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Programming vs Languages
• python is unobtrusive (by design)
• if you can program, you can program in python
• there are idiosyncracies (of course)
• but you will mostly get by
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Programming vs Jobs
• we all want to write beautiful programs
∘ but you didn’t sleep for 2 nights
∘ and this thing is going into production tomorrow

• sometimes you get a chance to clean up later
∘ and sometimes you don’t
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Engineering Flowchart

duct tape
should it?

does it move? no problem

should it?
WD 40

no
yes

yes

no
no

yes

Python makes for decent duct tape andWD 40.
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In This Course
• you will not learn to write beautiful programs
• we will try to do things with minimum effort
∘ perfect is the enemy of good

• ugly comes in shades
∘ you should always write passable code
∘ there is a balance to strike
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... ugly, cont’d
• there are two main schools of writing software
∘ do the right thing
∘ worse is better

• https://www.jwz.org/doc/worse-is-better.html
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The Right Thing
• simplicity: interface first, implementation second
• correctness: required
• consistency: required
• completeness: more important than simplicity
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Worse is Better
• simplicity: implementation first
• correctness: simplicity goes first
• consistency: less important than both
• completeness: least important
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Design Schools
• there are pros and cons to both
• right thing is often expensive
• worse is better often wins
• which one do you think python belongs to?
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Disclaimer
• I am not a python programmer
• please don’t ask sneaky language-lawyer questions

Goals
• learn to use python in practical situations
• have a look at existing packages and what they can do
• code up some cool stuff, have fun
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Organisation
• the lecture and the seminars are every other week
• that’s 7 lectures + 7 seminars
• there will be 6 homework assignments
• seminar attendance is semi-compulsory
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Homework Grading
• grading will be fully automatic
∘ performed every Thursday at midnight
∘ starting 7 days after the assignment is given

• assignments are binary: pass/fail
• passing tests early gets you bonus points
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Obtaining Points
• you can get up to
∘ 12 points for assignments
∘ 6 points for passing tests early
∘ 2 points for seminar attendance
∘ 3 points for peer reviews
∘ 1 point for activity in the seminar

• you need 16 points to pass



PV248 Python 14/306 December 5, 2019

Semester Plan
1. Object and Memory Model
2. Text, JSON, SQL and Persistence
3. Advanced Language Constructs
4. Numeric & Symbolic Math, Statistics
5. Communication, HTTP, asyncio
6. Testing, Debugging, Profiling & Pitfalls
7. Quantum Computation
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Part 1: Object and Memory Model
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Objects
• the basic ‘unit’ of OOP
• they bundle data and behaviour
• provide encapsulation
• make code re-use easier
• also known as ‘instances’
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Classes
• templates for objects (class Foo: pass)
• each (python) object belongs to a class
• classes themselves are also objects
• calling a class creates an instance
∘ my_foo = Foo()
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Poking at Classes
• {}.__class__

• {}.__class__.__class__

• (0).__class__

• [].__class__

• compare type(0), etc.

• n = numbers.Number(); n.__class__
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Types vs Objects
• class system is a type system
• ‘duck typing’: quacks, walks like a duck
• since python 3, types are classes
• everything is dynamic in python
∘ you can create new classes at runtime
∘ you can pass classes as function parameters
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Encapsulation
• objects hide implementation details
• classic types structure data
∘ objects also structure behaviour

• facilitates weak coupling
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Weak Coupling
• coupling is a degree of interdependence
• more coupling makes things harder to change
∘ it also makes reasoning harder

• good programs are weakly coupled
• cf. modularity, composability
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Polymorphism
• objects are (at least in python) polymorphic
• different implementation, same interface
• only the interface matters for composition
• facilitates genericity and code re-use
• cf. ‘duck typing’
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Generic Programming
• code re-use often saves time
∘ not just coding but also debugging
∘ re-usable code often couples weakly

• but not everything that can be re-used should be
∘ code can be too generic
∘ and too hard to read
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Attributes
• data members of objects
• each instance gets its own copy
• like variables scoped to object lifetime
• they get names and values
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Methods
• functions (procedures) tied to objects
• they can access the object (self)
• implement the behaviour of the object
• their signatures (usually) provide the interface
• methods are also objects
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Class and Instance Methods
• methods are usually tied to instances
• recall that classes are also objects
• class methods work on the class (cls)
• static methods are just namespaced functions

• decorators @classmethod, @staticmethod
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Inheritance
shape

ellipse rectangle

circle square

• class Ellipse( Shape ): ...

• usually encodes an is-a relationship
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Multiple Inheritance
• more than one base class is possible
• many languages restrict this
• python allows general M-I
∘ class Bat( Mammal, Winged ): pass

• ‘true’ M-I is somewhat rare
∘ typical use cases: mixins and interfaces
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Mixins
• used to pull in implementation
∘ not part of the is-a relationship
∘ by convention, not enforced by the language

• common bits of functionality
∘ e.g. implement __gt__, __eq__ &c. using __lt__

∘ you only need to implement __lt__ in your class
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Interfaces
• realized as ‘abstract’ classes in python
∘ just throw a NotImplemented exception
∘ document the intent in a docstring

• participates in is-a relationships
• partially displaced by duck typing
∘ more important in other languages (think Java)
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Composition
• attributes of objects can be other objects
∘ (also, everything is an object in python)

• encodes a has-a relationship
∘ a circle has a center and a radius
∘ a circle is a shape
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Constructors
• this is the __init__method
• initializes the attributes of the instance
• can call superclass constructors explicitly
∘ not called automatically (unlike C++, Java)
∘ MySuperClass.__init__( self )

∘ super().__init__ (if unambiguous)
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Class and Object Dictionaries
• most objects are basically dictionaries
• try e.g. foo.__dict__ (for a suitable foo)
• saying foo.xmeans foo.__dict__["x"]
∘ if that fails, type(foo).__dict__["x"] follows
∘ then superclasses of type(foo), according to MRO
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Writing Classes
class Person:

def __init__( self, name ):

self.name = name

def greet( self ):

print( "hello " + self.name )

p = Person( "you" )

p.greet()
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Modules in Python
• modules are just normal .py files
• import executes a file by name
∘ it will look into system-defined locations
∘ the search path includes the current directory
∘ they typically only define classes & functions

• import sys→ lets you use sys.argv

• from sys import argv→ you can write just argv
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Functions
• top-level functions/procedures are possible
• they are usually ‘scoped’ via the module system
• functions are also objects
∘ try print.__class__ (or type(print))

• some functions are built in (print, len, ...)
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Memory
• most program data is stored in ‘memory’
∘ an array of byte-addressable data storage
∘ address space managed by the OS
∘ 32 or 64 bit numbers as addresses

• typically backed by RAM
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Language vs Computer
• programs use high-level concepts
∘ objects, procedures, closures
∘ values can be passed around

• the computer has a single array of bytes
∘ and, well, a bunch of registers
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Memory Management
• deciding where to store data
• high-level objects are stored in flat memory
∘ they have a given (usually fixed) size
∘ can contain references to other objects
∘ have limited lifespan
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Memory Management Terminology
• object: an entity with an address and size
∘ not the same as language-level object

• lifetime: when is the object valid
∘ live: references exist to the object
∘ dead: the object unreachable – garbage
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Memory Management by Type
• manual: malloc and free in C
• static automatic
∘ e.g. stack variables in C and C++

• dynamic automatic
∘ pioneered by LISP, widely used
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Automatic Memory Management
• static vs dynamic
∘ when do we make decisions about lifetime
∘ compile time vs run time

• safe vs unsafe
∘ can the program read unused memory?
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Object Lifetime
• the time between malloc and free

• another view: when is the object needed
∘ often impossible to tell
∘ can be safely over-approximated
∘ at the expense of memory leaks
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Static Automatic
• usually binds lifetime to lexical scope
• no passing references up the call stack
∘ may or may not be enforced

• no lexical closures
• examples: C, C++
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Dynamic Automatic
• over-approximate lifetime dynamically
• usually easiest for the programmer
∘ until you need to debug a space leak

• reference counting, mark & sweep collectors
• examples: Java, almost every dynamic language
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Reference Counting
• attach a counter to each object
• whenever a reference is made, increase
• whenever a reference is lost, decrease
• the object is dead when the counter hits 0
• fails to reclaim reference cycles
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Mark and Sweep
• start from a root set (in-scope variables)
• follow references, mark every object encountered
• sweep: throw away all unmarked memory
• usually stops the program while running
• garbage is retained until the GC runs
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Memory Management in CPython
• primarily based on reference counting
• optional mark & sweep collector
∘ enabled by default
∘ configure via import gc

∘ reclaims cycles
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Refcounting Advantages
• simple to implement in a ‘managed’ language
• reclaims objects quickly
• no need to pause the program
• easily made concurrent
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Refcounting Problems
• significant memory overhead
• problems with cache locality
• bad performance for data shared between threads
• fails to reclaim cyclic structures
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Data Structures
• an abstract description of data
• leaves out low-level details
• makes writing programs easier
• makes reading programs easier, too
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Building Data Structures
• there are two kinds of types in python
∘ built-in, implemented in C
∘ user-defined (includes libraries)

• both kinds are based on objects
∘ but built-ins only look that way
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Mutability
• some objects can be modified
∘ we say they are mutable
∘ otherwise, they are immutable

• immutability is an abstraction
∘ physical memory is always mutable

• in python, immutability is not ‘recursive’
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Built-in: int
• arbitrary precision integer
∘ no overflows and other nasty behaviour

• it is an object, i.e. held by reference
∘ uniform with any other kind of object
∘ immutable

• both of the above make it slow
∘ machine integers only in C-based modules
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Additional Numeric Objects
• bool: True or False
∘ how much is True + True?
∘ is 0 true? is empty string?

• numbers.Real: floating point numbers
• numbers.Complex: a pair of above
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Built-in: bytes
• a sequence of bytes (raw data)
• exists for efficiency reasons
∘ in the abstract is just a tuple

• models data as stored in files
∘ or incoming through a socket
∘ or as stored in raw memory
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Properties of bytes
• can be indexed and iterated
∘ both create objects of type int

∘ try this sequence: id(x[1]), id(x[2])
• mutable version: bytearray
∘ the equivalent of C char arrays
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Built-in: str
• immutable unicode strings
∘ not the same as bytes
∘ bytes must be decoded to obtain str

∘ (and str encoded to obtain bytes)
• represented as utf-8 sequences in CPython
∘ implemented in PyCompactUnicodeObject



PV248 Python 59/306 December 5, 2019

Built-in: tuple
• an immutable sequence type
∘ the number of elements is fixed
∘ so is the type of each element

• but elements themselves may be mutable
∘ x = [] then y = (x, 0)

∘ x.append(1)→ y == ([1], 0)

• implemented as a C array of object references
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Built-in: list
• a mutable version of tuple
∘ items can be assigned x[3] = 5

∘ items can be append-ed
• implemented as a dynamic array
∘ many operations are amortised 𝑂(1)
∘ insert is 𝑂(𝑛)
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Built-in: dict
• implemented as a hash table
• some of the most performance-critical code
∘ dictionaries appear everywhere in python
∘ heavily hand-tuned C code

• both keys and values are objects
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Hashes and Mutability
• dictionary keys must be hashable
∘ this implies recursive immutability

• what would happen if a key is mutated?
∘ most likely, the hash would change
∘ all hash tables with the key become invalid
∘ this would be very expensive to fix
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Built-in: set
• implements the math concept of a set
• also a hash table, but with keys only
∘ a separate C implementation

• mutable – items can be added
∘ but they must be hashable
∘ hence cannot be changed
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Built-in: frozenset
• an immutable version of set
• always hashable (since all items must be)
∘ can appear in set or another frozenset
∘ can be used as a key in dict

• the C implementation is shared with set
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Efficient Objects: __slots__
• fixes the attribute names allowed in an object
• saves memory: consider 1-attribute object
∘ with __dict__: 56 + 112 bytes
∘ with __slots__: 48 bytes

• makes code faster: no need to hash anything
∘ more compact in memory→ better cache efficiency
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Part 2: Text, JSON, SQL and Persistence
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Transient Data
• lives in program memory
• data structures, objects
• interpreter state
• often implicit manipulation
• more on this next week
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Persistent Data
• (structured) text or binary files
• relational (SQL) databases
• object and ‘flat’ databases (NoSQL)
• manipulated explicitly
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Persistent Storage
• ‘local’ file system
∘ stored on HDD, SSD, ...
∘ stored somwhere in a local network

• ‘remote’, using an application-level protocol
∘ local or remote databases
∘ cloud storage &c.
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Reading Files
• opening files: open('file.txt', 'r')

• files can be iterated

f = open( 'file.txt', 'r' )

for line in f:

print( line )
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Resource Acquisition
• plain open is prone to resource leaks
∘ what happens during an exception?
∘ holding a file open is not free

• pythonic solution: with blocks
∘ defined in PEP 343
∘ binds resources to scopes
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Detour²: PEP
• PEP stands for Python Enhancement Proposal
• akin to RFC documents managed by IETF
• initially formalise future changes to python
∘ later serve as documentation for the same

• <https://www.python.org/dev/peps/>
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Using with

with open('/etc/passwd', 'r') as f:

for line in f:

do_stuff( line )

• still safe if do_stuff raises an exception
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Finalizers
• there is a __del__method
• but it is not guaranteed to run
∘ it may run arbitrarily late
∘ or never

• not very good for resource management
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Context Managers
• with has an associated protocol
• you can use with on any context manager
• which is an object with __enter__ and __exit__

• you can create your own
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Representing Text
• ASCII: one byte = one character
∘ total of 127 different characters
∘ not very universal

• 8-bit encodings: 255 characters
• multi-byte encodings for non-Latin scripts
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Unicode
• one character encoding to rule them all
• supports all extant scripts and writing systems
∘ and a whole bunch of dead scripts, too

• collation, segmentation, comparison, ...
• approx. 137000 code points
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Code Point
• basic unit of encoding characters
• letters, punctuation, symbols
• combining diacritical marks
• not the same thing as a character
• code points range from 1 to 10FFFF
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Unicode Encodings
• deals with representing code points
• UCS = Universal Coded Character Set
∘ fixed-length encoding
∘ two variants: UCS-2 (16 bit) and UCS-4 (32 bit)

• UTF = Unicode Transformation Format
∘ variable-length encoding
∘ variants: UTF-8, UTF-16 and UTF-32
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Grapheme
• technically ‘extended grapheme cluster’
• a logical character, as expected by users
∘ encoded using 1 or more code points

• multiple encodings of the same grapheme
∘ e.g. composed vs decomposed
∘ U+0041 U+0300 vs U+0C00: À vs À
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Segmentation
• breaking text into smaller units
∘ graphemes, words and sentences

• algorithms defined by the unicode spec
∘ Unicode Standard Annex #29
∘ graphemes and words are quite reliable
∘ sentences not so much (too much ambiguity)
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Normal Form
• Unicode defines 4 canonical (normal) forms
∘ NFC, NFD, NFKC, NFKD
∘ NFC = Normal Form Composed
∘ NFD = Normal Form Decomposed

• K variants = looser, lossy conversion
• all normalization is idempotent
• NFC does not give you 1 code point per grapheme
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str vs bytes
• iterating bytes gives individual bytes
∘ indexing is fast – fixed-size elements

• iterating str gives code points
∘ slightly slower, because it uses UTF-8
∘ does not iterate over graphemes

• going back and forth: str.encode, bytes.decode
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Python vs Unicode
• no native support for unicode segmentation
∘ hence no grapheme iteration or word splitting

• convert everything into NFC and hope for the best
∘ unicodedata.normalize()

∘ will sometimes break (we’ll discuss regexes in a bit)
∘ most people don’t bother
∘ correctness is overrated→worse is better



PV248 Python 85/306 December 5, 2019

Regular Expressions
• compiling: r = re.compile( r"key: (.*)" )

• matching: m = r.match( "key: some value" )

• extracting captures: print( m.group( 1 ) )

∘ prints some value

• substitutions: s2 = re.sub( r"\s*$", '', s1 )

∘ strips all trailing whitespace in s1
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Detour: Raw String Literals
• the r in r"..." stands for raw (not regex)
• normally, \ is magical in strings
∘ but \ is also magical in regexes
∘ nobody wants to write \\s &c.
∘ not to mention \\\\ to match a literal \

• not super useful outside of regexes
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Detour²: Other Literal Types
• byte strings: b"abc"→ bytes

• formatted string literals: f"x {y}"

x = 12

print( f"x = {x}" )

• triple-quote literals: """xy"""
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Regular Expressions vs Unicode
import re

s = "\u0041\u0300" # À

t = "\u00c0" # À

print( s, t )

print( re.match( "..", s ), re.match( "..", t ) )

print( re.match( "\w+$", s ), re.match( "\w+$", t ) )

print( re.match( "À", s ), re.match( "À", t ) )
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Regexes and Normal Forms
• some of the problems can be fixed by NFC
∘ some go away completely (literal unicode matching)
∘ some become rarer (the ".." and "\w" problems)

• most text in the wild is already in NFC
∘ but not all of it
∘ case in point: filenames on macOS (NFD)
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Decomposing Strings
• recall that str is immutable
• splitting: str.split(':')
∘ None = split on any whitespace

• split on first delimiter: partition
• better whitespace stripping: s2 = s1.strip()

∘ also lstrip() and rstrip()
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Searching and Matching
• startswith and endswith

∘ often convenient shortcuts
• find = index

∘ generic substring search
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Building Strings
• format literals and str.format

• str.replace – substring search and replace
• str.join – turn lists of strings into a string
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JSON
• structured, text-based data format
• atoms: integers, strings, booleans
• objects (dictionaries), arrays (lists)
• widely used around the web &c.
• simple (compared to XML or YAML)
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JSON: Example
{

"composer": [ "Bach, Johann Sebastian" ],

"key": "g",

"voices": {

"1": "oboe",

"2": "bassoon"

}

}
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JSON: Writing
• printing JSON seems straightforward enough
• but: double quotes in strings
• strings must be properly \-escaped during output
• also pesky commas
• keeping track of indentation for human readability
• better use an existing library: `import json`
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JSON in Python
• json.dumps = short for dump to string
• python dict/list/str/... data comes in
• a string with valid JSON comes out

Workflow
• just convert everything to dict and list

• run json.dumps or json.dump( data, file )



PV248 Python 97/306 December 5, 2019

Python Example
d = {}

d["composer"] = ["Bach, Johann Sebastian"]

d["key"] = "g"

d["voices"] = { 1: "oboe", 2: "bassoon" }

json.dump( d, sys.stdout, indent=4 )

Beware: keys are always strings in JSON
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Parsing JSON
• import json

• json.load is the counterpart to json.dump from above
∘ de-serialise data from an open file
∘ builds lists, dictionaries, etc.

• json.loads corresponds to json.dumps



PV248 Python 99/306 December 5, 2019

XML
• meant as a lightweight and consistent redesignof SGML
∘ turned into a very complex format

• heaps of invalid XML floating around
∘ parsing real-world XML is a nightmare
∘ even valid XML is pretty challenging
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XML: Example
<Order OrderDate="1999-10-20">

<Address Type="Shipping">

<Name>Ellen Adams</Name>

<Street>123 Maple Street</Street>

</Address>

<Item PartNumber="872-AA">

<ProductName>Lawnmower</ProductName>

<Quantity>1</Quantity>

</Item>

</Order>
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XML: Another Example
<BLOKY_OBSAH>

<STUDENT>

<OBSAH>25 bodů</OBSAH>

<UCO>72873</UCO>

<ZMENENO>20160111104208</ZMENENO>

<ZMENIL>395879</ZMENIL>

</STUDENT>

</BLOKY_OBSAH>
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XML Features
• offers extensible, rich structure
∘ tags, attributes, entities
∘ suited for structured hierarchical data

• schemas: use XML to describe XML
∘ allows general-purpose validators
∘ self-documenting to a degree
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XML vs JSON
• both work best with trees
• JSON has basically no features
∘ basic data structures and that’s it

• JSON data is ad-hoc and usually undocumented
∘ but: this often happens with XML anyway
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XML Parsers
• DOM = Document Object Model
• SAX = Simple API for XML
• expat = fast SAX-like parser (but not SAX)
• ElementTree = DOM-like but more pythonic



PV248 Python 105/306 December 5, 2019

XML: DOM
• read the entire XML document into memory
• exposes the AST (Abstract Syntax Tree)
• allows things like XPath and CSS selectors
• the API is somewhat clumsy in python
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XML: SAX
• event-driven XML parsing
• much more efficient than DOM
∘ but often harder to use

• only useful in python for huge XML files
∘ otherwise just use ElementTree
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XML: ElementTree
for child in root:

print child.tag, child.attrib

# Order { OrderDate: "1999-10-20" }

• supports tree walking, XPath
• supports serialization too
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NoSQL / Non-relational Databases
• umbrella term for a number of approaches
∘ flat key/value and column stores
∘ document and graph stores

• no or minimal schemas
• non-standard query languages
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Key-Value Stores
• usually very fast and very simple
• completely unstructured values
• keys are often database-global
∘ workaround: prefixes for namespacing
∘ or: multiple databases
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NoSQL & Python
• redis (redis-py) module (Redis is Key-Value)
• memcached (another Key-Value store)
• PyMongo for talking to MongoDB (document-oriented)
• CouchDB (another document-oriented store)
• neo4j or cayley (module pyley) for graph structures
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SQL and RDBMS
• SQL = Structured Query Language
• RDBMS = Relational DataBase Management System
• SQL is to NoSQL what XML is to JSON
• heavily used and extremely reliable
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SQL: Example
select name, grade from student;

select name from student where grade < 'C';

insert into student ( name, grade ) values

( 'Random X. Student', 'C' );

select * from student

join enrollment on student.id = enrollment.student

join group on group.id = enrollment.group;
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SQL: Relational Data
• JSON and XML are hierarchical
∘ or built from functions if you like

• SQL is relational
∘ relations = generalized functions
∘ can capture more structure
∘ much harder to efficiently process
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SQL: Data Definition
• mandatory, unlike XML or JSON
• gives the data a rather rigid structure
• tables (relations) and columns (attributes)
• static data types for columns
• additional consistency constraints
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SQL: Constraints
• help ensure consistency of the data
• foreign keys: referential integrity
∘ ensures there are no dangling references
∘ but: does not prevent accidental misuse

• unique constraints
• check constraints: arbitrary consistency checks
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SQL: Query Planning
• an RDBMS makes heavy use of indexing
∘ using B trees, hashes and similar techniques
∘ indices are used automatically

• all the heavy lifting is done by the backend
∘ highly-optimized, low-level code
∘ efficient handling of large data
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SQL: Reliability and Flexibility
• most RDBMS give ACID guarantees
∘ transparently solves a lot of problems
∘ basically impossible with normal files

• support for schema alterations
∘ alter table and similar
∘ nearly impossible in ad-hoc systems



PV248 Python 118/306 December 5, 2019

SQLite
• lightweight in-process SQL engine
• the entire database is in a single file
• convenient python module, sqlite3
• stepping stone for a “real” database
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Other Databases
• you can talk to most SQL DBs using python
• postgresql (psycopg2, ...)
• mysql / mariadb (mysql-python, mysql-connector, ...)
• big & expensive: Oracle (cx_oracle), DB2 (pyDB2)
• most of those are much more reliable than SQLite
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SQL Injection
sql = "SELECT * FROM t WHERE name = '" + n + '"'

• the above code is bad, never do it
• consider the following

n = "x'; drop table students --"

n = "x'; insert into passwd (user, pass) ..."
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Avoiding SQL Injection
• use proper SQL-building APIs
∘ this takes care of escaping internally

• templates like insert ... values (?, ?)

∘ the ? get safely substituted by the module
∘ e.g. the executemethod of a cursor
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PEP 249
• informational PEP, for library writers
• describes how database modules should behave
∘ ideally, all SQL modules have the same interface
∘ makes it easy to swap a database backend

• but: SQL itself is not 100% portable
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SQL Pitfalls
• sqlite does not enforce all constraints
∘ you need to pragma foreign_keys = on

• no portable syntax for autoincrement keys
• not all (column) types are supported everywhere
• no portable way to get the key of last insert
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More Resources & Stuff to Look Up
• SQL: https://www.w3schools.com/sql/
• https://docs.python.org/3/library/sqlite3.html

• Object-Relational Mapping
• SQLAlchemy: constructing portable SQL
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Part 3: Advanced Constructs
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Callable Objects
• user-defined functions (module-level def)
• user-defined methods (instance and class)
• built-in functions and methods
• class objects
• objects with a __call__method
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User-defined Functions
• come about from a module-level def
• metadata: __doc__, __name__, __module__
• scope: __globals__, __closure__
• arguments: __defaults__, __kwdefaults__
• type annotations: __annotations__
• the code itself: __code__
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Positional and Keyword Arguments
• user-defined functions have positional arguments
• and keyword arguments
∘ print("hello", file=sys.stderr)

∘ arguments are passed by name
∘ which style is used is up to the caller

• variadic functions: def foo(*args, **kwargs)

∘ args is a tuple of unmatched positional args
∘ kwargs is a dict of unmatched keyword args



PV248 Python 129/306 December 5, 2019

Lambdas
• def functions must have a name
• lambdas provide anonymous functions
• the body must be an expression
• syntax: lambda x: print("hello", x)

• standard user-defined functions otherwise
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Instance Methods
• comes about as object.method
∘ print(x.foo)→ <bound method Foo.foo of ...>

• combines the class, instance and function itself
• __func__ is a user-defined function object
• let bar = x.foo, then
∘ x.foo()→ bar.__func__(bar.__self__)
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Iterators
• objects with __next__ (since 3.x)
∘ iteration ends on raise StopIteration

• iterable objects provide __iter__

∘ sometimes, this is just return self

∘ any iterable can appear in for x in iterable
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class FooIter:

def __init__(self):

self.x = 10

def __iter__(self): return self

def __next__(self):

if self.x:

self.x -= 1

else:

raise StopIteration

return self.x
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Generators (PEP 255)
• written as a normal function or method
• they use yield to generate a sequence
• represented as special callable objects
∘ exist at the C level in CPython

def foo(*lst):

for i in lst: yield i + 1

list(foo(1, 2)) # prints [2, 3]
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yield from

• calling a generator produces a generator object
• how do we call one generator from another?
• same as for x in foo(): yield x

def bar(*lst):

yield from foo(*lst)

yield from foo(*lst)

list(bar(1, 2)) # prints [2, 3, 2, 3]
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Native Coroutines (PEP 492)
• created using async def (since Python 3.5)
• generalisation of generators
∘ yield from is replaced with await

∘ an __await__magic method is required
• a coroutine can be suspended and resumed



PV248 Python 136/306 December 5, 2019

Coroutine Scheduling
• coroutines need a scheduler
• one is available from asyncio.get_event_loop()

• along with many coroutine building blocks
• coroutines can actually run in parallel
∘ via asyncio.create_task (since 3.7)
∘ via asyncio.gather
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Async Generators (PEP 525)
• async def + yield

• semantics like simple generators
• but also allows await
• iterated with async for

∘ async for runs sequentially
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Decorators
• written as @decor before a function definition
• decor is a regular function (def decor(f))
∘ f is bound to the decorated function
∘ the decorated function becomes the result of decor

• classes can be decorated too
• you can ‘create’ decorators at runtime
∘ @mkdecor("moo") (mkdecor returns the decorator)
∘ you can stack decorators
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def decor(f):

return lambda: print("bar")

def mkdecor(s):

return lambda g: lambda: print(s)

@decor

def foo(f): print("foo")

@mkdecor("moo")

def moo(f): print("foo")

# foo() prints "bar", moo() prints "moo"
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List Comprehension
• a concise way to build lists
• combines a filter and a map

[ 2 * x for x in range(10) ]

[ x for x in range(10) if x % 2 == 1 ]

[ 2 * x for x in range(10) if x % 2 == 1 ]

[ (x, y) for x in range(3) for y in range(2) ]
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Operators
• operators are (mostly) syntactic sugar
• x < y rewrites to x.__lt__(y)

• is and is not are special
∘ are the operands the same object?
∘ also the ternary (conditional) operator
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Non-Operator Builtins
• len(x)→ x.__len__() (length)
• abs(x)→ x.__abs__() (magnitude)
• str(x)→ x.__str__() (printing)
• repr(x)→ x.__repr__() (printing for eval)
• bool(x) and if x: x.__bool__()
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Arithmetic
• a standard selection of operators
• / is floating point, // is integral
• += and similar are somewhat magical
∘ x += y→ x = x.__iadd__(y) if defined
∘ otherwise x = x.__add__(y)
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x = 7 # an int is immutable

x += 3 # works, x = 10, id(x) changes

lst = [7, 3]

lst[0] += 3 # works too, id(lst) stays same

tup = (7, 3) # a tuple is immutable

tup += (1, 1) # still works (id changes)

tup[0] += 3 # fails
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Relational Operators
• operands can be of different types
• equality: !=, ==
∘ by default uses object identity

• ordering: <, <=, >, >= (TypeError by default)
• consistency is not enforced
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Relational Consistency
• __eq__must be an equivalence relation
• x.__ne__(y)must be the same as not x.__eq__(y)

• __lt__must be an ordering relation
∘ compatible with __eq__

∘ consistent with each other
• each operator is separate (mixins can help)
∘ or perhaps a class decorator
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Collection Operators
• in is also a membership operator (outside for)
∘ implemented as __contains__

• indexing and slicing operators
∘ del x[y]→ x.__delitem__(y)

∘ x[y]→ x.__getitem__(y)

∘ x[y] = z→ x.__setitem__(y, z)
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Conditional Operator
• also known as a ternary operator
• written x if cond else y

∘ in C: cond ? x : y

• forms an expression, unlike if

∘ can e.g. appear in a lambda
∘ or in function arguments, &c.



PV248 Python 149/306 December 5, 2019

Concurrency & Parallelism
• threading – thread-based parallelism
• multiprocessing

• concurrent – future-based programming
• subprocess

• sched, a general-purpose event scheduler
• queue, for sending objects between threads
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Threading
• low-level thread support, module threading

• Thread objects represent actual threads
∘ threads provide start() and join()

∘ the run()method executes in a new thread
• mutexes, semaphores &c.
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The Global Interpreter Lock
• memory management in CPython is not thread-safe
∘ Python code runs under a global lock
∘ pure Python code cannot use multiple cores

• C code usually runs without the lock
∘ this includes numpy crunching
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Multiprocessing
• like threading but uses processes
• works around the GIL
∘ each worker process has its own interpreter

• queued/sent objects must be pickled
∘ see also: the picklemodule
∘ this causes substantial overhead
∘ functions, classes &c. are pickled by name
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Futures
• like coroutine await but for subroutines
• a Future can be waited for using f.result()

• scheduled via concurrent.futures.Executor

∘ Executor.map is like asyncio.gather

∘ Executor.submit is like asyncio.create_task

• implemented using process or thread pools
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Exceptions
• an exception interrupts normal control flow
• it’s called an exception because it is exceptional
∘ never mind StopIteration

• causes methods to be interrupted
∘ until a matching except block is found
∘ also known as stack unwinding
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Life Without Exceptions
int fd = socket( ... );

if ( fd < 0 )

... /* handle errors */

if ( bind( fd, ... ) < 0 )

... /* handle errors */

if ( listen( fd, 5 ) < 0 )

... /* handle errors */
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With Exceptions
try:

sock = socket.socket( ... )

sock.bind( ... )

sock.listen( ... )

except ...:

# handle errors
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Exceptions vs Resources
x = open( "file.txt" )

# stuff

raise SomeError

• who calls x.close()
• this would be a resource leak
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Using finally

try:

x = open( "file.txt" )

# stuff

finally:

x.close()

• works, but tedious and error-prone
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Using with

with open( "file.txt" ) as f:

# stuff

• with takes care of the finally and close

• with x as y sets y = x.__enter__()

∘ and calls x.__exit__(...) when leaving the block
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The @property decorator
• attribute syntax is the preferred one in Python
• writing useless setters and getters is boring

class Foo:

@property

def x(self): return 2 * self.a

@x.setter

def x(self, v): self.a = v // 2
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Execution Stack
• made up of activation frames
• holds local variables
• and return addresses
• in dynamic languages, often lives in the heap
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Variable Capture
• variables are captured lexically
• definitions are a dynamic / run-time construct
∘ a nested definition is executed
∘ creates a closure object

• always by reference in Python
∘ but can be by-value in other languages
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Using Closures
• closures can be returned, stored and called
∘ they can be called multiple times, too
∘ they can capture arbitrary variables

• closures naturally retain state
• this is what makes them powerful
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Objects from Closures
• so closures are essentially code + state
• wait, isn’t that what an object is?
• indeed, you can implement objects using closures
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The Role of GC
• memory management becomes a lot more complicated
• forget C-style ‘automatic’ stack variables
• this is why the stack is actually in the heap
• this can go as far as form reference cycles
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Coroutines
• coroutines are a generalisation of subroutines
• they can be suspended and re-entered
• coroutines can be closures at the same time
• the code of a coroutine is like a function
• a suspended coroutine is like an activation frame
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Yield
• suspends execution and ‘returns’ a value
• may also obtain a new value (cf. send)
• when re-entered, continue where we left off

for i in range(5): yield i
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Send
• with yield, we have one-way communication
• but in many cases, we would like two-way
• a suspended coroutine is an object in Python
∘ with a sendmethod which takes a value
∘ send re-enters the coroutine
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Yield From and Await
• yield from is mostly a generator concept
• await basically does the same thing
∘ call out to another coroutine
∘ when it suspends, so does the entire stack
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Suspending Native Coroutines
• this is not actually possible
∘ not with async-native syntax anyway

• you need a yield

∘ for that, you need a generator
∘ use the types.coroutine decorator



PV248 Python 171/306 December 5, 2019

Event Loop
• not required in theory
• useful also without coroutines
• there is a synergistic effect
∘ event loops make coroutines easier
∘ coroutines make event loops easier
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Part 4: Math and Statistics
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Numbers in Python
• recall that numbers are objects
• a tuple of real numbers has 300% overhead
∘ compared to a C array of float values
∘ and 350% for integers

• this causes extremely poor cache use
• integers are arbitrary-precision
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Math in Python
• numeric data usually means arrays
∘ this is inefficient in python

• we need a module written in C
∘ but we don’t want to do that ourselves

• enter the SciPy project
∘ pre-made numeric and scientific packages
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The SciPy Family
• numpy: data types, linear algebra
• scipy: more computational machinery
• pandas: data analysis and statistics
• matplotlib: plotting and graphing
• sympy: symbolic mathematics
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Aside: External Libraries
• until now, we only used bundled packages
• for math, we will need external libraries
• you can use pip to install those
∘ use pip install --user <package>
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Aside: The Python Package Index
• colloquially known as PyPI (or cheese shop)
∘ do not confuse with PyPy (Python in almost-Python)

• both source packages and binaries
∘ the latter known as wheels (PEP 427, 491)
∘ previously python eggs

• <https://pypi.python.org>
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Aside: Installing numpy

• the easiest way may be with pip

∘ this would be pip3 on aisa

• linux distributions usually also have packages
• another option is getting the Anaconda bundle
• detailed instructions on https://scipy.org
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Arrays in numpy

• compact, C-implemented data types
• flexible multi-dimensional arrays
• easy and efficient re-shaping
∘ typically without copying the data
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Entering Data
• most data is stored in numpy.array

• can be constructed from a list

∘ a list of lists for 2D arrays
• or directly loaded from / stored to a file
∘ binary: numpy.load, numpy.save
∘ text: numpy.loadtxt, numpy.savetxt
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LAPACK and BLAS
• BLAS is a low-level vector/matrix package
• LAPACK is built on top of BLAS
∘ provides higher-level operations
∘ tuned for modern CPUs with multiple caches

• both are written in Fortran
∘ ATLAS and C-LAPACK are C implementations
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Element-wise Functions
• the basic math function arsenal
• powers, roots, exponentials, logarithms
• trigonometric (sin, cos, tan, ...)
• hyperbolic (sinh, cosh, tanh, ...)
• cyclometric (arcsin, arccos, arctan, ...)
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Matrix Operations in numpy

• import numpy.linalg

• multiplication, inversion, rank
• eigenvalues and eigenvectors
• linear equation solver
• pseudo-inverses, linear least squares
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Additional Linear Algebra in scipy

• import scipy.linalg

• LU, QR, polar, etc. decomposition
• matrix exponentials and logarithms
• matrix equation solvers
• special operations for banded matrices
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Where is my Gaussian Elimination?
• used in lots of school linear algebra
• but not the most efficient algorithm
• a few problems with numerical stability
• not directly available in numpy
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Numeric Stability
• floats are imprecise / approximate

0.1**2 == 0.01 # False

1 / ( 0.1**2 - 0.01 ) # 5.8⋅10¹⁷

• multiplication is not associative

a = (0.1 * 0.1) * 10

b = 0.1 * (0.1 * 10)

1 / ( a - b ) # 7.21⋅10¹⁶

• iteration amplifies the errors
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LU Decomposition
• decompose matrix A into simpler factors
• 𝑃𝐴 = 𝐿𝑈where
∘ 𝑃 is a permutation matrix
∘ 𝐿 is a lower triangular matrix
∘ 𝑈 is an upper triangular matrix

• fast and numerically stable
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Uses for LU
• equations, determinant, inversion, ...
• as an example
∘ det(𝐴) = det(𝑃−1)⋅det(𝐿)⋅det(𝑈)
∘ where det(𝑈) = ∑𝑖 𝑈𝑖𝑖 and
∘ det(𝐿) = ∑𝑖 𝑈𝑖𝑖
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Numeric Math
• float arithmetic is messy but incredibly fast
• measured data is approximate anyway
• stable algorithms exist for many things
∘ and are available from libraries

• we often don’t care about exactness
∘ think computer graphics, signal analysis, ...
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Symbolic Math
• numeric math sucks for ‘textbook’ math
• there are problems where exactness matters
∘ pure math and theoretical physics

• incredibly slow computation
∘ but much cleaner interpretation
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Linear Algebra in sympy

• uses exact math
∘ e.g. arbitrary precision rationals
∘ and roots thereof
∘ and many other computable numbers

• wide repertoire of functions
∘ including LU, QR, etc. decompositions
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Exact Rationals in sympy

from sympy import *

a = QQ( 1 ) / 10 # QQ = rationals

Matrix( [ [ sqrt( a**3 ), 0, 0 ],

[ 0, sqrt( a**3 ), 0 ],

[ 0, 0, 1 ] ] ).det()

# result: 1/1000
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numpy for Comparison
import numpy as np

import numpy.linalg as la

a = 0.1

la.det( [ [ np.sqrt( a**3 ), 0, 0 ],

[ 0, np.sqrt( a**3 ), 0 ],

[ 0, 0, 1 ] ] )

# result: 0.0010000000000000002
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General Solutions in Symbolic Math
from sympy import *

x = symbols( 'x' )

Matrix( [ [ x, 0, 0 ],

[ 0, 1, 0 ],

[ 0, 0, x ] ] ).det()

# result: x ** 2
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Symbolic Differentation
x = symbols( 'x' )

diff( x**2 + 2*x + log( x/2 ) )

# result: 2*x + 2 + 1/x

diff( x**2 * exp(x) )

# result: x**2 * exp( x ) + 2 * x * exp( x )
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Algebraic Equations
solve( x**2 - 7 )

# result: [ -sqrt( 7 ), sqrt( 7 ) ]

solve( x**2 - exp( x ) )

# result: [ -2 * LambertW( -1/2 ) ]

solve( x**4 - x )

# result: [ 0, 1, -1/2 - sqrt(3) * I/2,

#           -1/2 + sqrt(3) * I/2 ] ; I**2 = -1
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Ordinary Diffrential Equations
f = Function( 'f' )

dsolve( f( x ).diff( x ) ) # f'(x) = 0

# result: Eq( f( x ), C1 )

dsolve( f( x ).diff( x ) - f(x) ) # f'(x) = f(x)

# result: Eq( f( x ), C1 * exp( x ) )

dsolve( f( x ).diff( x ) + f(x) ) # f'(x) = -f(x)

# result: Eq( f( x ), C1 * exp( -x ) )
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Symbolic Integration
integrate( x**2 )

# result: x**3 / 3

integrate( log( x ) )

# result: x * log( x ) - x

integrate( cos( x ) ** 2 )

# result: x/2 + sin( x ) * cos( x ) / 2
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Numeric Sparse Matrices
• sparse = most elements are 0
• available in scipy.sparse

• special data types (not numpy arrays)
∘ do not use numpy functions on those

• less general, but more compact and faster
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Fourier Transform
• continuous: 𝑓(𝜉) = ∫

∞

−∞
𝑓(𝑥) exp (−2𝜋𝑖𝑥𝜉) dx

• series:
∘ 𝑓(𝑥) = ∑

∞
𝑛=−∞ 𝑐𝑛 exp �

𝑖2𝜋𝑛𝑥

𝑃 �

• real series:
∘ 𝑓(𝑥) =

𝑎0
2 + ∑

∞
𝑛=1 �𝑎𝑛 sin �

2𝜋𝑛𝑥

𝑃 � + 𝑏𝑛 cos �
2𝜋𝑛𝑥

𝑃 ��

∘ 𝑐𝑛 =
1

2(𝑎𝑛 − 𝑖𝑏𝑛)



PV248 Python 201/306 December 5, 2019

Discrete Fourier Transform
• available in numpy.fft

• goes between time and frequency domains
• a few different variants are covered
∘ real-valued input (for signals, rfft)
∘ inverse transform (ifft, irfft)
∘ multiple dimensions (fft2, fftn)
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Polynomial Series
• the numpy.polynomial package
• Chebyshev, Hermite, Laguerre and Legendre
∘ arithmetic, calculus and special-purpose operations
∘ numeric integration using Guassian quadrature
∘ fitting (polynomial regression)
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Statistics in numpy

• a basic statistical toolkit
∘ averages, medians
∘ variance, standard deviation
∘ histograms

• random sampling and distributions
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Linear Regression
• very fast model-fitting method
∘ both in computational and human terms
∘ quick and dirty first approximation

• widely used in data interpretation
∘ biology and sociology statistics
∘ finance and economics, especially prediction



PV248 Python 205/306 December 5, 2019

Polynomial Regression
• higher-order variant of linear regression
• can capture acceleration or deceleration
• harder to use and interpret
∘ also harder to compute

• usually requires a model of the data
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Interpolation
• find a line or curve that approximates data
• it must pass through the data points
∘ this is a major difference to regression

• more dangerous than regression
∘ runs a serious risk of overfitting
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Linear and Polynomial Regression, Interpolation
• regressions using the least squares method
∘ linear: numpy.linalg.lstsq
∘ polynomial: numpy.polyfit

• interpolation: scipy.interpolate
∘ e.g. piecewise cubic splines
∘ Lagrange interpolating polynomials
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Pandas: Data Analysis
• the Python equivalent of R
∘ works with tabular data (CSV, SQL, Excel)
∘ time series (also variable frequency)
∘ primarily works with floating-point values

• partially implemented in C and Cython
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Pandas Series and DataFrame
• Series is a single sequence of numbers
• DataFrame represents tabular data
∘ powerful indexing operators
∘ index by column→ series
∘ index by condition→ filtering
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Pandas Example
scores = [ ('Maxine', 12), ('John', 12),

('Sandra', 10) ]

cols = [ 'name', 'score' ]

df = pd.DataFrame( data=scores, columns=cols )

df['score'].max() # 12

df[ df['score'] >= 12 ] # Maxine and John
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Part 5: Communication, HTTP & asyncio
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Running Programs (the old way)
• os.system is about the simplest
∘ also somewhat dangerous – shell injection
∘ you only get the exit code

• os.popen allows you to read output of a program
∘ alternatively, you can send input to the program
∘ you can’t do both (would likely deadlock anyway)
∘ runs the command througha shell, sameas os.system
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Low-level Process API
• POSIX-inherited interfaces (on POSIX systems)
• os.exec: replace the current process
• os.fork: split the current process in two
• os.forkpty: same but with a PTY
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Detour: bytes vs str
• strings (class str) represent text
∘ that is, a sequence of unicode points

• files and network connections handle data
∘ represented in Python as bytes

• the bytes constructor can convert from str

∘ e.g. b = bytes("hello", "utf8")
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Running Programs (the new way)
• you can use the subprocessmodule
• subprocess can handle bidirectional IO
∘ it also takes care of avoiding IO deadlocks
∘ set input to feed data to the subprocess

• internally, run uses a Popen object
∘ if run can’t do it, Popen probably can
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Getting subprocess Output
• available via run since Python 3.7
• the run function returns a CompletedProcess

• it has attributes stdout and stderr

• both are bytes (byte sequences) by default
• or str if text or encodingwere set
• available if you enabled capture_output
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Running Filters with Popen

• if you are stuck with 3.6, use Popen directly
• set stdin in the constructor to PIPE

• use the communicatemethod to send the input
• this gives you the outputs (as bytes)
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import subprocess

from subprocess import PIPE

input = bytes( "x\na\nb\ny", "utf8")

p = subprocess.Popen(["sort"], stdin=PIPE,

stdout=PIPE)

out = p.communicate(input=input)

# out[0] is the stdout, out[1] is None
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Subprocesses with asyncio

• import asyncio.subprocess

• create_subprocess_exec, like subprocess.run

∘ but it returns a Process instance
∘ Process has a communicate async method

• can run things in background (via tasks)
∘ also multiple processes at once
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Protocol-based asyncio subprocesses
• let loop be an implementation of the asyncio event loop
• there’s subprocess_exec and subprocess_shell

∘ sets up pipes by default
• integrates into the asyncio transport layer (see later)
• allows you to obtain the data piece-wise
• https://docs.python.org/3/library/asyncio-protocol.html
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Sockets
• the socket API comes from early BSD Unix
• socket represents a (possible) network connection
• sockets are more complicated than normal files
∘ establishing connections is hard
∘ messages get lost much more often than file data
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Socket Types
• sockets can be internet or unix domain
∘ internet sockets connect to other computers
∘ Unix sockets live in the filesystem

• sockets can be stream or datagram
∘ stream sockets are like files (TCP)
∘ you can write a continuous stream of data
∘ datagramsockets can send individualmessages (UDP)
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Sockets in Python
• the socketmodule is available on all major OSes
• it has a nice object-oriented API
∘ failures are propagated as exceptions
∘ buffer management is automatic

• useful if you need to do low-level networking
∘ hard to use in non-blocking mode
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Sockets and asyncio

• asyncio provides sock_* to work with socket objects
• this makes work with non-blocking sockets a lot easier
• but your program needs to be written in async style
• only use sockets when there is no other choice
∘ asyncio protocols are both faster and easier to use
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Hyper-Text Transfer Protocol
• originally a simple text-based, stateless protocol
• however
∘ SSL/TLS, cryptography (https)
∘ pipelining (somewhat stateful)
∘ cookies (somewhat stateful in a different way)

• typically between client and a front-end server
• but also as a back-endprotocol (web server to app server)
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Request Anatomy
• request type (see below)
• header (text-based, like e-mail)
• content

Request Types
• GET – asks the server to send a resource
• HEAD – like GET but only send back headers
• POST – send data to the server
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Python and HTTP
• both client and server functionality
∘ import http.client

∘ import http.server

• TLS/SSL wrappers are also available
∘ import ssl

• synchronous by default
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Serving Requests
• derive from BaseHTTPRequestHandler

• implement a do_GETmethod
• this gets called whenever the client does a GET

• also available: do_HEAD, do_POST, etc.
• pass the class (not an instance) to HTTPServer
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Serving Requests (cont’d)
• HTTPServer creates a new instance of your Handler
• the BaseHTTPRequestHandlermachinery runs
• it calls your do_GET etc. method
• request data is available in instance variables
∘ self.path, self.headers
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Talking to the Client
• HTTP responses start with a response code
∘ self.send_response( 200, 'OK' )

• the headers follow (set at least Content-Type)
∘ self.send_header( 'Connection', 'close' )

• headers and the content need to be separated
∘ self.end_headers()

• finally, send the content by writing to self.wfile
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Sending Content
• self.wfile is an open file
• it has a write()method which you can use
• sockets only accept byte sequences, not str
• use the bytes( string, encoding ) constructor
∘ match the encoding to your Content-Type



PV248 Python 232/306 December 5, 2019

HTTP and asyncio

• the base asyncio currently doesn’t directly supportHTTP
• but: you can get aiohttp from PyPI
• contains a very nice web server
∘ from aiohttp import web

∘ minimum boilerplate, fully asyncio-ready
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SSL and TLS
• you want to use the sslmodule for handling HTTPS
∘ this is especially true server-side
∘ aiohttp and http.server are compatible

• you need to deal with certificates (loading, checking)
• this is a rather important but complex topic
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Certificate Basics
• certificate is a cryptographically signed statement
∘ it ties a server to a certain public key
∘ the client ensures the server knows the private key

• the server loads the certificate and its private key
• the client must validate the certificate
∘ this is typically a lot harder to get right
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SSL in Python
• start with import ssl

• almost everything happens in the SSLContext class
• get an instance from ssl.create_default_context()

∘ you can use wrap_socket to run an SSL handshake
∘ you can pass the context to aiohttp

• if httpd is a http.server.HTTPServer:

httpd.socket = ssl.wrap_socket( httpd.socket, ... )
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HTTP Clients
• there’s a very basic http.client
• for a more complete library, use urllib.request

• aiohttp has client functionality
• all of the above can be used with ssl

• another 3rd party module: Python Requests
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IO at the OS Level
• often defaults to blocking
∘ read returns when data is available
∘ this is usually OK for files

• but what about network code?
∘ could work for a client
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Threads and IO
• there may be work to do while waiting
∘ waiting for IO can be wasteful

• only the calling (OS) thread is blocked
∘ another thread may do the work
∘ but multiple green threads may be blocked
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Non-Blocking IO
• the program calls read
∘ read returns immediately
∘ even if there was no data

• but how do we know when to read?
∘ we could poll
∘ for example call read every 30ms
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Polling
• trade-off between latency and throughput
∘ sometimes, polling is okay
∘ but is often too inefficient

• alternative: IO dispatch
∘ useful when multiple IOs are pending
∘ wait only if all are blocked
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select

• takes a list of file descriptors
• block until one of them is ready
∘ next readwill return data immediately

• can optionally specify a timeout
• only useful for OS-level resources
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Alternatives to select

• select is a rather old interface
• there is a number of more modern variants
• poll and epoll system calls
∘ despite the name, they do not poll
∘ epoll is more scalable

• kqueue and kevent on BSD systems
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Synchronous vs Asynchronous
• the select family is synchronous
∘ you call the function
∘ it may wait some time
∘ you proceed when it returns

• OS threads are fully asynchronous
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The Thorny Issue of Disks
• a file is always ‘ready’ for reading
• this may still take time to complete
• there is no good solution on UNIX
• POSIX AIO exists but is sparsely supported
• OS threads are an option
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IO onWindows
• select is possible (but slow)
• Windows provides real asynchronous IO
∘ quite different from UNIX
∘ the IO operation is directly issued
∘ but the function returns immediately

• comes with a notification queue
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The asyncio Event Loop
• uses the select family of syscalls
• why is it called async IO?
∘ select is synchronous in principle
∘ this is an implementation detail
∘ the IOs are asynchronous to each other
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How Does It Work
• you must use asyncio functions for IO
• an async read does not issue an OS read

• it yields back into the event loop
• the fd is put on the select list
• the coroutine is resumed when the fd is ready
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Timers
• asyncio allows you to set timers
• the event loop keeps a list of those
• and uses that to set the select timeout
∘ just uses the nearest timer expiry

• when a timer expires, its owner is resumed
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Blocking IO vs asyncio
• all user code runs on the main thread
• you must not call any blocking IO functions
• doing so will stall the entire application
∘ in a server, clients will time out
∘ even if not, latency will suffer
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DNS
• POSIX: getaddrinfo and getnameinfo

∘ also the older API gethostbyname
• those are all blocking functions
∘ and they can take a while
∘ but name resolution is essential

• asyncio internally uses OS threads for DNS
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Signals
• signals on UNIX are very asynchronous
• interact with OS threads in a messy way
• asyncio hides all this using C code
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Native Coroutines (Reminder)
• delared using async def

async def foo():

await asyncio.sleep( 1 )

• calling foo() returns a suspended coroutine
• which you can await

∘ or turn it into an asyncio.Task
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Tasks
• asyncio.Task is a nice wrapper around coroutines
∘ create with asyncio.create_task()

• can be stopped prematurely using cancel()

• has an API for asking things:
∘ done() tells you if the coroutine has finished
∘ result() gives you the result
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Tasks and Exceptions
• what if a coroutine raises an exception?
• calling resultwill re-raise it
∘ i.e. it continues propagating from result()

• you can also ask directly using exception()

∘ returns None if the coroutine ended normally
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Asynchronous Context Managers
• normally, we use with for resource acquisition
∘ this internally uses the context manager protocol

• but sometimes you need to wait for a resource
∘ __enter__() is a subroutine and would block
∘ this won’t work in async-enabled code

• we need __enter__() to be itself a coroutine
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async with

• just like wait but uses __aenter__(), __aexit__()
∘ those are async def

• the async with behaves like an await

∘ it will suspend if the context manager does
∘ the coroutine which owns the resource can continue

• mainly used for locks and semaphores
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Part 6: Testing, Pitfalls
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Mixing Languages
• for many people, Python is not a first language
• some things look similar in Python and Java (C++, ...)
∘ sometimes they do the same thing
∘ sometimes they do something very different
∘ sometimes the difference is subtle
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Python vs Java: Decorators
• Java has a thing called annotations
• looks very much like a Python decorator
• in Python, decorators can drastically change meaning
• in Java, they are just passive metadata
∘ other code canuse themformeta-programming though



PV248 Python 260/306 December 5, 2019

Class Body Variables
class Foo:

some_attr = 42

• in Java/C++, this is how you create instance variables
• in Python, this creates class attributes
∘ i.e. what C++/Java would call static attributes



PV248 Python 261/306 December 5, 2019

Very Late Errors
if a == 2:

priiiint("a is not 2")

• no error when loading this into python
• it even works as long as a != 2

• most languages would tell you much earlier
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Very Late Errors (cont’d)
try:

foo()

except TyyyypeError:

print("my mistake")

• does not even complain when running the code
• you only notice when foo() raises an exception
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Late Imports
if a == 2:

import foo

foo.say_hello()

• unless a == 2, mymod is not loaded
• any syntax errors don’t show up until a == 2

∘ it may even fail to exist
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Block Scope
for i in range(10): pass

print(i) # not a NameError

• in Python, local variables are function-scoped
• in other languages, i is confined to the loop
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Assignment Pitfalls
x = [ 1, 2 ]

y = x

x.append( 3 )

print( y ) # prints [ 1, 2, 3 ]

• in Python, everything is a reference
• assignment does not make copies
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Equality of Iterables
• [0, 1] == [0, 1]→ True (obviously)
• range(2) == range(2)→ True

• list(range(2)) == [0, 1]→ True

• [0, 1] == range(2)→ False
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Equality of bool
• if 0: print( "yes" )→ nothing
• if 1: print( "yes" )→ yes
• False == 0→ True

• True == 1→ True

• 0 is False→ False

• 1 is True→ False
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Equality of bool (cont’d)
• if 2: print( "yes" )→ yes
• True == 2→ False

• False == 2→ False

• if '': print( "yes" )→ nothing
• if 'x': print( "yes" )→ yes
• '' == False→ False

• 'x' == True→ False
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Mutable Default Arguments
def foo( x = [] ):

x.append( 7 )

return x

foo() # [ 7 ]

foo() # [ 7, 7 ]... wait, what?
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Late Lexical Capture
f = [ lambda x : i * x for i in range( 5 ) ]

f[ 4 ]( 3 ) # 12

f[ 0 ]( 3 ) # 12 ... ?!

g = [ lambda x, i = i: i * x for i in range( 5 ) ]

g[ 4 ]( 3 ) # 12

g[ 0 ]( 3 ) # 0 ... fml

h = [ ( lambda x : i * x )( 3 ) for i in range( 5 ) ]

h # [ 0, 3, 6, 12 ] ... i kid you not
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Dictionary Iteration Order
• in python <= 3.6
∘ small dictionaries iterate in insertion order
∘ big dictonaries iterate in ‘random’ order

• in python 3.7
∘ all dictonaries in insertion, but not documented

• in python >= 3.8
∘ guaranteed to iterate in insertion order



PV248 Python 272/306 December 5, 2019

x = [ [ 1 ] * 2 ] * 3

print( x ) # [ [ 1, 1 ], [ 1, 1 ], [ 1, 1 ] ]

x[ 0 ][ 0 ] = 2

print( x ) # [ [ 2, 1 ], [ 2, 1 ], [ 2, 1 ] ]



PV248 Python 273/306 December 5, 2019

Forgotten Await
import asyncio

async def foo():

print( "hello" )

async def main():

foo()

asyncio.run( main() )

• gives warning coroutine 'foo' was never awaited
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Python vs Java: Closures
• captured variables are final in Java
• but they are mutable in Python
∘ and of course captured by reference

• they are whatever you tell them to be in C++
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Explicit super()
• Java and C++ automatically call parent constructors
• Python does not
• you have to call them yourself
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Setters and Getters
obj.attr

obj.attr = 4

• in C++ or Java, this is an assignment
• in Python, it can run arbitrary code
∘ this often makes getters/setters redundant
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Why Testing
• reading programs is hard
• reasoning about programs is even harder
• testing is comparatively easy

• difference between an example and a proof
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What is Testing
• based on trial runs
• the program is executed with some inputs
• the outputs or outcomes are checked
• almost always incomplete
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Testing Levels
• unit testing
∘ individual classes
∘ individual functions

• functional
∘ system
∘ integration
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Testing Automation
• manual testing
∘ still widely used
∘ requires human

• semi-automated
∘ requires human assistance

• fully automated
∘ can run unattended
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Testing Insight
• what does the test or tester know?
• black box: nothing known about internals
• gray box: limited knowledge
• white box: ‘complete’ knowledge
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Why Unit Testing?
• allows testing small pieces of code
• the unit is likely to be used in other code
∘ make sure your code works before you use it
∘ the less code, the easier it is to debug

• especially easier to hit all the corner cases
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Unit Tests with unittest

• from unittest import TestCase

• derive your test class from TestCase

• put test code into methods named test_*

• run with python -m unittest program.py

∘ add -v for more verbose output
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from unittest import TestCase

class TestArith(TestCase):

def test_add(self):

self.assertEqual(1, 4 - 3)

def test_leq(self):

self.assertTrue(3 <= 2 * 3)
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Unit Tests with pytest

• a more pythonic alternative to unittest

∘ unittest is derived from JUnit
• easier to use and less boilerplate
• you can use native python assert

• easier to run, too
∘ just run pytest in your source repository
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Test Auto-Discovery in pytest

• pytest finds your testcases for you
∘ no need to register anything

• put your tests in test_.py or _test.py

• name your testcases (functions) test_*
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Fixtures in pytest

• sometimes you need the same thing in many testcases
• in unittest, you have the test class
• pytest passes fixtures as parameters
∘ fixtures are created by a decorator
∘ they are matched based on their names
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import pytest

import smtplib

@pytest.fixture

def smtp_connection():

return smtplib.SMTP("smtp.gmail.com", 587)

def test_ehlo(smtp_connection):

response, msg = smtp_connection.ehlo()

assert response == 250
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Property Testing
• writing test inputs is tedious
• sometimes, we can generate them instead
• useful for general properties like
∘ idempotency (e.g. serialize + deserialize)
∘ invariants (output is sorted, ...)
∘ code does not cause exceptions
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Using hypothesis

• property-based testing for Python
• has strategies to generate basic data types
∘ int, str, dict, list, set, ...

• compose built-in generators to get custom types
• integrated with pytest
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import hypothesis

import hypothesis.strategies as s

@hypothesis.given(s.lists(s.integers()))

def test_sorted(x):

assert sorted(x) == x # should fail

@hypothesis.given(x=s.integers(), y=s.integers())

def test_cancel(x, y):

assert (x + y) - y == x # looks okay
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Going Quick and Dirty
• goal: minimize time spent on testing
• manual testing usually loses
∘ but it has almost 0 initial investment

• if you can write a test in 5 minutes, do it
• useful for testing small scripts
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Shell 101
• shell scripts are very easy to write
• they are ideal for testing IO behaviour
• easily check for exit status: set -e

• see what is going on: set -x

• use diff -u to check expected vs actual output
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Shell Test Example
set -ex

python script.py < test1.in | tee out

diff -u test1.out out

python script.py < test2.in | tee out

diff -u test2.out out
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Continuous Integration
• automated tests need to be executed
• with many tests, this gets tedious to do by hand
• CI builds and tests your project regularly
∘ every time you push some commits
∘ every night (e.g. more extensive tests)
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CI: Travis
• runs in the cloud (CI as a service)
• trivially integrates with pytest

• virtualenv out of the box for python projects
• integrated with github
• configure in .travis.yml in your repo
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CI: GitLab
• GitLab has its own CI solution (similar to travis)
• also available at FI
• runs tests when you push to your gitlab
• drop a .gitlab-ci.yml in your repository
• automatic deployment into heroku &c.
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CI: Buildbot
• written in python/twisted
∘ basically a framework to build a custom CI tool

• self-hosted and somewhat complicated to set up
∘ more suited for complex projects
∘ much more flexible than most CI tools

• distributed design
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CI: Jenkins
• another self-hosted solution, this time in Java
∘ widely used and well supported

• native support for python projects (including pytest)
∘ provides a dashboard with test result graphs &c.
∘ supports publishing sphinx-generateddocumentation
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Print-based Debugging
• no need to be ashamed, everybody does it
• less painful in interpreted languages
• you can also use decorators for tracing
• never forget to clean your program up again
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def debug(e):

f = sys._getframe(1)

v = eval(e, f.f_globals, f.f_locals)

l = f.f_code.co_filename + ':'

l += str(f.f_lineno) + ':'

print(l, e, '=', repr(v), file=sys.stderr)

x = 1

debug('x + 1')
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The Python Debugger
• run as python -m pdb program.py

• there’s a built-in help command
• next steps through the program
• break to set a breakpoint
• cont to run until end or a breakpoint
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What is Profiling
• measurement of resource consumption
• essential info for optimising programs
• answers questions about bottlenecks
∘ where is my program spending most time?
∘ less often: how is memory used in the program
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Why Profiling
• ‘blind’ optimisation is often misdirected
∘ it is like fixing bugs without triggering them
∘ program performance is hard to reason about

• tells you exactly which point is too slow
∘ allows for best speedup with least work
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Profiling in Python
• provided as a library, cProfile
∘ alternative: profile is slower, but more flexible

• run as python -m cProfile program.py

• outputs a list of lines/functions and their cost
• use cProfile.run() to profile a single expression
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# python -m cProfile -s time fib.py

ncalls tottime percall file:line(function)

13638/2 0.032 0.016 fib.py:1(fib_rec)

2 0.000 0.000 {builtins.print}

2 0.000 0.000 fib.py:5(fib_mem)


