Shipping">

<Name>Ellen Adams</Name>

<Street>123 Maple Street</Street>

</Address>

<Item PartNumber="872-AA">

<ProductName>Lawnmower</ProductName>

<Quantity>1</Quantity>

</Item>

</Order>

PV248 Python 101/306 December 5, 2019

XML: Another Example
<BLOKY_OBSAH>

<STUDENT>

<OBSAH>25 bodů</OBSAH>

<UCO>72873</UCO>

<ZMENENO>20160111104208</ZMENENO>

<ZMENIL>395879</ZMENIL>

</STUDENT>

</BLOKY_OBSAH>

PV248 Python 102/306 December 5, 2019

XML Features
• offers extensible, rich structure
∘ tags, attributes, entities
∘ suited for structured hierarchical data

• schemas: use XML to describe XML
∘ allows general-purpose validators
∘ self-documenting to a degree

PV248 Python 103/306 December 5, 2019

XML vs JSON
• both work best with trees
• JSON has basically no features
∘ basic data structures and that’s it

• JSON data is ad-hoc and usually undocumented
∘ but: this often happens with XML anyway

PV248 Python 104/306 December 5, 2019

XML Parsers
• DOM = Document Object Model
• SAX = Simple API for XML
• expat = fast SAX-like parser (but not SAX)
• ElementTree = DOM-like but more pythonic

PV248 Python 105/306 December 5, 2019

XML: DOM
• read the entire XML document into memory
• exposes the AST (Abstract Syntax Tree)
• allows things like XPath and CSS selectors
• the API is somewhat clumsy in python

PV248 Python 106/306 December 5, 2019

XML: SAX
• event-driven XML parsing
• much more efficient than DOM
∘ but often harder to use

• only useful in python for huge XML files
∘ otherwise just use ElementTree

PV248 Python 107/306 December 5, 2019

XML: ElementTree
for child in root:

print child.tag, child.attrib

Order { OrderDate: "1999-10-20" }

• supports tree walking, XPath
• supports serialization too

PV248 Python 108/306 December 5, 2019

NoSQL / Non-relational Databases
• umbrella term for a number of approaches
∘ flat key/value and column stores
∘ document and graph stores

• no or minimal schemas
• non-standard query languages

PV248 Python 109/306 December 5, 2019

Key-Value Stores
• usually very fast and very simple
• completely unstructured values
• keys are often database-global
∘ workaround: prefixes for namespacing
∘ or: multiple databases

PV248 Python 110/306 December 5, 2019

NoSQL & Python
• redis (redis-py) module (Redis is Key-Value)
• memcached (another Key-Value store)
• PyMongo for talking to MongoDB (document-oriented)
• CouchDB (another document-oriented store)
• neo4j or cayley (module pyley) for graph structures

PV248 Python 111/306 December 5, 2019

SQL and RDBMS
• SQL = Structured Query Language
• RDBMS = Relational DataBase Management System
• SQL is to NoSQL what XML is to JSON
• heavily used and extremely reliable

PV248 Python 112/306 December 5, 2019

SQL: Example
select name, grade from student;

select name from student where grade < 'C';

insert into student (name, grade) values

('Random X. Student', 'C');

select * from student

join enrollment on student.id = enrollment.student

join group on group.id = enrollment.group;

PV248 Python 113/306 December 5, 2019

SQL: Relational Data
• JSON and XML are hierarchical
∘ or built from functions if you like

• SQL is relational
∘ relations = generalized functions
∘ can capture more structure
∘ much harder to efficiently process

PV248 Python 114/306 December 5, 2019

SQL: Data Definition
• mandatory, unlike XML or JSON
• gives the data a rather rigid structure
• tables (relations) and columns (attributes)
• static data types for columns
• additional consistency constraints

PV248 Python 115/306 December 5, 2019

SQL: Constraints
• help ensure consistency of the data
• foreign keys: referential integrity
∘ ensures there are no dangling references
∘ but: does not prevent accidental misuse

• unique constraints
• check constraints: arbitrary consistency checks

PV248 Python 116/306 December 5, 2019

SQL: Query Planning
• an RDBMS makes heavy use of indexing
∘ using B trees, hashes and similar techniques
∘ indices are used automatically

• all the heavy lifting is done by the backend
∘ highly-optimized, low-level code
∘ efficient handling of large data

PV248 Python 117/306 December 5, 2019

SQL: Reliability and Flexibility
• most RDBMS give ACID guarantees
∘ transparently solves a lot of problems
∘ basically impossible with normal files

• support for schema alterations
∘ alter table and similar
∘ nearly impossible in ad-hoc systems

PV248 Python 118/306 December 5, 2019

SQLite
• lightweight in-process SQL engine
• the entire database is in a single file
• convenient python module, sqlite3
• stepping stone for a “real” database

PV248 Python 119/306 December 5, 2019

Other Databases
• you can talk to most SQL DBs using python
• postgresql (psycopg2, ...)
• mysql / mariadb (mysql-python, mysql-connector, ...)
• big & expensive: Oracle (cx_oracle), DB2 (pyDB2)
• most of those are much more reliable than SQLite

PV248 Python 120/306 December 5, 2019

SQL Injection
sql = "SELECT * FROM t WHERE name = '" + n + '"'

• the above code is bad, never do it
• consider the following

n = "x'; drop table students --"

n = "x'; insert into passwd (user, pass) ..."

PV248 Python 121/306 December 5, 2019

Avoiding SQL Injection
• use proper SQL-building APIs
∘ this takes care of escaping internally

• templates like insert ... values (?, ?)

∘ the ? get safely substituted by the module
∘ e.g. the executemethod of a cursor

PV248 Python 122/306 December 5, 2019

PEP 249
• informational PEP, for library writers
• describes how database modules should behave
∘ ideally, all SQL modules have the same interface
∘ makes it easy to swap a database backend

• but: SQL itself is not 100% portable

PV248 Python 123/306 December 5, 2019

SQL Pitfalls
• sqlite does not enforce all constraints
∘ you need to pragma foreign_keys = on

• no portable syntax for autoincrement keys
• not all (column) types are supported everywhere
• no portable way to get the key of last insert

PV248 Python 124/306 December 5, 2019

More Resources & Stuff to Look Up
• SQL: https://www.w3schools.com/sql/
• https://docs.python.org/3/library/sqlite3.html

• Object-Relational Mapping
• SQLAlchemy: constructing portable SQL

PV248 Python 125/306 December 5, 2019

Part 3: Advanced Constructs

PV248 Python 126/306 December 5, 2019

Callable Objects
• user-defined functions (module-level def)
• user-defined methods (instance and class)
• built-in functions and methods
• class objects
• objects with a __call__method

PV248 Python 127/306 December 5, 2019

User-defined Functions
• come about from a module-level def
• metadata: __doc__, __name__, __module__
• scope: __globals__, __closure__
• arguments: __defaults__, __kwdefaults__
• type annotations: __annotations__
• the code itself: __code__

PV248 Python 128/306 December 5, 2019

Positional and Keyword Arguments
• user-defined functions have positional arguments
• and keyword arguments
∘ print("hello", file=sys.stderr)

∘ arguments are passed by name
∘ which style is used is up to the caller

• variadic functions: def foo(*args, **kwargs)

∘ args is a tuple of unmatched positional args
∘ kwargs is a dict of unmatched keyword args

PV248 Python 129/306 December 5, 2019

Lambdas
• def functions must have a name
• lambdas provide anonymous functions
• the body must be an expression
• syntax: lambda x: print("hello", x)

• standard user-defined functions otherwise

PV248 Python 130/306 December 5, 2019

Instance Methods
• comes about as object.method
∘ print(x.foo)→ <bound method Foo.foo of ...>

• combines the class, instance and function itself
• __func__ is a user-defined function object
• let bar = x.foo, then
∘ x.foo()→ bar.__func__(bar.__self__)

PV248 Python 131/306 December 5, 2019

Iterators
• objects with __next__ (since 3.x)
∘ iteration ends on raise StopIteration

• iterable objects provide __iter__

∘ sometimes, this is just return self

∘ any iterable can appear in for x in iterable

PV248 Python 132/306 December 5, 2019

class FooIter:

def __init__(self):

self.x = 10

def __iter__(self): return self

def __next__(self):

if self.x:

self.x -= 1

else:

raise StopIteration

return self.x

PV248 Python 133/306 December 5, 2019

Generators (PEP 255)
• written as a normal function or method
• they use yield to generate a sequence
• represented as special callable objects
∘ exist at the C level in CPython

def foo(*lst):

for i in lst: yield i + 1

list(foo(1, 2)) # prints [2, 3]

PV248 Python 134/306 December 5, 2019

yield from

• calling a generator produces a generator object
• how do we call one generator from another?
• same as for x in foo(): yield x

def bar(*lst):

yield from foo(*lst)

yield from foo(*lst)

list(bar(1, 2)) # prints [2, 3, 2, 3]

PV248 Python 135/306 December 5, 2019

Native Coroutines (PEP 492)
• created using async def (since Python 3.5)
• generalisation of generators
∘ yield from is replaced with await

∘ an __await__magic method is required
• a coroutine can be suspended and resumed

PV248 Python 136/306 December 5, 2019

Coroutine Scheduling
• coroutines need a scheduler
• one is available from asyncio.get_event_loop()

• along with many coroutine building blocks
• coroutines can actually run in parallel
∘ via asyncio.create_task (since 3.7)
∘ via asyncio.gather

PV248 Python 137/306 December 5, 2019

Async Generators (PEP 525)
• async def + yield

• semantics like simple generators
• but also allows await
• iterated with async for

∘ async for runs sequentially

PV248 Python 138/306 December 5, 2019

Decorators
• written as @decor before a function definition
• decor is a regular function (def decor(f))
∘ f is bound to the decorated function
∘ the decorated function becomes the result of decor

• classes can be decorated too
• you can ‘create’ decorators at runtime
∘ @mkdecor("moo") (mkdecor returns the decorator)
∘ you can stack decorators

PV248 Python 139/306 December 5, 2019

def decor(f):

return lambda: print("bar")

def mkdecor(s):

return lambda g: lambda: print(s)

@decor

def foo(f): print("foo")

@mkdecor("moo")

def moo(f): print("foo")

foo() prints "bar", moo() prints "moo"

PV248 Python 140/306 December 5, 2019

List Comprehension
• a concise way to build lists
• combines a filter and a map

[2 * x for x in range(10)]

[x for x in range(10) if x % 2 == 1]

[2 * x for x in range(10) if x % 2 == 1]

[(x, y) for x in range(3) for y in range(2)]

PV248 Python 141/306 December 5, 2019

Operators
• operators are (mostly) syntactic sugar
• x < y rewrites to x.__lt__(y)

• is and is not are special
∘ are the operands the same object?
∘ also the ternary (conditional) operator

PV248 Python 142/306 December 5, 2019

Non-Operator Builtins
• len(x)→ x.__len__() (length)
• abs(x)→ x.__abs__() (magnitude)
• str(x)→ x.__str__() (printing)
• repr(x)→ x.__repr__() (printing for eval)
• bool(x) and if x: x.__bool__()

PV248 Python 143/306 December 5, 2019

Arithmetic
• a standard selection of operators
• / is floating point, // is integral
• += and similar are somewhat magical
∘ x += y→ x = x.__iadd__(y) if defined
∘ otherwise x = x.__add__(y)

PV248 Python 144/306 December 5, 2019

x = 7 # an int is immutable

x += 3 # works, x = 10, id(x) changes

lst = [7, 3]

lst[0] += 3 # works too, id(lst) stays same

tup = (7, 3) # a tuple is immutable

tup += (1, 1) # still works (id changes)

tup[0] += 3 # fails

PV248 Python 145/306 December 5, 2019

Relational Operators
• operands can be of different types
• equality: !=, ==
∘ by default uses object identity

• ordering: <, <=, >, >= (TypeError by default)
• consistency is not enforced

PV248 Python 146/306 December 5, 2019

Relational Consistency
• __eq__must be an equivalence relation
• x.__ne__(y)must be the same as not x.__eq__(y)

• __lt__must be an ordering relation
∘ compatible with __eq__

∘ consistent with each other
• each operator is separate (mixins can help)
∘ or perhaps a class decorator

PV248 Python 147/306 December 5, 2019

Collection Operators
• in is also a membership operator (outside for)
∘ implemented as __contains__

• indexing and slicing operators
∘ del x[y]→ x.__delitem__(y)

∘ x[y]→ x.__getitem__(y)

∘ x[y] = z→ x.__setitem__(y, z)

PV248 Python 148/306 December 5, 2019

Conditional Operator
• also known as a ternary operator
• written x if cond else y

∘ in C: cond ? x : y

• forms an expression, unlike if

∘ can e.g. appear in a lambda
∘ or in function arguments, &c.

PV248 Python 149/306 December 5, 2019

Concurrency & Parallelism
• threading – thread-based parallelism
• multiprocessing

• concurrent – future-based programming
• subprocess

• sched, a general-purpose event scheduler
• queue, for sending objects between threads

PV248 Python 150/306 December 5, 2019

Threading
• low-level thread support, module threading

• Thread objects represent actual threads
∘ threads provide start() and join()

∘ the run()method executes in a new thread
• mutexes, semaphores &c.

PV248 Python 151/306 December 5, 2019

The Global Interpreter Lock
• memory management in CPython is not thread-safe
∘ Python code runs under a global lock
∘ pure Python code cannot use multiple cores

• C code usually runs without the lock
∘ this includes numpy crunching

PV248 Python 152/306 December 5, 2019

Multiprocessing
• like threading but uses processes
• works around the GIL
∘ each worker process has its own interpreter

• queued/sent objects must be pickled
∘ see also: the picklemodule
∘ this causes substantial overhead
∘ functions, classes &c. are pickled by name

PV248 Python 153/306 December 5, 2019

Futures
• like coroutine await but for subroutines
• a Future can be waited for using f.result()

• scheduled via concurrent.futures.Executor

∘ Executor.map is like asyncio.gather

∘ Executor.submit is like asyncio.create_task

• implemented using process or thread pools

PV248 Python 154/306 December 5, 2019

Exceptions
• an exception interrupts normal control flow
• it’s called an exception because it is exceptional
∘ never mind StopIteration

• causes methods to be interrupted
∘ until a matching except block is found
∘ also known as stack unwinding

PV248 Python 155/306 December 5, 2019

Life Without Exceptions
int fd = socket(...);

if (fd < 0)

... /* handle errors */

if (bind(fd, ...) < 0)

... /* handle errors */

if (listen(fd, 5) < 0)

... /* handle errors */

PV248 Python 156/306 December 5, 2019

With Exceptions
try:

sock = socket.socket(...)

sock.bind(...)

sock.listen(...)

except ...:

handle errors

PV248 Python 157/306 December 5, 2019

Exceptions vs Resources
x = open("file.txt")

stuff

raise SomeError

• who calls x.close()
• this would be a resource leak

PV248 Python 158/306 December 5, 2019

Using finally

try:

x = open("file.txt")

stuff

finally:

x.close()

• works, but tedious and error-prone

PV248 Python 159/306 December 5, 2019

Using with

with open("file.txt") as f:

stuff

• with takes care of the finally and close

• with x as y sets y = x.__enter__()

∘ and calls x.__exit__(...) when leaving the block

PV248 Python 160/306 December 5, 2019

The @property decorator
• attribute syntax is the preferred one in Python
• writing useless setters and getters is boring

class Foo:

@property

def x(self): return 2 * self.a

@x.setter

def x(self, v): self.a = v // 2

PV248 Python 161/306 December 5, 2019

Execution Stack
• made up of activation frames
• holds local variables
• and return addresses
• in dynamic languages, often lives in the heap

PV248 Python 162/306 December 5, 2019

Variable Capture
• variables are captured lexically
• definitions are a dynamic / run-time construct
∘ a nested definition is executed
∘ creates a closure object

• always by reference in Python
∘ but can be by-value in other languages

PV248 Python 163/306 December 5, 2019

Using Closures
• closures can be returned, stored and called
∘ they can be called multiple times, too
∘ they can capture arbitrary variables

• closures naturally retain state
• this is what makes them powerful

PV248 Python 164/306 December 5, 2019

Objects from Closures
• so closures are essentially code + state
• wait, isn’t that what an object is?
• indeed, you can implement objects using closures

PV248 Python 165/306 December 5, 2019

The Role of GC
• memory management becomes a lot more complicated
• forget C-style ‘automatic’ stack variables
• this is why the stack is actually in the heap
• this can go as far as form reference cycles

PV248 Python 166/306 December 5, 2019

Coroutines
• coroutines are a generalisation of subroutines
• they can be suspended and re-entered
• coroutines can be closures at the same time
• the code of a coroutine is like a function
• a suspended coroutine is like an activation frame

PV248 Python 167/306 December 5, 2019

Yield
• suspends execution and ‘returns’ a value
• may also obtain a new value (cf. send)
• when re-entered, continue where we left off

for i in range(5): yield i

PV248 Python 168/306 December 5, 2019

Send
• with yield, we have one-way communication
• but in many cases, we would like two-way
• a suspended coroutine is an object in Python
∘ with a sendmethod which takes a value
∘ send re-enters the coroutine

PV248 Python 169/306 December 5, 2019

Yield From and Await
• yield from is mostly a generator concept
• await basically does the same thing
∘ call out to another coroutine
∘ when it suspends, so does the entire stack

PV248 Python 170/306 December 5, 2019

Suspending Native Coroutines
• this is not actually possible
∘ not with async-native syntax anyway

• you need a yield

∘ for that, you need a generator
∘ use the types.coroutine decorator

PV248 Python 171/306 December 5, 2019

Event Loop
• not required in theory
• useful also without coroutines
• there is a synergistic effect
∘ event loops make coroutines easier
∘ coroutines make event loops easier

PV248 Python 172/306 December 5, 2019

Part 4: Math and Statistics

PV248 Python 173/306 December 5, 2019

Numbers in Python
• recall that numbers are objects
• a tuple of real numbers has 300% overhead
∘ compared to a C array of float values
∘ and 350% for integers

• this causes extremely poor cache use
• integers are arbitrary-precision

PV248 Python 174/306 December 5, 2019

Math in Python
• numeric data usually means arrays
∘ this is inefficient in python

• we need a module written in C
∘ but we don’t want to do that ourselves

• enter the SciPy project
∘ pre-made numeric and scientific packages

PV248 Python 175/306 December 5, 2019

The SciPy Family
• numpy: data types, linear algebra
• scipy: more computational machinery
• pandas: data analysis and statistics
• matplotlib: plotting and graphing
• sympy: symbolic mathematics

PV248 Python 176/306 December 5, 2019

Aside: External Libraries
• until now, we only used bundled packages
• for math, we will need external libraries
• you can use pip to install those
∘ use pip install --user <package>

PV248 Python 177/306 December 5, 2019

Aside: The Python Package Index
• colloquially known as PyPI (or cheese shop)
∘ do not confuse with PyPy (Python in almost-Python)

• both source packages and binaries
∘ the latter known as wheels (PEP 427, 491)
∘ previously python eggs

• <https://pypi.python.org>

PV248 Python 178/306 December 5, 2019

Aside: Installing numpy

• the easiest way may be with pip

∘ this would be pip3 on aisa

• linux distributions usually also have packages
• another option is getting the Anaconda bundle
• detailed instructions on https://scipy.org

PV248 Python 179/306 December 5, 2019

Arrays in numpy

• compact, C-implemented data types
• flexible multi-dimensional arrays
• easy and efficient re-shaping
∘ typically without copying the data

PV248 Python 180/306 December 5, 2019

Entering Data
• most data is stored in numpy.array

• can be constructed from a list

∘ a list of lists for 2D arrays
• or directly loaded from / stored to a file
∘ binary: numpy.load, numpy.save
∘ text: numpy.loadtxt, numpy.savetxt

PV248 Python 181/306 December 5, 2019

LAPACK and BLAS
• BLAS is a low-level vector/matrix package
• LAPACK is built on top of BLAS
∘ provides higher-level operations
∘ tuned for modern CPUs with multiple caches

• both are written in Fortran
∘ ATLAS and C-LAPACK are C implementations

PV248 Python 182/306 December 5, 2019

Element-wise Functions
• the basic math function arsenal
• powers, roots, exponentials, logarithms
• trigonometric (sin, cos, tan, ...)
• hyperbolic (sinh, cosh, tanh, ...)
• cyclometric (arcsin, arccos, arctan, ...)

PV248 Python 183/306 December 5, 2019

Matrix Operations in numpy

• import numpy.linalg

• multiplication, inversion, rank
• eigenvalues and eigenvectors
• linear equation solver
• pseudo-inverses, linear least squares

PV248 Python 184/306 December 5, 2019

Additional Linear Algebra in scipy

• import scipy.linalg

• LU, QR, polar, etc. decomposition
• matrix exponentials and logarithms
• matrix equation solvers
• special operations for banded matrices

PV248 Python 185/306 December 5, 2019

Where is my Gaussian Elimination?
• used in lots of school linear algebra
• but not the most efficient algorithm
• a few problems with numerical stability
• not directly available in numpy

PV248 Python 186/306 December 5, 2019

Numeric Stability
• floats are imprecise / approximate

0.1**2 == 0.01 # False

1 / (0.1**2 - 0.01) # 5.8⋅10¹⁷

• multiplication is not associative

a = (0.1 * 0.1) * 10

b = 0.1 * (0.1 * 10)

1 / (a - b) # 7.21⋅10¹⁶

• iteration amplifies the errors

PV248 Python 187/306 December 5, 2019

LU Decomposition
• decompose matrix A into simpler factors
• 𝑃𝐴 = 𝐿𝑈where
∘ 𝑃 is a permutation matrix
∘ 𝐿 is a lower triangular matrix
∘ 𝑈 is an upper triangular matrix

• fast and numerically stable

PV248 Python 188/306 December 5, 2019

Uses for LU
• equations, determinant, inversion, ...
• as an example
∘ det(𝐴) = det(𝑃−1)⋅det(𝐿)⋅det(𝑈)
∘ where det(𝑈) = ∑𝑖 𝑈𝑖𝑖 and
∘ det(𝐿) = ∑𝑖 𝑈𝑖𝑖

PV248 Python 189/306 December 5, 2019

Numeric Math
• float arithmetic is messy but incredibly fast
• measured data is approximate anyway
• stable algorithms exist for many things
∘ and are available from libraries

• we often don’t care about exactness
∘ think computer graphics, signal analysis, ...

PV248 Python 190/306 December 5, 2019

Symbolic Math
• numeric math sucks for ‘textbook’ math
• there are problems where exactness matters
∘ pure math and theoretical physics

• incredibly slow computation
∘ but much cleaner interpretation

PV248 Python 191/306 December 5, 2019

Linear Algebra in sympy

• uses exact math
∘ e.g. arbitrary precision rationals
∘ and roots thereof
∘ and many other computable numbers

• wide repertoire of functions
∘ including LU, QR, etc. decompositions

PV248 Python 192/306 December 5, 2019

Exact Rationals in sympy

from sympy import *

a = QQ(1) / 10 # QQ = rationals

Matrix([[sqrt(a**3), 0, 0],

[0, sqrt(a**3), 0],

[0, 0, 1]]).det()

result: 1/1000

PV248 Python 193/306 December 5, 2019

numpy for Comparison
import numpy as np

import numpy.linalg as la

a = 0.1

la.det([[np.sqrt(a**3), 0, 0],

[0, np.sqrt(a**3), 0],

[0, 0, 1]])

result: 0.0010000000000000002

PV248 Python 194/306 December 5, 2019

General Solutions in Symbolic Math
from sympy import *

x = symbols('x')

Matrix([[x, 0, 0],

[0, 1, 0],

[0, 0, x]]).det()

result: x ** 2

PV248 Python 195/306 December 5, 2019

Symbolic Differentation
x = symbols('x')

diff(x**2 + 2*x + log(x/2))

result: 2*x + 2 + 1/x

diff(x**2 * exp(x))

result: x**2 * exp(x) + 2 * x * exp(x)

PV248 Python 196/306 December 5, 2019

Algebraic Equations
solve(x**2 - 7)

result: [-sqrt(7), sqrt(7)]

solve(x**2 - exp(x))

result: [-2 * LambertW(-1/2)]

solve(x**4 - x)

result: [0, 1, -1/2 - sqrt(3) * I/2,

-1/2 + sqrt(3) * I/2] ; I**2 = -1

PV248 Python 197/306 December 5, 2019

Ordinary Diffrential Equations
f = Function('f')

dsolve(f(x).diff(x)) # f'(x) = 0

result: Eq(f(x), C1)

dsolve(f(x).diff(x) - f(x)) # f'(x) = f(x)

result: Eq(f(x), C1 * exp(x))

dsolve(f(x).diff(x) + f(x)) # f'(x) = -f(x)

result: Eq(f(x), C1 * exp(-x))

PV248 Python 198/306 December 5, 2019

Symbolic Integration
integrate(x**2)

result: x**3 / 3

integrate(log(x))

result: x * log(x) - x

integrate(cos(x) ** 2)

result: x/2 + sin(x) * cos(x) / 2

PV248 Python 199/306 December 5, 2019

Numeric Sparse Matrices
• sparse = most elements are 0
• available in scipy.sparse

• special data types (not numpy arrays)
∘ do not use numpy functions on those

• less general, but more compact and faster

PV248 Python 200/306 December 5, 2019

Fourier Transform
• continuous: 𝑓(𝜉) = ∫

∞

−∞
𝑓(𝑥) exp (−2𝜋𝑖𝑥𝜉) dx

• series:
∘ 𝑓(𝑥) = ∑

∞
𝑛=−∞ 𝑐𝑛 exp �

𝑖2𝜋𝑛𝑥

𝑃 �

• real series:
∘ 𝑓(𝑥) =

𝑎0
2 + ∑

∞
𝑛=1 �𝑎𝑛 sin �

2𝜋𝑛𝑥

𝑃 � + 𝑏𝑛 cos �
2𝜋𝑛𝑥

𝑃 ��

∘ 𝑐𝑛 =
1

2(𝑎𝑛 − 𝑖𝑏𝑛)

PV248 Python 201/306 December 5, 2019

Discrete Fourier Transform
• available in numpy.fft

• goes between time and frequency domains
• a few different variants are covered
∘ real-valued input (for signals, rfft)
∘ inverse transform (ifft, irfft)
∘ multiple dimensions (fft2, fftn)

PV248 Python 202/306 December 5, 2019

Polynomial Series
• the numpy.polynomial package
• Chebyshev, Hermite, Laguerre and Legendre
∘ arithmetic, calculus and special-purpose operations
∘ numeric integration using Guassian quadrature
∘ fitting (polynomial regression)

PV248 Python 203/306 December 5, 2019

Statistics in numpy

• a basic statistical toolkit
∘ averages, medians
∘ variance, standard deviation
∘ histograms

• random sampling and distributions

PV248 Python 204/306 December 5, 2019

Linear Regression
• very fast model-fitting method
∘ both in computational and human terms
∘ quick and dirty first approximation

• widely used in data interpretation
∘ biology and sociology statistics
∘ finance and economics, especially prediction

PV248 Python 205/306 December 5, 2019

Polynomial Regression
• higher-order variant of linear regression
• can capture acceleration or deceleration
• harder to use and interpret
∘ also harder to compute

• usually requires a model of the data

PV248 Python 206/306 December 5, 2019

Interpolation
• find a line or curve that approximates data
• it must pass through the data points
∘ this is a major difference to regression

• more dangerous than regression
∘ runs a serious risk of overfitting

PV248 Python 207/306 December 5, 2019

Linear and Polynomial Regression, Interpolation
• regressions using the least squares method
∘ linear: numpy.linalg.lstsq
∘ polynomial: numpy.polyfit

• interpolation: scipy.interpolate
∘ e.g. piecewise cubic splines
∘ Lagrange interpolating polynomials

PV248 Python 208/306 December 5, 2019

Pandas: Data Analysis
• the Python equivalent of R
∘ works with tabular data (CSV, SQL, Excel)
∘ time series (also variable frequency)
∘ primarily works with floating-point values

• partially implemented in C and Cython

PV248 Python 209/306 December 5, 2019

Pandas Series and DataFrame
• Series is a single sequence of numbers
• DataFrame represents tabular data
∘ powerful indexing operators
∘ index by column→ series
∘ index by condition→ filtering

PV248 Python 210/306 December 5, 2019

Pandas Example
scores = [('Maxine', 12), ('John', 12),

('Sandra', 10)]

cols = ['name', 'score']

df = pd.DataFrame(data=scores, columns=cols)

df['score'].max() # 12

df[df['score'] >= 12] # Maxine and John

PV248 Python 211/306 December 5, 2019

Part 5: Communication, HTTP & asyncio

PV248 Python 212/306 December 5, 2019

Running Programs (the old way)
• os.system is about the simplest
∘ also somewhat dangerous – shell injection
∘ you only get the exit code

• os.popen allows you to read output of a program
∘ alternatively, you can send input to the program
∘ you can’t do both (would likely deadlock anyway)
∘ runs the command througha shell, sameas os.system

PV248 Python 213/306 December 5, 2019

Low-level Process API
• POSIX-inherited interfaces (on POSIX systems)
• os.exec: replace the current process
• os.fork: split the current process in two
• os.forkpty: same but with a PTY

PV248 Python 214/306 December 5, 2019

Detour: bytes vs str
• strings (class str) represent text
∘ that is, a sequence of unicode points

• files and network connections handle data
∘ represented in Python as bytes

• the bytes constructor can convert from str

∘ e.g. b = bytes("hello", "utf8")

PV248 Python 215/306 December 5, 2019

Running Programs (the new way)
• you can use the subprocessmodule
• subprocess can handle bidirectional IO
∘ it also takes care of avoiding IO deadlocks
∘ set input to feed data to the subprocess

• internally, run uses a Popen object
∘ if run can’t do it, Popen probably can

PV248 Python 216/306 December 5, 2019

Getting subprocess Output
• available via run since Python 3.7
• the run function returns a CompletedProcess

• it has attributes stdout and stderr

• both are bytes (byte sequences) by default
• or str if text or encodingwere set
• available if you enabled capture_output

PV248 Python 217/306 December 5, 2019

Running Filters with Popen

• if you are stuck with 3.6, use Popen directly
• set stdin in the constructor to PIPE

• use the communicatemethod to send the input
• this gives you the outputs (as bytes)

PV248 Python 218/306 December 5, 2019

import subprocess

from subprocess import PIPE

input = bytes("x\na\nb\ny", "utf8")

p = subprocess.Popen(["sort"], stdin=PIPE,

stdout=PIPE)

out = p.communicate(input=input)

out[0] is the stdout, out[1] is None

PV248 Python 219/306 December 5, 2019

Subprocesses with asyncio

• import asyncio.subprocess

• create_subprocess_exec, like subprocess.run

∘ but it returns a Process instance
∘ Process has a communicate async method

• can run things in background (via tasks)
∘ also multiple processes at once

PV248 Python 220/306 December 5, 2019

Protocol-based asyncio subprocesses
• let loop be an implementation of the asyncio event loop
• there’s subprocess_exec and subprocess_shell

∘ sets up pipes by default
• integrates into the asyncio transport layer (see later)
• allows you to obtain the data piece-wise
• https://docs.python.org/3/library/asyncio-protocol.html

PV248 Python 221/306 December 5, 2019

Sockets
• the socket API comes from early BSD Unix
• socket represents a (possible) network connection
• sockets are more complicated than normal files
∘ establishing connections is hard
∘ messages get lost much more often than file data

PV248 Python 222/306 December 5, 2019

Socket Types
• sockets can be internet or unix domain
∘ internet sockets connect to other computers
∘ Unix sockets live in the filesystem

• sockets can be stream or datagram
∘ stream sockets are like files (TCP)
∘ you can write a continuous stream of data
∘ datagramsockets can send individualmessages (UDP)

PV248 Python 223/306 December 5, 2019

Sockets in Python
• the socketmodule is available on all major OSes
• it has a nice object-oriented API
∘ failures are propagated as exceptions
∘ buffer management is automatic

• useful if you need to do low-level networking
∘ hard to use in non-blocking mode

PV248 Python 224/306 December 5, 2019

Sockets and asyncio

• asyncio provides sock_* to work with socket objects
• this makes work with non-blocking sockets a lot easier
• but your program needs to be written in async style
• only use sockets when there is no other choice
∘ asyncio protocols are both faster and easier to use

PV248 Python 225/306 December 5, 2019

Hyper-Text Transfer Protocol
• originally a simple text-based, stateless protocol
• however
∘ SSL/TLS, cryptography (https)
∘ pipelining (somewhat stateful)
∘ cookies (somewhat stateful in a different way)

• typically between client and a front-end server
• but also as a back-endprotocol (web server to app server)

PV248 Python 226/306 December 5, 2019

Request Anatomy
• request type (see below)
• header (text-based, like e-mail)
• content

Request Types
• GET – asks the server to send a resource
• HEAD – like GET but only send back headers
• POST – send data to the server

PV248 Python 227/306 December 5, 2019

Python and HTTP
• both client and server functionality
∘ import http.client

∘ import http.server

• TLS/SSL wrappers are also available
∘ import ssl

• synchronous by default

PV248 Python 228/306 December 5, 2019

Serving Requests
• derive from BaseHTTPRequestHandler

• implement a do_GETmethod
• this gets called whenever the client does a GET

• also available: do_HEAD, do_POST, etc.
• pass the class (not an instance) to HTTPServer

PV248 Python 229/306 December 5, 2019

Serving Requests (cont’d)
• HTTPServer creates a new instance of your Handler
• the BaseHTTPRequestHandlermachinery runs
• it calls your do_GET etc. method
• request data is available in instance variables
∘ self.path, self.headers

PV248 Python 230/306 December 5, 2019

Talking to the Client
• HTTP responses start with a response code
∘ self.send_response(200, 'OK')

• the headers follow (set at least Content-Type)
∘ self.send_header('Connection', 'close')

• headers and the content need to be separated
∘ self.end_headers()

• finally, send the content by writing to self.wfile

PV248 Python 231/306 December 5, 2019

Sending Content
• self.wfile is an open file
• it has a write()method which you can use
• sockets only accept byte sequences, not str
• use the bytes(string, encoding) constructor
∘ match the encoding to your Content-Type

PV248 Python 232/306 December 5, 2019

HTTP and asyncio

• the base asyncio currently doesn’t directly supportHTTP
• but: you can get aiohttp from PyPI
• contains a very nice web server
∘ from aiohttp import web

∘ minimum boilerplate, fully asyncio-ready

PV248 Python 233/306 December 5, 2019

SSL and TLS
• you want to use the sslmodule for handling HTTPS
∘ this is especially true server-side
∘ aiohttp and http.server are compatible

• you need to deal with certificates (loading, checking)
• this is a rather important but complex topic

PV248 Python 234/306 December 5, 2019

Certificate Basics
• certificate is a cryptographically signed statement
∘ it ties a server to a certain public key
∘ the client ensures the server knows the private key

• the server loads the certificate and its private key
• the client must validate the certificate
∘ this is typically a lot harder to get right

PV248 Python 235/306 December 5, 2019

SSL in Python
• start with import ssl

• almost everything happens in the SSLContext class
• get an instance from ssl.create_default_context()

∘ you can use wrap_socket to run an SSL handshake
∘ you can pass the context to aiohttp

• if httpd is a http.server.HTTPServer:

httpd.socket = ssl.wrap_socket(httpd.socket, ...)

PV248 Python 236/306 December 5, 2019

HTTP Clients
• there’s a very basic http.client
• for a more complete library, use urllib.request

• aiohttp has client functionality
• all of the above can be used with ssl

• another 3rd party module: Python Requests

PV248 Python 237/306 December 5, 2019

IO at the OS Level
• often defaults to blocking
∘ read returns when data is available
∘ this is usually OK for files

• but what about network code?
∘ could work for a client

PV248 Python 238/306 December 5, 2019

Threads and IO
• there may be work to do while waiting
∘ waiting for IO can be wasteful

• only the calling (OS) thread is blocked
∘ another thread may do the work
∘ but multiple green threads may be blocked

PV248 Python 239/306 December 5, 2019

Non-Blocking IO
• the program calls read
∘ read returns immediately
∘ even if there was no data

• but how do we know when to read?
∘ we could poll
∘ for example call read every 30ms

PV248 Python 240/306 December 5, 2019

Polling
• trade-off between latency and throughput
∘ sometimes, polling is okay
∘ but is often too inefficient

• alternative: IO dispatch
∘ useful when multiple IOs are pending
∘ wait only if all are blocked

PV248 Python 241/306 December 5, 2019

select

• takes a list of file descriptors
• block until one of them is ready
∘ next readwill return data immediately

• can optionally specify a timeout
• only useful for OS-level resources

PV248 Python 242/306 December 5, 2019

Alternatives to select

• select is a rather old interface
• there is a number of more modern variants
• poll and epoll system calls
∘ despite the name, they do not poll
∘ epoll is more scalable

• kqueue and kevent on BSD systems

PV248 Python 243/306 December 5, 2019

Synchronous vs Asynchronous
• the select family is synchronous
∘ you call the function
∘ it may wait some time
∘ you proceed when it returns

• OS threads are fully asynchronous

PV248 Python 244/306 December 5, 2019

The Thorny Issue of Disks
• a file is always ‘ready’ for reading
• this may still take time to complete
• there is no good solution on UNIX
• POSIX AIO exists but is sparsely supported
• OS threads are an option

PV248 Python 245/306 December 5, 2019

IO onWindows
• select is possible (but slow)
• Windows provides real asynchronous IO
∘ quite different from UNIX
∘ the IO operation is directly issued
∘ but the function returns immediately

• comes with a notification queue

PV248 Python 246/306 December 5, 2019

The asyncio Event Loop
• uses the select family of syscalls
• why is it called async IO?
∘ select is synchronous in principle
∘ this is an implementation detail
∘ the IOs are asynchronous to each other

PV248 Python 247/306 December 5, 2019

How Does It Work
• you must use asyncio functions for IO
• an async read does not issue an OS read

• it yields back into the event loop
• the fd is put on the select list
• the coroutine is resumed when the fd is ready

PV248 Python 248/306 December 5, 2019

Timers
• asyncio allows you to set timers
• the event loop keeps a list of those
• and uses that to set the select timeout
∘ just uses the nearest timer expiry

• when a timer expires, its owner is resumed

PV248 Python 249/306 December 5, 2019

Blocking IO vs asyncio
• all user code runs on the main thread
• you must not call any blocking IO functions
• doing so will stall the entire application
∘ in a server, clients will time out
∘ even if not, latency will suffer

PV248 Python 250/306 December 5, 2019

DNS
• POSIX: getaddrinfo and getnameinfo

∘ also the older API gethostbyname
• those are all blocking functions
∘ and they can take a while
∘ but name resolution is essential

• asyncio internally uses OS threads for DNS

PV248 Python 251/306 December 5, 2019

Signals
• signals on UNIX are very asynchronous
• interact with OS threads in a messy way
• asyncio hides all this using C code

PV248 Python 252/306 December 5, 2019

Native Coroutines (Reminder)
• delared using async def

async def foo():

await asyncio.sleep(1)

• calling foo() returns a suspended coroutine
• which you can await

∘ or turn it into an asyncio.Task

PV248 Python 253/306 December 5, 2019

Tasks
• asyncio.Task is a nice wrapper around coroutines
∘ create with asyncio.create_task()

• can be stopped prematurely using cancel()

• has an API for asking things:
∘ done() tells you if the coroutine has finished
∘ result() gives you the result

PV248 Python 254/306 December 5, 2019

Tasks and Exceptions
• what if a coroutine raises an exception?
• calling resultwill re-raise it
∘ i.e. it continues propagating from result()

• you can also ask directly using exception()

∘ returns None if the coroutine ended normally

PV248 Python 255/306 December 5, 2019

Asynchronous Context Managers
• normally, we use with for resource acquisition
∘ this internally uses the context manager protocol

• but sometimes you need to wait for a resource
∘ __enter__() is a subroutine and would block
∘ this won’t work in async-enabled code

• we need __enter__() to be itself a coroutine

PV248 Python 256/306 December 5, 2019

async with

• just like wait but uses __aenter__(), __aexit__()
∘ those are async def

• the async with behaves like an await

∘ it will suspend if the context manager does
∘ the coroutine which owns the resource can continue

• mainly used for locks and semaphores

PV248 Python 257/306 December 5, 2019

Part 6: Testing, Pitfalls

PV248 Python 258/306 December 5, 2019

Mixing Languages
• for many people, Python is not a first language
• some things look similar in Python and Java (C++, ...)
∘ sometimes they do the same thing
∘ sometimes they do something very different
∘ sometimes the difference is subtle

PV248 Python 259/306 December 5, 2019

Python vs Java: Decorators
• Java has a thing called annotations
• looks very much like a Python decorator
• in Python, decorators can drastically change meaning
• in Java, they are just passive metadata
∘ other code canuse themformeta-programming though

PV248 Python 260/306 December 5, 2019

Class Body Variables
class Foo:

some_attr = 42

• in Java/C++, this is how you create instance variables
• in Python, this creates class attributes
∘ i.e. what C++/Java would call static attributes

PV248 Python 261/306 December 5, 2019

Very Late Errors
if a == 2:

priiiint("a is not 2")

• no error when loading this into python
• it even works as long as a != 2

• most languages would tell you much earlier

PV248 Python 262/306 December 5, 2019

Very Late Errors (cont’d)
try:

foo()

except TyyyypeError:

print("my mistake")

• does not even complain when running the code
• you only notice when foo() raises an exception

PV248 Python 263/306 December 5, 2019

Late Imports
if a == 2:

import foo

foo.say_hello()

• unless a == 2, mymod is not loaded
• any syntax errors don’t show up until a == 2

∘ it may even fail to exist

PV248 Python 264/306 December 5, 2019

Block Scope
for i in range(10): pass

print(i) # not a NameError

• in Python, local variables are function-scoped
• in other languages, i is confined to the loop

PV248 Python 265/306 December 5, 2019

Assignment Pitfalls
x = [1, 2]

y = x

x.append(3)

print(y) # prints [1, 2, 3]

• in Python, everything is a reference
• assignment does not make copies

PV248 Python 266/306 December 5, 2019

Equality of Iterables
• [0, 1] == [0, 1]→ True (obviously)
• range(2) == range(2)→ True

• list(range(2)) == [0, 1]→ True

• [0, 1] == range(2)→ False

PV248 Python 267/306 December 5, 2019

Equality of bool
• if 0: print("yes")→ nothing
• if 1: print("yes")→ yes
• False == 0→ True

• True == 1→ True

• 0 is False→ False

• 1 is True→ False

PV248 Python 268/306 December 5, 2019

Equality of bool (cont’d)
• if 2: print("yes")→ yes
• True == 2→ False

• False == 2→ False

• if '': print("yes")→ nothing
• if 'x': print("yes")→ yes
• '' == False→ False

• 'x' == True→ False

PV248 Python 269/306 December 5, 2019

Mutable Default Arguments
def foo(x = []):

x.append(7)

return x

foo() # [7]

foo() # [7, 7]... wait, what?

PV248 Python 270/306 December 5, 2019

Late Lexical Capture
f = [lambda x : i * x for i in range(5)]

f[4](3) # 12

f[0](3) # 12 ... ?!

g = [lambda x, i = i: i * x for i in range(5)]

g[4](3) # 12

g[0](3) # 0 ... fml

h = [(lambda x : i * x)(3) for i in range(5)]

h # [0, 3, 6, 12] ... i kid you not

PV248 Python 271/306 December 5, 2019

Dictionary Iteration Order
• in python <= 3.6
∘ small dictionaries iterate in insertion order
∘ big dictonaries iterate in ‘random’ order

• in python 3.7
∘ all dictonaries in insertion, but not documented

• in python >= 3.8
∘ guaranteed to iterate in insertion order

PV248 Python 272/306 December 5, 2019

x = [[1] * 2] * 3

print(x) # [[1, 1], [1, 1], [1, 1]]

x[0][0] = 2

print(x) # [[2, 1], [2, 1], [2, 1]]

PV248 Python 273/306 December 5, 2019

Forgotten Await
import asyncio

async def foo():

print("hello")

async def main():

foo()

asyncio.run(main())

• gives warning coroutine 'foo' was never awaited

PV248 Python 274/306 December 5, 2019

Python vs Java: Closures
• captured variables are final in Java
• but they are mutable in Python
∘ and of course captured by reference

• they are whatever you tell them to be in C++

PV248 Python 275/306 December 5, 2019

Explicit super()
• Java and C++ automatically call parent constructors
• Python does not
• you have to call them yourself

PV248 Python 276/306 December 5, 2019

Setters and Getters
obj.attr

obj.attr = 4

• in C++ or Java, this is an assignment
• in Python, it can run arbitrary code
∘ this often makes getters/setters redundant

PV248 Python 277/306 December 5, 2019

Why Testing
• reading programs is hard
• reasoning about programs is even harder
• testing is comparatively easy

• difference between an example and a proof

PV248 Python 278/306 December 5, 2019

What is Testing
• based on trial runs
• the program is executed with some inputs
• the outputs or outcomes are checked
• almost always incomplete

PV248 Python 279/306 December 5, 2019

Testing Levels
• unit testing
∘ individual classes
∘ individual functions

• functional
∘ system
∘ integration

PV248 Python 280/306 December 5, 2019

Testing Automation
• manual testing
∘ still widely used
∘ requires human

• semi-automated
∘ requires human assistance

• fully automated
∘ can run unattended

PV248 Python 281/306 December 5, 2019

Testing Insight
• what does the test or tester know?
• black box: nothing known about internals
• gray box: limited knowledge
• white box: ‘complete’ knowledge

PV248 Python 282/306 December 5, 2019

Why Unit Testing?
• allows testing small pieces of code
• the unit is likely to be used in other code
∘ make sure your code works before you use it
∘ the less code, the easier it is to debug

• especially easier to hit all the corner cases

PV248 Python 283/306 December 5, 2019

Unit Tests with unittest

• from unittest import TestCase

• derive your test class from TestCase

• put test code into methods named test_*

• run with python -m unittest program.py

∘ add -v for more verbose output

PV248 Python 284/306 December 5, 2019

from unittest import TestCase

class TestArith(TestCase):

def test_add(self):

self.assertEqual(1, 4 - 3)

def test_leq(self):

self.assertTrue(3 <= 2 * 3)

PV248 Python 285/306 December 5, 2019

Unit Tests with pytest

• a more pythonic alternative to unittest

∘ unittest is derived from JUnit
• easier to use and less boilerplate
• you can use native python assert

• easier to run, too
∘ just run pytest in your source repository

PV248 Python 286/306 December 5, 2019

Test Auto-Discovery in pytest

• pytest finds your testcases for you
∘ no need to register anything

• put your tests in test_.py or _test.py

• name your testcases (functions) test_*

PV248 Python 287/306 December 5, 2019

Fixtures in pytest

• sometimes you need the same thing in many testcases
• in unittest, you have the test class
• pytest passes fixtures as parameters
∘ fixtures are created by a decorator
∘ they are matched based on their names

PV248 Python 288/306 December 5, 2019

import pytest

import smtplib

@pytest.fixture

def smtp_connection():

return smtplib.SMTP("smtp.gmail.com", 587)

def test_ehlo(smtp_connection):

response, msg = smtp_connection.ehlo()

assert response == 250

PV248 Python 289/306 December 5, 2019

Property Testing
• writing test inputs is tedious
• sometimes, we can generate them instead
• useful for general properties like
∘ idempotency (e.g. serialize + deserialize)
∘ invariants (output is sorted, ...)
∘ code does not cause exceptions

PV248 Python 290/306 December 5, 2019

Using hypothesis

• property-based testing for Python
• has strategies to generate basic data types
∘ int, str, dict, list, set, ...

• compose built-in generators to get custom types
• integrated with pytest

PV248 Python 291/306 December 5, 2019

import hypothesis

import hypothesis.strategies as s

@hypothesis.given(s.lists(s.integers()))

def test_sorted(x):

assert sorted(x) == x # should fail

@hypothesis.given(x=s.integers(), y=s.integers())

def test_cancel(x, y):

assert (x + y) - y == x # looks okay

PV248 Python 292/306 December 5, 2019

Going Quick and Dirty
• goal: minimize time spent on testing
• manual testing usually loses
∘ but it has almost 0 initial investment

• if you can write a test in 5 minutes, do it
• useful for testing small scripts

PV248 Python 293/306 December 5, 2019

Shell 101
• shell scripts are very easy to write
• they are ideal for testing IO behaviour
• easily check for exit status: set -e

• see what is going on: set -x

• use diff -u to check expected vs actual output

PV248 Python 294/306 December 5, 2019

Shell Test Example
set -ex

python script.py < test1.in | tee out

diff -u test1.out out

python script.py < test2.in | tee out

diff -u test2.out out

PV248 Python 295/306 December 5, 2019

Continuous Integration
• automated tests need to be executed
• with many tests, this gets tedious to do by hand
• CI builds and tests your project regularly
∘ every time you push some commits
∘ every night (e.g. more extensive tests)

PV248 Python 296/306 December 5, 2019

CI: Travis
• runs in the cloud (CI as a service)
• trivially integrates with pytest

• virtualenv out of the box for python projects
• integrated with github
• configure in .travis.yml in your repo

PV248 Python 297/306 December 5, 2019

CI: GitLab
• GitLab has its own CI solution (similar to travis)
• also available at FI
• runs tests when you push to your gitlab
• drop a .gitlab-ci.yml in your repository
• automatic deployment into heroku &c.

PV248 Python 298/306 December 5, 2019

CI: Buildbot
• written in python/twisted
∘ basically a framework to build a custom CI tool

• self-hosted and somewhat complicated to set up
∘ more suited for complex projects
∘ much more flexible than most CI tools

• distributed design

PV248 Python 299/306 December 5, 2019

CI: Jenkins
• another self-hosted solution, this time in Java
∘ widely used and well supported

• native support for python projects (including pytest)
∘ provides a dashboard with test result graphs &c.
∘ supports publishing sphinx-generateddocumentation

PV248 Python 300/306 December 5, 2019

Print-based Debugging
• no need to be ashamed, everybody does it
• less painful in interpreted languages
• you can also use decorators for tracing
• never forget to clean your program up again

PV248 Python 301/306 December 5, 2019

def debug(e):

f = sys._getframe(1)

v = eval(e, f.f_globals, f.f_locals)

l = f.f_code.co_filename + ':'

l += str(f.f_lineno) + ':'

print(l, e, '=', repr(v), file=sys.stderr)

x = 1

debug('x + 1')

PV248 Python 302/306 December 5, 2019

The Python Debugger
• run as python -m pdb program.py

• there’s a built-in help command
• next steps through the program
• break to set a breakpoint
• cont to run until end or a breakpoint

PV248 Python 303/306 December 5, 2019

What is Profiling
• measurement of resource consumption
• essential info for optimising programs
• answers questions about bottlenecks
∘ where is my program spending most time?
∘ less often: how is memory used in the program

PV248 Python 304/306 December 5, 2019

Why Profiling
• ‘blind’ optimisation is often misdirected
∘ it is like fixing bugs without triggering them
∘ program performance is hard to reason about

• tells you exactly which point is too slow
∘ allows for best speedup with least work

PV248 Python 305/306 December 5, 2019

Profiling in Python
• provided as a library, cProfile
∘ alternative: profile is slower, but more flexible

• run as python -m cProfile program.py

• outputs a list of lines/functions and their cost
• use cProfile.run() to profile a single expression

PV248 Python 306/306 December 5, 2019

python -m cProfile -s time fib.py

ncalls tottime percall file:line(function)

13638/2 0.032 0.016 fib.py:1(fib_rec)

2 0.000 0.000 {builtins.print}

2 0.000 0.000 fib.py:5(fib_mem)

