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Preface  

The study of Process Algebra has received a great deal of attention since the 
pioneering work in the 1970s of the likes of R. Milner and C.A.R. Hoare. This 
attention has been merited as the formalism provides a natural framework for 
describing and analysing systems: concurrent systems are described naturally 
using constructs which have intuitive interpretations, such as notions of abstrac- 
tions and sequential and parallel composition. 

The goal of such a formalism is to provide techniques for verifying the cor- 
rectness of a system. Typically this verification takes the form of demonstrat- 
ing the equivalence of two systems expressed within the formalism, respectively 
representing an abstract specification of the system in question and its imple- 
mentation. However, any reasonable process algebra allows the description of 
any computable function, and the equivalence problem--regardless of what rea- 
sonable notion of equivalence you consider--is readily seen to be undecidable in 
general. Much can be accomplished by restricting attention to (communicating) 
finite-state systems where the equivalence problem is just as quickly seen to be 
decidable. However, realistic applications, which typically involve infinite enti- 
ties such as counters or timing aspects, can only be approximated by finite-state 
systems. Much interest therefore lies in the problem of identifying classes of 
infinite-state systems in which the equivalence problem is decidable. 

Such questions are not new in the field of theoretical computer science. Since 
the proof by Moore [50] in 1956 of the decidability of language equivalence for 
finite-state automata, language theorists have been studying the decidability 
problem over classes of automata which express languages which are more ex- 
pressive than the class of regular languages generated by finite-state automata. 
Bar-Hillel, Perles and Shamir [3] were the first to demonstrate in 1961 that the 
class of languages defined by context-free grammars was too wide to permit a 
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decidable theory for language equivalence. The search for a more precise divid- 
ing line is still active, with the most outstanding open problem concerning the 
decidability of language equivalence between deterministic push-down automata. 

When exploring the decidability of the equivalence checking problem, the 
first point to settle is the notion of equivalence which you wish to consider. 
In these notes we shall be particularly interested not in language equivalence 
but in bisimulation equivalence as defined by Park and used to great effect by 
Milner. Apart from being the fundamental notion of equivalence for several 
process algebraic formalisms, this behavioural equivalence has several pleasing 
mathematical properties, not least of which being that--as we shall discover--it 
is decidable over process classes for which all other common equivalences remain 
undecidable, in particular over the class of processes defined by context-free 
grammars. Furthermore in a particularly interesting class of processes--namely 
the normed deterministic processes--all of the standard equivalences coincide, 
so it is sensible to concentrate on the most mathematically tractable equivalence 
when analysing properties of another equivalence. In particular, by studying 
bisimulation equivalence we shall rediscover old theorems about the decidability 
of language equivalence, as well as provide more efficient algorithms for these 
decidability results than have previously been presented. We expect that the 
techniques which can be exploited in the study of bisimulation equivalence will 
prove to be useful in tackling other language theoretic problems, notably the 
problem of deterministic push-down automata. 
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1 G r a m m a r s  a n d  P r o c e s s e s  

In these notes we consider infinite-state processes defined by context-free gram- 
mars. The purpose of such a study is to provide results in both process theory, 
where one is interested in the behaviour of systems, as well as classical automata 
theory, where one is interested in the languages defined by automata. In each 
case we are interested in deciding properties, notably equivalences between pro- 
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cesses or automata.  It is a classical result that  the equivalence problem for 
context-free grammars is undecidable. However we shall demonstrate that  the 
analogous problem--as  we define i t - - in  the process theoretic framework is in 

fact decidable. This does not just  feed positively into process theory; by tak- 
ing such a non-standard process-theoretic approach to the classical theory we 
open up new techniques for tackling classical problems. For example, we shall 
demonstrate that  our techniques for process theory naturally apply to problems 

in automata  theory regarding deterministic automata.  

1 . 1  C o n t e x t - F r e e  G r a m m a r s  

A context-free grammar (CFG) is a 4,tuple G = (V, T, P, S), where 

�9 V is a finite set of variables; 

�9 T is a finite set of terminals which is disjoint from V; 

�9 P C_ V • (V U T)* is a finite set of production rules, written X --~ c~ for 
(X, c~) E P .  We shall assume that  some rule X --~ a exists in P for each 

variable X E V; and 

�9 S E V is the start symbol. 

The production rules are extended to be defined over the domain (V OT)* by 

allowing 7Xfl  --* 7c~)3 for each 7, fl E (V U T)* whenever X --* a is a production 
rule of the grammar.  A word w E T* (that is, a string of terminals) is generated 
by a string a E (V U T)* iff a --** w. The (context-free) language defined by the 
grammar, denoted L(G), is the set of words which can be generated from the 
start  symbol S. More generally, the language L(a )  generated by a string a is 
the set of words which it can generate, and hence L(G) = L(S). 

The norm of a string of symbols (~ E (V U T)*, written norm(a) ,  is the 
length of a shortest word which can be generated from a via productions in P.  
In particular, the norm of the empty string e is 0; the norm of a terminal symbol 
a E T is 1; and the norm is additive, that  is, norm(a/~) = norm(a)  + norm(fl). 
A grammar is normed iff all of its variable have finite norm. Notice that  the 
language defined by a grammar is nonempty exactly when its start  symbol has 
finite norm. 

A grammar is guarded iff each of its production rules is of the form X --+ ac~ 
where a E T. If  moreover each c~ E V* then the grammar is in Greibach normal 
form (GNF). If furthermore each such c~ is of length at most k, then it is in k- 
Greibach normal form (k-GNF). A 1-GNF grammar is called a regular grammar 

as such grammars generate precisely the regular languages which do not contain 
the empty string e. Finally, if within a guarded grammar we have that  a = fl 

whenever X --~ ac~ and X --+ aj3 are both production rules of the grammar for 
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some X E V and some a E T, then the g r a m m a r  is deterministic, and simple if 

the g r a m m a r  is in Greibach normal  form. 

/ \ 

E x a m p l e  1 Consider the grammar G = ( { X , Y } ,  { a , b } , P , X )  where P c o n -  
% / 

sists of the rules 

X ~ a Y  Y --* aYb Y --~ b 

This guarded grammar generates the (context-free) language { akb k : k > 0 }. 

The norm of Y is 1 and the norm of X is 2, as Y generates the word b and X 

generates the word ab. Hence the grammar is normed. A grammar in Greibach 

normal form which generates the same language is given by the rules 

X --* a Y Y --+ a Y Z Y --* b Z --* b 

Notice tha t  an unnormed  variable cannot  generate any finite words. Thus  any 

unnormed  variables m a y  be removed f rom a g r a m m a r ,  along with any rules 

involving them,  wi thout  affecting the language generated by the g r a m m a r .  

1 . 2  P r o c e s s e s  

We shall define a process as an extension of  the usual  not ion  of  a nondeterminis t ic  

finite-state a u t o m a t a  where we m a y  now allow an infinite set of  states and where 
we generally do not  consider final states. We m a y  consider a s tate  to  be final if 

there are no t ransi t ions evolving f rom it. However, the intent ion of  a process is 

to allow an analysis of  its runt ime behaviour  ra ther  t han  s imply  the sequences 

of  t ransi t ions which lead to  a final state. 

A process is thus a labelled transition system (LTS), a 4-tuple P = (S, A, 

, c~0) where 

�9 S is a set of  states; 

�9 A is some set of  actions which is disjoint f rom S; 

�9 ~ C_ S • A x S is a transition relation, wri t ten  c~ a ~ j3 for (c~, a, fl) E 

~. We shall extend this definition by reflexivity and t ransi t iv i ty  to allow 
s A *  c~ ~ fl for s E ; and 

�9 c~0 E S is the initial state. 

The  norm of a process state a E S, wri t ten n o r m ( a ) ,  is the length of  the 

shortest  t ransi t ion sequence f rom tha t  s tate  to a te rminal  state,  t ha t  is, a s ta te  

f rom which no t ransi t ions evolve. A process is normed iff all of  its s tates have 
finite norm.  
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A process is image-finite if for each c~ E S and each a E A the set {;3 " c~ a 

f~ } is finite. We also refer to states of a process as being image-finite if  the 
r 

process itself is image-finite. Finally, if we have t ha t / 3  = 3' whenever ~ ) ;3 
a 

and c~ ) "y are both  transitions of the process for some ~ E S and some a E A, 
then the process is deterministic. We also refer to states of a process as being 

deterministic if the process itself is deterministic. 

We may  abstract  away from the behaviour of a process P and define the 

language L(c~) which is defined by a state ~ of the process as the set of strings 

s E A* such that  c~ -s  ) I~ where/3 is a terminated state, that  is, where there 

are no transitions evolving from ;3. The language generated by the process P is 

then given as L(P) = L(c~o). 

1 . 3  C o n t e x t - F r e e  P r o c e s s e s  

In the theory of formal languages one generally associates a context-free g r ammar  

with a push-down au tomata ,  a finite-state au toma ta  with a single push-down 
stack. Such devices are known to characterise the expressive power of context- 

free grammars;  that  is, they generate exactly the class of context-free languages. 
In these notes, we take a different automata- theoret ic  view of g rammars  by 

embedding the stack into the states, so as to make the infinite-states explicit. 

The loss of the stack and burden of an infinite-state control is more than balanced 
by the gain in having a uniform t rea tment  of state. T h e  reader may equally 

interpret our au toma ta  as stateless ( that  is, single-state) push-down au toma ta  

where the contents of the missing push-down stack are now represented within 

the state. This interpretation can be gleaned from Example  2. However, we do 
not pursue this aspect in these notes. 

To a given CFG G = (V, T, P, S) we associate the process 8 (G)  = ( (Y U 
% 

) ~ T)*, T, ), S where , is defined to be the least relation satisfying ac~ ~ ~ 
a 

and X~' a ) ~ ,  whenever X ~ ~ is a rule of the g r ammar  and o~ , ;3. Such a 
process will be termed a conte~t-free process. 

The intuition behind context-free processes is tha t  terminals and variables 

represent basic processes capable of exhibiting behaviour (performing transi- 

tions), while the composition of variables and terminals represents a sequen- 
tial composition of the component  processes. As such the leftmost symbol in 
the composition provides the transitions of the process. In terms of g r ammar  

derivations, this in effect corresponds to a leftmost derivation. 

E x a m p l e  2 The grammar of Example 1 which generates the language { akb k " 
k > 0 } defines the following process. 
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( ~  a D a �9 a a �9 �9 �9 , f  
, , , , . . .  

Behaviourally, this process represents a simple form of counter: it performs pre- 
cisely as many b transitions as a transitions. 

From this example it is clear to see that  the definition of norm in the process 

sense is consistent with the definition of norm in the g r a m m a r  sense. In par- 

ticular, a normed g r a m m a r  will give rise to a normed process. Furthermore the 

language defined by the process associated with a g r a m m a r  is the same as the 
language defined by the g rammar  itself. 

Notice that  in the case of a CFG in Greibach normal  form the state set of the 

associated context-free process need only be V* as any sequence of transitions 

f rom any element of V* (in particular from the s tar t  s ta te  S) must  lead to a 

state given by another element of V*. For the same reason the state set of 

the process associated with a regular g r am m ar  need only be the finite set V, 
which coincides with an expectation that  the regular processes (those given by 

g rammars  generating regular languages) are finite-state processes. 

1 . 4  C o n c u r r e n t  C o n t e x t - F r e e  P r o c e s s e s  

To a given CFG G = ( V , T , P , S )  we associate the process C(G) = / ( Y  U 

S)  where ~ is defined to be the least relation satisfying c~ag a T)*, T, ) ,  ) 

~/3 and c~X/3 a ~ ~Tfl whenever either X ~ a 7 is a rule of the g r a m m a r  or 

X --* b is a rule of the g r am m ar  with b E V ( V U T ) *  and b a ~ 7. Such a process 
will be termed a concurrent context-free process. 

The intuition behind concurrent context-free processes is that  the composi- 

tion of variables and terminals represents a parallel composit ion of the compo- 

nent processes, and as such any symbol  in the composit ion can contribute the 

next transition rather  than simply the leftmost symbol.  In terms of g r a m m a r  

derivations, this in effect corresponds to an arbi trary derivation rather  than  the 
leftmost derivation scheme adopted in context-free processes. The  exception to 

this rule is the basic transition steps defined by the guarded production rules. 

Notice that  a corollary of the concurrent nature of such processes is that  the 

composition of symbols representing the states is commutat ive ,  so tha t  for ex- 
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ample the concurrent context-free process generated by X Y  is the same as that 
generated by Y X ,  where X and Y are variables of a CFG. 

Example  3 Consider the guarded grammar consisting of the production rules 

X --* aXb X --~ c X d  

This grammar defines the following concurrent context-free process (modulo com- 

mutativity of symbols). 

d 

a___r 

- - U - -  

a 

- - - U -  

a 

-'--b---- 
a i 

This process represents a form of two.counter, or more properly a multiset or 

bag: two types of tokens can be inserted into and removed from the bag, the 

first being inserted with an a transition and removed with a b transition, and the 

second being inserted with a c transition and removed with a d transition. Hence 

at any moment  during the execution of this process there will have been at least 

as many a transitions as b transitions and at least as many c transitions as d 

transitions. 

Again it is clear that the n6rm of a concurrent context-free process is consistent 
with the norm of the corresponding grammar. In particular, the grammar and 
process in the above example are unnormed as the start symbol X is unnormed. 
As noted above a corollary of this is that the language generated by the grammar 
(equivalently the process) is empty. Note though that this process still exhibits 
an interesting behaviour; abstracting away from a process all but the language 
which it generates is generally too coarse an interpretation for the study of 
processes. 

One final point to note is that the class of languages generated by concur- 
rent context-free processes is incomparable to the class of context-free languages 
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generated by context-free processes. One direction of this claim is almost imme- 
diate from Example 3: although this process generates the empty language, it 
can be easily modified by adding the production rules X --* ab and X -* cd to 
the defining grammar to generate the language of all strings over the alphabet 
{a, b, c, d} in which the number of as is the same as the number ofbs, the number 
of cs is the same as the number of ds, and any prefix contains no more bs than as 
and no more ds than cs. This language is quickly seen not to be a context-free 
.language. For the reverse implication, Christensen [12] demonstrates that  the 
context-free language { anb n : n > 0 } generated by the context-free process of 
Example 2 cannot be given by any concurrent context-free process. However, the 
class of languages generated by concurrent context-free processes is contained 
within the class of context-sensitive languages, as they are easily seen to be given 
by grammars which include context-sensitive rules of the form X Y  --~ Y X  for 
commuting variables. 

1 .5  T h e  P r o c e s s  A l g e b r a s  B P A  a n d  B P P  

We have defined context-free and concurrent context-free processes as particular 
semantic interpretations of context-free grammars. However their history is more 
truthfully given in the process algebra framework. In particular there are two 
well-studied process algebras which give rise to these two classes. We briefly 
outline here the process algebraic framework by describing these two process 
algebras. 

BPA:  Basic  P roce s s  A l g e b r a  

A process algebra is defined by some term algebra along with a particular tran- 
sitional semantic interpretation assigned to the constructs of the algebra. A 
process is then given by a finite set of process equations 

Xi = Ei " l < i < n  

where each E~ is an expression over the particular term algebra with free variables 
taken from the collection of Xis. In the case of the Basic Process Algebra (BPA) 
of Bergstra and Klop [4] the form of the expressions Ei is given by the following 
syntax equation. 

E ::= a I X i  I E + F  I E F  

where a is taken from some finite set of atomic actions A.  Informally, each a E A 
represents an atomic process, Xi  represents the process expression Ei, E 4- F 
represents a choice of behaving as process E or process F ,  and E F  represents the 
sequential composition of processes E and F.  Formally the semantic interpreta- 

tion of these constructs is given by the least relation ) C_ P • A • ( P  U {e}) 

satisfying the following rules. 



110 

a Ei a ' G  E a~G F a>G E " ' G  a ) g  
Xi a ' G  E + F  a , G  E + F  a+G E F  a~GF 

(Note that  we absorb the symbol e into terms, so as to read ~E as E.)  
It is not difficult to recognise the correspondence between context-free pro- 

cesses and BPA processes. Roughly speaking, the variables and terminals of a 
CFG correspond to the variables and actions of a BPA process, with sequencing 
of symbols being naturally carried across both formalisms and a choice of pro- 
duction rules in a grammar corresponding to the choice operator in the algebra.' 
Thus for example, the context-free process of Example 2 can be given as the 
BPA process 

def  
{ Z -~. aY ,  

def  Y = aYb + b }. 

More formally, given a CFG G = (V, T, P, S) we can define the equivalent 
BPA process 

BPA(G) = X = ~ { E  " X - - * E 6 P }  " X 6 V  

For the reverse direction a bit of care is needed to handle summation. Given a 

BPA process 

{ =, } P =  Xi = ~_,{E~j " l<_j<_n~} " l < i < n  

we first assume that  the terms Eli do not involve the summation operator; this is 
acceptable as such subterms can be replaced by newly-introduced variables with 
their obvious defining equations. Then we can define the equivalent CFG G(P) 
with variables Xi and production rules Xi ---' Eij .  We leave it to the reader to 
verify that  these transformations are valid, in the sense that  for every CFG G, 
S ( a )  and BPA(G) describe the same (that is, isomorphic) process, and that  for 
every BPA process P, P and S(G(P)) describe the same processes. 

We could restrict the syntax by allowing not general sequencing E F  but 
rather simply action prefixing aE as is done by Milner [48]. We would be left 
with the following syntax equation for terms. 

E ::= a I X~ I E + F  I aE 

The effect of this modification would be to restrict ourselves to an algebra cor- 
responding to regular grammars and hence generating the class of finite-state 
processes. 

B P P :  Bas ic  P a r a l l e l  P r o c e s s e s  

Basic Parallel Processes (BPP) are defined by a process algebra given by includ- 
ing a parallel combinator [[ within the algebra of regular processes. Hence the 
term algebra is given by the following syntax equation. 
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E : : = a  I l aE I EfIF 

The semantic interpretation of the new construct is given by the following rules. 

E ~ G  F a , G  
E [ I F  ~ , G [ ] F  E [ I F  ~ , E [ I G  

(Note that  we also absorb the symbol e into parallel terms, so as to read E [I e 

and e II S as E.) 
Again it is straightforward to recognise the correspondence between concur- 

rent context-free processes and BPP processes. For example, the context-free 
process of Example 3 can be given as the BPP process 

{ X  de=f a(X I[ b) + c(X II d)}.  

As above we can define a BPP process BPP(G)  for any grammar G and a 
CFG G(P) for any BPP process P such that  for every CFG G, C(G) and BPP(G)  
decribe the same processes, and for every BPP process P ,  P and C(G(P)) dscribe 
the same processes. We leave the definitions, as well as the proofs of these 
correspondences, to the reader. 

There is yet another natural  interpretation of concurrent context-free pro- 
cesses which comes from the study of Petri nets. A (labelled place/transition) 
Petri net is simply a (finite) directed bipartite graph with the two partitions of 
nodes referred to as places and transitions respectively. A marking of a net is an 
assignment of some natural  number to each of the places. A transition is enabled 
in a particular marking of a net if the value of the marking of each place is at 
least as large as the number of arcs leading from that  place to the transition in 
question. A firing of an enabled transition entails first deducting from the value 
of the marking of each place an amount equal to the number of arcs leading from 
that  place to the enabled transition in question, and then adding to the value of 
the marking of each place an amount equal to the number of arcs leading to that  
marking from the transition. We can then define Petri net processes by taking 
the set of markings of a particular net as the set of states of a process, and the 
firings of the enabled transitions as the transitions of the process. If we restrict 
attention to nets whose transitions all have a single incoming transition, then we 

define precisely the class of guarded concurrent context-free processes. We leave 
the proof of this correspondence for the reader to consider, but  demonstrate it 

with the following example. 

E x a m p l e  4 Consider the context-free grammar consisting of the production 
rules 

X --~ aY Y --* b X X  
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Clearly neither of the variables X or Y is normed; hence interpreted as a context- 
free process, this degenerates to the finite-state process consisting of a never- 
ending cycle of "ab" transitions. However, viewed as a concurrent context-free 
process, we have a much more interesting behaviour. It corresponds to the fol- 
lowing BPP process and Petri net. 

a 

{Xy de__fdef a Y ,  

b(x If X) 

b 

This grammar defines the following concurrent context-free process. 

o o o  

Typically the expressions Ei allowed in process definitions within a given 
process algebra are restricted to being guarded, in the sense that every occur- 
rence of a variable Xi appears within a subexpression of the form aEi This 
corresponds in the grammar framework to a restriction to guarded grammars. 
We shall demonstrate the importance of this restriction later when we discuss 
transformations from arbitrary grammars into equivalent Greibach normal form 
grammars. 

2 B i s i m u l a t i o n  E q u i v a l e n c e  

We can straightforwardly define language equivalence between CFGs by saying 
that two grammars G1 and G2 are language equivalent, denoted G1 "~L G2, 
if L(G1) = L(G2). This definition applies equally well to processes. However 
in these notes we shall be concentrating on a much stricter notion of process 
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equivalence, namely bisimulation equivalence. In this section we shall define this 
notion and present the properties which it possesses which motivate our choice of 
emphasis. We shall furthermore demonstrate analogies to the Greibach normal 
form theorem for grammars demonstrating that CFGs and context-free processes 
and concurrent context-free processes may be represented (upto isomorphism, 
and hence bisimulation equivalence) by grammars in Greibach normal form. 

Defini t ion 5 Let (S, A, ---~, so) be a process. A relation T~ C S • S is a bisim- 
ulation iff whenever ((~, fl) E Tt we have that 

* ifc~ a o~' thenf l  a fl, f o r some f l ,  with(o~',fl ')ETr and 

* i f f l  a , f l '  thenc~ a a ' forsomeo~ '  w i th (a ' , f l ' )ETr  

c~ and fl are bisimulation equivalent or bisimilar, written a ~ fl, iff (~, fl) E Tr 
for some bisimulation Tr 

This definition can easily be extended to compare states of different processes 
by simply considering the disjoint union of the two processes. 

L e m m a  6 ~ = U{T~ " 7~ is a bisimulation relation} is the maximum bisim. 
ulation relation. 

P r o o f  An arbitrary union of bisimulation relations is itself a bisimulation rela- 
tion. [] 

We can extend the notion of bisimilarity to a relation over grammars and 
strings of symbols in a grammar by considering the processes associated with 
the grammars. Note however that we can in fact do this in two ways, by consid- 
ering either context-free processes or concurrent context-free processes. Unless 
explicitly stated otherwise, we shall mean the (sequential) context-free process 
interpretation when considering the process generated by a grammar. 

We shall see that bisimulation equivalence is strictly finer than language 
equivalence. However this distinction vanishes if we restrict our attention to 
normed deterministic processes. This fact, along with various other elegant 
properties enjoyed by bisimulation equivalence, motivates us to concentrate on 
this stronger equivalence in these notes. In this way not only will we explore 
solutions to problems in process theory, but we shall also tackle long-standing 
problems in formal language theory regarding deterministic language classes. 

Example  7 Consider the following two context-free processes. 
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a a 

Y ---~ a Z Z - *  b Z --+ c X ~ ab X ~ ac 

Q 

b c 

.The g r a m m a r s  def ining these  two processes  are cer ta in ly  language equivalent .  

However ,  they  are not  b i s imula t ion  equivalent ,  as the processes  which they  define 

are not  b is imi lar .  

L e m m a  8 ,-~ is an equivalence relat ion.  

P r o o f  Reflexivity is established by demons t ra t ing  { (c~, c~) : (~ E S } to be 
a bisimulation;  s y m m e t r y  is established by demons t ra t ing  7~ -1 to be a bisimu- 
lat ion whenever 7~ is; t rans i t iv i ty  is established by demons t ra t ing  7~S to  be a 
bisimulat ion whenever ~ and S are. These  are all s t raightforward.  [] 

L e m m a  9 I f  c~ ~ fl and a - - ~  a '  f o r  s E A* then  ~ --2-* fl '  such  that  o/  ..~ fl ' .  

P r o o f  Given a bis imulat ion ~ relating a and fl, it is a simple induct ion on the 
length of s E A* to demons t ra te  tha t  if a ' ,  a '  then  fl 8 , / y  with (a ' ,  fl ') E 7~. 

[] 

C o r o l l a r y  10 I f  c~ ,~ fl then  o~ "~L ft. 

P r o o f  If a ~ fl then  s E L ( a )  iff a ' ~ a '  where a '  is a t e rmina ted  state,  which 

by the previous l emma  holds iff fl " ~ fl' where fl' is a t e rmina ted  state,  which 
finally holds iff s E L( f l ) .  [] 

C o r o l l a r y  11 I f  a ~ fl then  n o r m ( a )  = norm(fi)  
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P r o o f  Immediate from the previous corollary. [] 

L e m m a  12 For normed determinis t ic  c~ and fl, i f  o~ '~L fl then ot .~ ~. 

P r o o f  It suffices to demonstrate that  the relation ~ (a, fl) " a "~L ~ and ce~ 
% 

normed deterministic } is a bisimulation relation. [] 

We shall occasionally exploit the following alternative stratified definition of 
bisimulation due to Milner. 

De f in i t i on  13 Let (S,A, ),So) be a process. We inductively define the fol- 

lowing sequence of  binary relations over S:  o~ N o ~ fo r  every o~, fl E S,  and for  

k > 0, c~ "~k+l fl i f f  we have that 

�9 i f o ~ o d  t h e n ~  a , f l l f o r s o m e f l l  wi tha ' . .~k /31;  and 

a a '  f o r  some cd with a '  "~k fl'. �9 i f f l  a , f l ' t h e n ~  , 

L e m m a  14 I f  c~ ~. fl then a "~k fl for  all k > O. Conversely,  f o r  image-finite 

o~, i f  ~ ~ k  fl for  all k > 0 then c~ ,~ #. 

P r o o f  The first implication requires a simple induction on k, whereas the second 
implication requires that  we demonstrate that  the relation { (a, fl) : a " k  fl 
for all k > 0 and a image-finite } is a bisimulation. Each of these obligations is 
straightforward. [] 

E x a m p l e  15 Consider  the following image-infinite context-free process. 

X---~ X a Y ---~ Y a Y---m Z 

X---*a Y---~a Z---~aZ 

a-...L\- I / a  . . .  
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The states X and Y are clearly not bisimilar, as the state Z cannot be bisimilar 

to a k for  any k >_ O. However  X "~k Y f o r  each k >_ 0 as Z ~ k  a k. 

We shall generally be restricting our attention to guarded grammars, which 

we can easily verify generate image-finit e processes. This will allow us a useful 
technique for demonstrating bisimilarity, namely inductively showing that  each 
"~k relation holds. Furthermore, as shall be seen in Subsection 2.2, any guarded 
grammar can be transformed into a bisimilar one which is in Greibach normal 
form (with respect to either interpretation of composition), and hence we shall 
eventually consider only Greibach normal form context-free processes, ie, those 
processes given by a grammar in Greibach normal form. 

2 . 1  C o m p o s i t i o n  a n d  D e c o m p o s i t i o n  

An important  property of bisimulation equivalence which we shall exploit is 
the following congruency result, which is valid under either interpretation of 

composition. 

L e m m a  16 Given a C F G  G = (V, T, P, S)  and ~, ~',  fl, fl' e ( V  U T)*,  i f  ~ ..~ fi 

and (~ ,,~ /~' then ~ 1  ,~ flfll, regardless of whether  we interpret  this grammar  as 

a context-firee process or a concurrent context-free process. 

P r o o f  In either case, we can demonstrate that  the relation ~ ( ~ ,  flfl~) " 
% 

fl and ~ ,-* fl~ } is a bisimulation, from which the result follows. O 

Complementing our congruency property we have an obvious potential tech- 
nique for the analysis of a process built up as a composition, namely decomposing 
the process into simpler components. In general this notion is not suitably pro- 
vided for, but  for the class of normed processes we get a unique factorisation 
result regardless of whether we interpret composition as sequential or parallel 
composition. We say that  an elementary process X E V is pr ime  (with respect 
to bisimilarity ,,~ as well as the particular interpretation of composition which we 

are considering) i f fX ~ (~/? entails c~ = e or fl = e. We shall demonstrate our two 
results here separately, namely that  normed Greibach normal form context-free 
processes and normed concurrent Greibach normal form context-free processes 
can be decomposed in a unique fashion into such prime components. For the 
sequential case, we start  with the following cancellation lemma. 

L e m m a  17 I f  a,  ~ and 7 are Greibach normal  f o rm  context-free processes and 

i f 7  is normed then ~'/  ..~ f17 implies c~ .~ ft. 

P r o o f  We can demonstrate that  the relation 
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t"  "1 

(a,  fl) " there exists 7 such that  norm(7 ) < c~ and a7  "~ f17 

is a bisimulation, from which the result follows. [] 

The assumption in this lemma that  7 is normed cannot be dropped, as can be 
readily seen by considering the following counterexample. Consider the processes 
X and Y whose only transitions are X a ~ r and Y a ~ Y; then X Y  ,,~ Y,  but 

clearly X 7 ~ 

T h e o r e m  18 Normed Greibach normal form context-free processes admit unique 
(up to bisimilarity) prime decompositions. 

P r o o f  Existence may be established by induction on the norm. 
For uniqueness, suppose that a = X 1 . . . X p  ,~ Y1...Yq = fl are prime de- 

compositions of bisimilar processes a and fl, and that  we have established the 
uniqueness of prime decompositions for all a '  E V* with norm(a ' )  < norm(a) .  
If p = 1 or q = 1 then uniqueness is immediate. Otherwise suppose that  
X1 a ~ 7 is a norm-reducing transition that  is matched by ]I1 a ,  8, so that  
7X2 .. .  Xp ,~ ~Y2... Yq. By the inductive hypothesis, the prime decompositions 
of these two processes are equal (up to ,,,), entailing Xp ,,, Yq. Hence, by Lem- 
mas 16 and 17, X1 . . .Xp-1  ~ Y1.. .Yq-1, and uniqueness then follows from a 
second application of the inductive hypothesis. [] 

Notice that  this theorem fails for unnormed processes. The reason for failure 

is immediately apparent from the observation that  a ,-~ aft  for any unnormed a 

and, any ft. 

T h e o r e m  19 Normed concurrent Greibach normal form context-free processes 
admit unique (up to bisimilarity) prime decompositions. 

P r o o f  Again, existence may be established by induction on the norm. 

For uniqueness, suppose that  a = P1 klP~2---Pmk'~ ,~ p ~ l p ~ 2 . . . p ~  = .6 
represents a counterexample of smallest norm; that  is, all 7 with norm(7 ) < 

norm(a)  ( = norm(fl)) have unique prime decompositions, the Pis are primes, 
but i exists such that  ki # li. We may assume that  the Pis are ordered by 
nondecreasing norms, and then we may choose this i so tha t  kj = lj whenever 
j > i. We shall furthermore assume without loss of generality that  ks > Ii. We 
distinguish three cases, and in each case show that  process a may perform a 
norm-reducing transition a a ,  al that  cannot be matched by any transition 

fl a ~ fl, with a '  ~ fl' (or vice versa with the roles of a and /? reversed), 
which will supply our desired contradiction'. Observe that  by minimality of the 
counterexample if a '  and fl' are to be bisimilar then their prime decompositions 
must be identical. 
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C a s e I .  If kj > 0 for some j < i, then we may let c~ perform some norm- 
reducing transition via process Pj.  Process fl cannot match this transition, 
as it cannot increase the exponent Ii without decreasing the exponent of 
some prime with norm greater than that  of Pi. 

Case  II .  If kj > 0 for some j > i,' then we may let a perform a norm-reducing 
transition via process Pj that  maximises (after reduction into primes) the 
increase in the exponent ki. Again the process fl is unable to match this 
transition. 

Case  I I I .  If the process a = p/k~ is a prime power, then note that  lj 0 for 
all j > i by choice of i, and that  ki > 2 by the definition of "prime." If 
li > 0, then we may let j3 perform a norm-reducing transition via Pi; this 
transition cannot be matched by c~, since it would require the exponent 
ki to decrease by at least two. If li = 0 on the other hand, then we may 

let c~ perform a norm-reducing transition via Pi; this transition cannot be 
matched by fl, since fl is unable to increase the exponent li. 

These cases are inclusive, so the theorem is proved. D 

C o r o l l a r y  20 I f  c~, fl and 7 are normed concurrent Greibach normal form 
context-free processes then ~7 ~ f17 implies o~ .~ ft. 

P r o o f  Immediate.  O 

Notice that  for concurrent Greibach normal form context-free processes, 
unique decomposition and cancellation again each fail, for similar reasons to 
the sequential case. 

2 . 2  E q u i v a l e n c e - P r e s e r v i n g  T r a n s f o r m a t i o n s  

In this section we demonstrate how to transform an arbitrary guarded CFG 

into a bisimilar (and hence also language equivalent) CFG in Greibach normal 
form. This transformation will be valid for interpreting grammars either as 
context-free processes or concurrent context-free processes. Furthermore these 
transformations only involve a linear increase in the size of the grammar (that  is, 
the number of symbols appearing in the production rules of the grammar),  more 
precisely, an increase of only twice the size of the terminal alphabet. Combining 
this with the usual technique (from [33]) for transforming an arbitrary CFG not 
generating the empty word ~ into guarded form gives an alternative proof of the 
usual Greibach normal form theorem. 

Let G = (V, T, P, S) then be an arbitrary guarded CFG. We can define a new 

grammar G = (V,T,  JB, S) as follows. Firstly we let V = {Ya " ~r E V U T }  
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and S = Ys. The production rules of P are defined by Ya "* a for each a E T, 

and Yx --* aEa for each X E V and each rule X --~ a a  in P ,  where Ee = r and 
Eaa = YaEa for ~r E V U T. 

L e m m a  21 G ... G. That is, S(G) ,.~ S(G). 

P r o o f  Let T~ = ~ (a,  Ea)  " a E (V U T)* ~. We shall demonstra te  tha t  
% 

is a bisimulation relation, from which we shall conclude tha t  S .-. Es  = S. To 

do this it suffices to demonstrate  tha t  a " > /3 if and only if E~ ~, EZ for all 

a E (V U T)* . .Certainly this is true for a = ~. I t  is equally true for a = a/3 with 
a E T as each of a/3 and E,# = YaE# has only one transition, namely  aft ~,/3 
and E~a a ~ EZ respectively. Finally it is true for a = X/3 with X E V as 

Xfl  ~ ' 7 if and only if X ~ a6 is a rule of P and 7 = 6/3, which is true if and 
only if Yx ~ aE~ is a rule of /~  (and still 7 = 6/3), which in turn is true if and 

only if Ex~ = YxE# ~, E6E~ = E~. [] 

L e m m a  22 C(G) ,~ C(G). 

f 
P r o o f  As for the previous case we can demonstrate  tha t  T~ = ~ (a,  Ea)  " E 

(V U T)* } is a bisimulation relation by demonstrat ing tha t  a a ~/3 if and only 

i f E a  a,  E~ for a l l a  E ( V U T ) * .  Suppose then tha t  a a~ /3. This can 

occur in one of two ways: either c~ = 7a6 and /3  = 76, in which case we have 

~a = ~'rYa~t a , E.rE t = E#; or else a = 7X6 and 13 = 7y6 where X ~ ay is 
a rule of P ,  in which case we have E~ = ETYxE~ a ~ ETEnE6 = E#. Similarly 
we can show tha t  i f E ~  a , E ~ t h e n a  a~/3. [] 

Extending these transformations to the process algebras BPA and BPP  using 

the t ransformations given in Subsection 1.5 provides us with an efficient trans- 

format ion into s tandard form processes analogous to Greibach normal  form. 
However this works  only for guarded processes. For example,  the unguarded 

g rammar  given in Example  15 clearly cannot be t ransformed into a bisimilar 
g rammar  in Greibach normal  form. This  stands in contrast to the classical re- 

sult stating tha t  any g r am m ar  can be t ransformed into a language equivalent 

Greibach normal  form grammar;  this t ransformat ion can in fact be carried out 
so that  the size of the resulting g rammar  is at most  the square of the size of the 
original g rammar .  

We can weaken the definition of guarded, saying tha t  a g r a m m a r  is weakly 
guarded if we cannot rewrite any variable X using a positive number  of rewrites 

into a string Xc~ for some a.  Equivalently if we define an ordering between 
variables by X > Y whenever X --* Y a  for some a,  then the g r a m m a r  is 

weakly guarded if this ordering is well-founded. The above t ransformations are 
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then valid, though the resulting grammars may be exponentially larger than the 

original grammars. We leave it to the reader to verify these facts, in particular 
by considering the transformation of the weakly guarded grammar given by 
X1 ~ a, X1 ~ b, and for each 0 < k < n, Xk+l ~ Xka  and Xk+l "* Xkb. 
A (bisimulation) equivalent grammar in Greibach normal form is necessarily 
exponentially larger than this original grammar.  

3 Decidabil i ty  Results  

If we consider the class of regular (finite-state) processes, theh bisimulation 
equivalence is readily seen to be decidable: To check if ~ ,~/~ we simply need 
to enumerate all binary relations over the finite-state space of ~ and/~ which 
include the pair ((~,/~) and check if any of these is by definition a bisimulation 
relation. Language equivalence is similarly known to be decidable for finite-state 
automata.  This can be seen by noting that  regular grammars can be transformed 
easily into normed deterministic grammars; the decidability of language equiv- 
alence then follows from the decidability of bisimilarity along with Corollary 10 
and Lemma 12. 

As soon as we move to a class of infinite-state processes, the decision problem 

for bisimulation equivalence becomes nontrivial. For image-finite processes, the 
nonequivalence problem is quickly seen to be semi-decidable--given the com- 
putability of the transition relation--using Lemma 14, noting that  the relations 
~k are all trivially computable. However there would appear to be potentially 
infinitely many pairs of states to check individually in order to verify the bisim- 

ilarity of a pair of states. We may also be led to believe that  the equivalence 
problem for bisimulation checking is undecidable given the classic result con- 
cerning the undecidability of language equivalence. 

However it turns out that bisimulation equivalence is in fact decidable for 
both context-free processes and concurrent context-free processes. In this section 
we shall concentrate on presenting these two results. The result concerning 
context-free processes is due to Christensen, Hiittel and Stirling [18], while that  
concerning concurrent context-free processes is due to Christen'sen, Hirshfeld 
and Moller [15]. One immediate corollary of the former result is the result of 
Korenjak and Hoperoft [44] that  language equivalence is decidable for simple 
grammars. 

We shall henceforth simplify our study, using the results of the previous 
section, by assuming that  our grammars are in Greibach normal form. Let us 
then fix some Greibach normal form grammar G = (V, T, P, S). Our problem is 

to decide a -,~ fl for ~, fl E V*, first in the case where we interpret the grammar 
as a context-free process, and then in the case where we interpret the grammar 
as a concurrent context-free process. Notice that  such processes are image-finite, 
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so we may use the fact that  bisimilarity is characterised by the intersection of 
our stratified bisimulation relations. Also, as nonequivMence is semi-decidable, 
we only need demonstrate semi-decidability of the equivalence problem. 

3 . 1  C o n t e x t - F r e e  P r o c e s s e s  

Based on the congruency result of Lemma 16 for context-free processes, we define 

the following notion. Let T~ be some binary relation over V*. We define ~ to 

be the least congruence with respect to composition which contains 7~. Tha t  

is, - is the least equivalence relation which contains 7~ and contains the pair 
(as',/3/31) whenever it contains each of (c~, 13) and (a ' ,  13'). Our technique will 
rely on the following definition due to Caucal [10]. 

D e f i n i t i o n  23 A relation Tl C_ V* x V* is a Caucal base i f f  whenever (a, 13) E T~ 
we have that 

* ifce a)e~ I then13 a)131forsome131 w i t h a  1~131; and 

* i f 1 3 ~ t 3 '  t h e n a  a a ' f o r s o m e a  I w i t h a ' ~ 1 3 ' .  

Hence the definition of a Caucal base differs from that  of a bisimulation only in 
how the derivative states a ~ and 13~ are related; in defining T~ to be a bisimulation, 
we would need these derivative states to be related by 7~ itself and not just by 

T~ 
the (typically much larger) congruence -- . A Caucal base then is in some sense 

a basis for a bisimulation. The importance of this idea is encompassed in the 
following theorem. 

7~ 
T h e o r e m  24 ( C a u c a l )  I f  T~ is a Caucal base, then -- is a bisimulation. In 

T~ 
particular, -- C ,,~. 

P r o o f  We demonstrate that  if a ~ fl then the two clauses given by the definition 
7r 

of - being a bisimulation hold true, thus demonstrating Te -- to be a bisimula- 
tion. The proof of this we carry out by induction on the depth of inference of 

7r 
or _---- 13. 

7~ 
If a -- 13 follows from (a, 13) E T~ then the result follows from T~ being a 

Caucal base. 
R 

If a _---/3 follows from one of the congruence closure conditions, then the result 
easily follows by induction, using the above congruency lemma. [] 

C o r o l l a r y  25 a -~/3 iff  (a,/3) E T~ for  some Caucal base T~. 
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P r o o f  Immediate.  [] 

It now becomes apparent that  in order to demonstrate bisimilarity between 
terms, we needn't  produce a complete (infinite) bisimulation relation which con- 
tains the pair; rather it suffices simply to produce a Caucal base which contains 
the pair. What  we shM1 demonstrate is that  this corollary can be strengthened 
to a finite characterisation of bisimulation, in that  we shall describe a f in i ie  

Tr 
relation 7~ satisfying -- = ..~. This relation Tr will clearly be a CaucM base, 
and our semi-decidability result (and hence the decidability result itself) will be 
established, taking into account the following. 

L e m m a  26 I t  is semi-decidable  whe the r  a given f in i te  binary relation Tr over  

V* is a Caucal  base. 

P r o o f  We need simply check that  each pair (a, ;3) of the finite relation Tr 
satisfies the two clauses of the definition of a Caucal base, which requires testing 
(in parallel) if each transition for one  of a and fl has a matching transition 
from the other. This matching t e s t - - tha t  is, checking if the derivative states 

Tr Tr 
are related by - - - i s  itself semi-decidable, as the relation -- is semi-decidable. 

[] 

Our semi-decision procedure for checking a ,~ ;3 then consists of enumerating 
all finite binary relations over V* containing the pair (c~, fl) and checking (in 
parallel) if any one of them is a Caucal base. We thus concentrate on defining 

Tr 
the finite relation T~ satisfying = = ~*. 

We first present some technical results, starting with the following unique 
solutions lemma. 

L e m m a  27 I f  (~ ~ 7o~ and ;3 ~, "7;3 f o r  s o m e  "7 r E then o~ ,,, ;3. 

{ (~a,  6;3) " o~ ,,~ "Ta and fl ,-, "7;3 for some "7 ~ r }. We may P r o o f  Let 7~ 

demonstrate straightforwardly that  -~7r is a bisimulation, from which we may 
deduce our desired result. [] 

An important  finiteness result on which our argument hangs is given by the 
following. 

L e m m a  28 I f  c~'7 ,~ /37 f o r  infinitely m a n y  non-b i s imi lar  7, then ~ ..,/3. 

= { (a,  ;3) " a7  "~ ;37 for infinitely many non- P r o o f  We shall s h o w  that  7~ 

bisimilar 7 } is a bisimulation, from which our result will follow. 

Let (c~, ;3) E 7~, and suppose that  c~ a ~ a,.  Since c~ r e, by Lemma 27 there 
can only be one 7 (up to bisimilarity) such that  a 7 ,-~ 7, so we must have that  
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r ~. Thus for infinitely many non-bisimilar 7 we must have fl a ) fir such 
that  a~'y N fl-~7- Since ~ is image-finite, we must have that  fl a ,  ~ such that  
at-/,,~ fit 7 for infinitely many non-bisimilar 7- Hence we must have (a t, fit) E TO. 

Similarly if (a, fl) E Tr and fl a) fit then a ~) a t such that  (a t, fit) E TO. 
[] 

We may split the set of variables into two disjoint sets V = N O U with the 
variables in N being normed and those in U being unnormed. Our motive in 
this is based on the following lemma. 

L e m m a  29 I f  X is unnormed then X a  ,,~ X for all a, 

P r o o f  We can immediately verify that { (X, X a )  " 

bisimulation. 

X is unnormed [ is a 

[] 

Hence we need only ever consider states a E N* U N ' U ,  the others being im- 
mediately rewritable into such a bisimilar state by erasing all symbols following 
the first unnormed variable. 

The argument relies on recognising when a term may be broken down into a 
composition of somehow simpler terms. To formalise this concept we start with 
the following definition. 

De f in i t i on  30 A pair (Xa,  Yfl) satisfying X a  ,,, Y fl is decomposable if  X and 
Y are normed, and for some 7, 

�9 X ,,~ Y 7  and 7or ,,~ fl; or 

. y N X 7  a n d T f l , ~ a .  

The situation would be clear if all bisimilar pairs were decomposable; indeed 
we shall exploit this very property of normed processes--which follows there from 
our unique decomposability result--in in Section 4. However we can demonstrate 
that  there is in some sense only a finite number of ways that  decomposability Can 
fail. This crucial point in our argument is formalised in the following lemma. We 
consider two pairs (Xa ,  Yfl)  and (Xa ' ,  Yfl ' )  to be distinct if a r ~t or fl 7 L fit. 

L e m m a  31 For any X ,  Y E V, any set of the form 

= { (Xa ,  Y~)  " X a , Y ~  E N* UN*U,  X a , ~  Yfl ,  and (Xa ,  Yf l )  7~ not 

decomposable } 

which contains only distinct paws must be finite. 

P r o o f  If X, Y E U then clearly ~ can contain at most the single pair (X, Y). 
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I f X  E U a n d Y  W ) r  " i E I } t h e n f o r e a c h i E I w e  

must  have that  X _w ) ai  such that  ai "~/3/. But then by image-finiteness there 

can be only a finite number  of non-bisimilar such/3/. 

Suppose then that  X , Y  E N and tha t  7~ { (Xai ,Y/3i)  " i E I ~  is 

infinite. Without  loss of generality, assume tha t  norm(Y) < norm(X) ,  and tha t  

y w) r with length(w) = norm(Y).  Then for each i E I we must  have tha t  

X ~ ) "/i such tha t  ~fiai "~/3i. By image-finiteness, we can have only finitely 
many  such ~'i, so we must  have that  X w, 7 for some 3~ such tha t  ~/cq ,-~/3i holds 

for infinitely many  i E I ;  by distinctness these ~is must  all be non-bisimilar. For 

these i E I we must  then have that  X a i  ,~ YT~i ,  But then by Lemma  28 we 

must  have that  X --~ YT, contradicting non-decomposability.  [] 

We are now ready to demonstrate  our main  result, tha t  there is a finite 
7r 

relation 7~ satisfying =__ -- N. This will be done by induction using the following 
well-founded ordering _ft. 

Definit ion 32 Define the measure s on N* UN*U as follows. For a E N* and 
X E U, let s(a) = s (aX)  = norm(a) .  

Then let(OL1,Ot2)__E (/31,/32) ij~ ma~x(s(a,),  s(a2) ) _~ max(8(/31), 8(/32 ) ) .  

L e m m a 3 3  Let T~o be the largest set { ( X , a )  " X E N and X - a },  and 

letT~l be the largest set { (Xc~,Y/3) " X a ,  Y/3 E N * U U  N*, X a  .~ Y/3, and 

(Xc~, Y/3) not decomposable } which contains only distinct pairs, and containing 

minimal elements with respect lo C_. Then R = 7~o U T~I is a finite relation 
7r 

satisfying =_ = ..~. 

T~ 
P r o o f  Firstly, 7~0 and T~ 1 must  both  be finite. Also we must  have _-- _ ~ .  

7r 
We will demonstrate  by induction on E_ that  X a  ~ Yf l  implies X a  - Y f l  

If  (Xa ,  Yfl) is decomposable, then X, Y E N and (without loss of generality) 

assume that  X ,~ Y~/ and 7 a  ,,~ ft. Then s(Ta ) < s(Y^/a) = s (Xa)  and 
7~ 

s(fl) < s(Yfl),  so (7c~,/3) if_ (Xa ,  Yfl). Hence by induction 7c~ _~/3. Then f rom 
T~ 

( x ,  n o  we get x a  = Y/3. 
Suppose then that  (Xa ,  Yfl)  is not decomposable. Then ( X a  ~, Y/3~) E T~I 

for some a ~ ,~ a and/3~ ,-~/3 with (a',/3~) E_ (a,/3). 

�9 If  X, Y E N,  then (a, fl), (a', fl') r- (Xa ,  Yfl), so (a,  a ' ) ,  (/3,/3') E (Xa ,  Y/3). 

Thus by induction a -_- and/3  -/3~, so X a  -- Xa~TIY/3 ~ =_ Y/3. 

�9 I f X  E N and Y E U, then fl = fl' = r and X a  ,~ Y .  Also s (a ' )  < 
7r 

s(a) < s(Xa) ,  so (a ,a  ~) r- (Xa,  Y) .  Thus by induction a _ = a  ~, so 
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"R, 
X a  = X a  I ~- Y. A symmetric argument applies for the case when X E U 

and Y E N. 

Tr 
* I f X ,  Y E U ,  t h e n c ~ = a ~ = f l = f l ' = r  ET~l, S O X ~ - - Y f l .  

[] 

T h e o r e m  34 Bisimulation equivalence is decidable for guarded context-free pro- 
cesses. 

P r o o f  Immedia te  from the preceding argument. [] 

Unfortunately, as the decidability follows from two semi-decision procedures, 
we have no method of determining a complexity bound on the problem, and it 
is immediately apparent that  the procedure is impractical for use. In Section 4 
we shall go some way towards rectifying this situation, by exploiting the special 
nature of normed processes to provide a polynomial-time decision procedure for 
that subclass of context-free processes. 

3 . 2  C o n c u r r e n t  C o n t e x t - F r e e  P r o c e s s e s  

Our demonstration of the decidability of bisimulation equivalence for concur- 
rent context-free processes uses a vastly different technique than in the case of 
context-free processes. In particular, rather than construct a semantic represen- 
tat ion for bisimulation equivalence, we devise a syntactic characterisation which 
exploits the commutative nature of the composition, representing states a E V* 

yk l  yk2 compactly in the form ..1 "'2 "'" X~" where V = { X1, X 2 , . . . ,  X,~ }. We shall 
hence assume that  the production rules are in the form X1 --* aX~ 1 " .X~",  
and otherwise read sequences of variables modulo commutativity,  so that  for 

example if a = X ~ ' - " X n  k" a n d  fl = X~ ~ . . - X S ,  we shall recognise aft as 

x ~ + ~ ,  . . .  x ~ . + z . .  
Our technique will rely on the following well-founded ordering r- on such 

elements of V*. 

D e f i n i t i o n  35 X ~ ' . . . X ~ "  v- X~ 1 . . . x ~ "  iff there exists j such that kj < lj 
and for all i < j we have that ki = li. 

It is straightforward to verify that  E is indeed well-founded. 
We present here a tableau decision procedure for checking bisimilarity. Our 

tableau system is a goal directed equationM proof system with rules built around 

equations either of the form a = fl where a, f l  E V*, or of the f o r m  ~ i E I  aic~i = 
~ j E j b j f l j  where I and J are finite index sets, each al,bj E A, and each 

~i,flj E V*. NotationMly, we read ~ ieo  aioq as r and )-'~ie{0} aioq as a0a0. 
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The  unders tanding  we make  of  sumforms  is as a listing of  the t ransi t ions which 

are immedia te ly  available to a process; as such, we shall interpret  these terms 

as processes themselves. 

Each rule has the form 

E = F  

�9 .. E ,  = F ,  

The premise of  the  rule represents a goal to 

E l = F 1  

possibly with a side condition. 

be achieved whereas the consequents represent (sufficient) subgoals to be estab- 

lished in order to  achieve the goal. 

A tableau for E = F is a max imal  proof  tree whose root  is labelled E = F and 

where the labelling of  immedia te  successors of  a node are determined according 

to  the rules of  the tableau sys tem presented in Table 1. For the presentat ion of  

rule REc  we int roduce the no ta t ion  unf(c~) for c~ E V* to mean  the unfolding of 

c~ defined as follows: 

u n f ( X ~ ' . . . X ~ " )  = E E a X ~ ' + I ~ ' " X ~ ' + I ' - I ' " X ~ " + I "  
l < i < n  zl In 

- -  - -  X i - - - * a X  x . . . X ~  

k~>0  

We shall denote nodes in a tableau by n (with roots  also denoted by r) possibly 

with subscripts; I f  a node n has label E = F we write n : E = F .  

In  building tab leaux  the rules are only applied to nodes tha t  ate not terminal. 

A terminal  node can either be successful or unsuccessful. A successful terminal  

node is one labelled a = a,  while an unsuccessful te rminal  node is one labelled 

either a a  = b~ such tha t  a r b or a a  = e or e = bfl. A tableau is successful if 

and only if all terminal  nodes are successful; otherwise it is unsuccessful. 

Nodes of  the fo rm n : a = fl are called basic nodes. W h e n  building tab leaux 

basic nodes migh t  dominate other  basic nodes; we say tha t  a basic node n : a 7 = 

or n : ~f = a 7  dominates  any node n ~ : a = fl or n ~ : fl = a which appears  above 

n in the tableau in which a "1 ~ and to which rule R, EC is applied. Whenever  a 
basic node dominates  a previous one, we apply  one of  the SUB rules to reduce 

the terms before apply ing  the REC rule. 

E x a m p l e  36 Consider the concurrent context-free process given by the following 

grammar. 

X1 ---* aX1X4 X2 ---+ aX3 X3 ~ aX3X4 X4 ---* b 
X3 ~ bX2 

We can verify semantically that X1 "~ X2. A successful tableau for X1 = X2 is 
given as follows. 
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REC 
unf (~ )  ---- un f (~ )  

SUM 
p q 

E i = I  a i a i  ---- ~jf f i l  bjjSj 

{ { }" aiozi = b]( i )~]( i )  i=1 bjl~j = ag(j)otg(j)  j= l  

where f :  { 1 , . . . , p }  --+ { 1 , . . . , q }  
g :  { 1 , . . . , q }  --+ {1 . . . .  ,p} 

PREFIX 
ac~ = a/~ 

,~=~ 

StmL 
at7 = ~5 

~-~=a 
if the domina ted  node is labelled 
o~ = fl or 1~ = a with c~ ~ 

S t m R  
~5=o~ 7 

a = B 7  

if the dominated  node is labelled 
a = fl or B = a with a ~ 

T a b l e  1: Ru les  of  the  t a b l e a u  sy s t em .  

REc 

SUM 

PREFIX 

X l  ~ X 2  
REC 

aX1X4 = aX3 
PREFIX 

X a X 4  = X3 
StmL 

X 2 X 4  = Xa 

aX3X4 + bX2 = aXaX4 + bZ2 

aX3X4 = aX3X4 bX2 = bX2 

XaX4 = XaX4 )(2 = Xa 
PREFIX 

L e m m a  3 7  Every  tableau for  o~ = 13 is finite. Furthermore,  there is only a 

finite number  of  tableaux for  o~ = ft. 

P r o o f  Suppose  t h a t  we have  a t a b l e a u  w i t h  r o o t  l abe l l ed  c~ = ft. I t  c an  o n l y  

be  in f in i t e  i f  t he re  exis ts  a n  in f in i t e  p a t h  t h r o u g h  it ,  as every  n o d e  has  f in i t e  
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branching degree. Hence suppose 7r is such an infinite pa th  start ing at the 

root r : c~ = ~. The pa th  zr can only be infinite if it contains infinitely many  

basic nodes to which the tableau rule REc is applied. This is due to the well- 

foundedness of the ordering ~ on V* which is decreased through applications 
of the SUB rules. Thus f rom the pa th  7r we can form an infinite sequence S of 

�9 (DO nodes {ni : c~i = ~i }i=1 by collecting (in order of appearance) the basic nodes 

along 7r to which the rule REc is applied. Hence n l  : c~t = ~1 represents the 

root, n2 : c~2 = f12 represents the second node along 7r at which REC is applied, 

and so on. 
An expression c~ can be viewed as a vector ~ of JTVn: the value of the /th 

coordinate of ~, denoted ~(i), indicates the number  of occurrences of variable Xi 

in a.  Thus we can represent the sequence S by an infinite sequence of vectors 

{~i}i~176 where ~i 6 / W  2n for all i. The first n coordinates represent ai and the 

last coordinates represent ill. 
Consider the infinite sequence { fii (1) } ~  1 consisting of all the first coordinates 

of vectors of the sequence S. If  this sequence has an upper  bound we extract 

f rom S an infinite sequence $1 of vectors {v, }i=1 with the proper ty  that  the first 

coordinate of ~i remains constant throughout $1. I f  the sequence {fi i(1)}~l  does 
not have an upper  bound we extract from S an infinite sequence $1 of vectors 

{vi}i~l with the property tha t  the first coordinate of vi is nondecreasing, i.e. 
~(1)  < ~j(1) whenever i < j .  Continuing in this fashion we arrive at an infinite 

~ � 9  OO sequence S2n of vectors {w,}i=l with the property that  all coordinate sequences 

are nondecreasing. But then every node in this sequence is dominated by every 
node after it, so the rule REc cannot be applied to any of these nodes, as a SUB 

rule is applicable. 

For the proof of the second part ,  we note tha t  if there were an infinite number  

of tableaux, then since there are only a finite number  of part ial  tableaux of a 

given finite size, there must  be an infinite sequence of partial  tableaux, each of 
which being derived from the previous by the application of some rule to the 

node most  recently introduced. But then this sequence provides a tableau with 

an infinite pa th  through it, which by the first par t  cannot be. [] 

We now proceed to show the soundness and completeness of the tableau system. 

T h e o r e m  38 ( C o m p l e t e n e s s )  I f  a ,,, fl then there exists a successful tableau 
for~=Z. 

P r o o f  Suppose a ,-, j3. I f  we can construct a tableau for a = / ?  with the property 

tha t  any node n : E = F satisfies E ,,* F,  then by Lemma  37 tha t  construction 
must  terminate  and each terminal  will be successful. Thus the tableau itself will 
be successful. 

We can construct such a tableau if we verify tha t  each rule of the tableau 

system is forward sound in the sense that  if the antecedent  as well as all nodes 



129 

above relate bisimilar processes then it is possible to find a set of consequents 
relating bisimilar processes. I t  is easily verified tha t  the rules are indeed forward 

sound in this sense. Notice in particular tha t  the  rule REC reflects the expansion 
law for parallel composition [48] and that  forward soundness of the SUB rules 

follows from the fact that  bisimilarity is a congruence. [] 

The proof of soundness of the tableau system relies on the al ternative stratified 

characterisation of bisimulation equivalence. 

T h e o r e m  39 ( S o u n d n e s s )  I f  there is a successful tableau for a = fl then c~ ,.~ 

/3. 

P r o o f  Suppose tha t  we have a tableau for c~ = /3 ,  and that  ~ 7~/3. We shall 
construct a maximal  pa th  ~r = {nl : El = Fi} through this tableau star t ing at 
the root a = / 3  in which Ei 7 ~ Fi for each i. Hence the terminal  node of this 

pa th  cannot be successful, so there can be no successful tableau for c~ =/3.  
While constructing ~r, we shall at the same t ime construct the sequence of 

integers {mi : Ei 7~rn, Fi and Ei "~j Fi for all j < mi}.  We shall also 
prove along the way tha t  this sequence is nonincreasing, and strictly decreasing 

through applications of the rule PREFIX. 

Given ni : Ei = Fi and mi, we get ni+t  : Ei+l = Fi+l and mi+l according 

to the following cases: 

* If  REC is applied to ni,  then the consequent is n i+l  and mi+l = mi. 

�9 If  SUM is applied to ni, then there must  be some consequent n i+l  : Ei+l = 

Fi+l with Ei+l 7~m~ Fi+l and Ei+l ~i  Fi+l for all j < mi, so mi+l = mi. 

* If  PREFIX is applied to ni,  then the consequent is ni+l  and mi+l = rni - 1 .  

�9 If  SuBL is applied to ni : Ei = Fi then Ei = Fi must  be of the form a 7  = ~  

with dominated node nj  : a = 13 (a  -7/3). Since between nj and ni there 
must  have been an intervening application of the rule PREFIX, we must  

have tha t  mi < mj .  We take the node ni+l  :/37 = ~, and show tha t  we 

have some valid rni+l < mi, that  is, that/33'  7Lrn~ ~. But this follows f rom 
a "~-n/3 and a 7 7~,~ ~. The arguments  for the other possible applications 

of the SUB rules are identical. 

Tha t  the above conditions hold of the resulting pa th  is now clear. [] 

We are now in a position to infer the decidability of bisimulation equivalence on 

concurrent context-free processes. In order to decide the validity of  a = fl we 

simply start  listing tableaux for a = fl and stop and answer "yes" if a successful 
tableau has been found. If  we list all of the finite number  of finite tableaux 

(systematically, so that  we recognise when they have all been listed) and fail to 
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discover a successful one, then we answer "no". By soundness and completeness 
of the tableau system, we know that  this procedure will always give the right 
answer. Thus the decidability result is established. 

T h e o r e m  40 Bisimulation equivalence is decidable for guarded concurrent con- 
text-free processes. 

P r o o f  Immediate from the preceding argument. [] 

Unlike the previous argument for context-free processes, we have a single 
decision :procedure for determining equivalence rather than two opposing semi- 
decision procedures, so we could feasibly extract some complexity measure on 
deciding equivalence. However, the complexity measure which we could immedi- 
ately extract, being based on our the particular well-founded ordering C on V*, 
would fail even to be primitive recursive, so once again our decision procedure 
is impractical. However, again in the normed case we can exploit particular 
properties to extract a polynomial-time decision procedure. This we also carry 
out in Section 4. 

4 Algor i thms  for N o r m e d  Processes  

In the previous section we demonstrated the decidability of bisimulation equiv- 
alence over both the class of context-free processes and the class of concurrent 
context-free processes. However, the computational complexity of the algorithms 
which we presented shows them to be of little practical value. To overcome this 
deficiency we concentrate in this section on developing efficient algorithms for 
deciding bisimilarity within these classes of processes. What  we demonstrate 
in fact are polynomial algorithms for the problem of deciding equivalences over 
the subclasses of normed processes. These algorithms will both be based on 
an exploitation of the decomposition properties enjoyed by normed processes; 
however, despite the apparent similarity of the two problems, different methods 
appear to be required. 

For our algorithms, we fix a normed context-free grammar G = (V, T, P, S) 
in Greibach normal form. Our problem then is to determine efficiently--that 
is, in time which is polynomial in the size n (the number of symbols in the 
production rules) of the grammar--whether  or not c~ --, fl for c~, j3 E V*, where 
we interpret these first as context-free processes and then as concurrent context- 
free processes. 

4 . 1  C o n t e x t - F r e e  P r o c e s s e s  

Our basic idea is to exploit the unique prime decomposition theorem by de- 
composing process terms sufficiently far to be able to establish or refute the 
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equivalence we are considering. Further, we t ry  to construct these decomposi- 
tions by a refinement process which starts with an overly generous collection of 
candidate decompositions. As the algorithm progresses, invalid decompositions 
will gradually be weeded out. 

Assume that  the variables V are ordered by non-decreasing norm, so that  
X < Y implies norm(X) < norm(Y). A base is a set B of pairs (Y, X~) ,  where 
X, Y �9 V, a �9 Y*, X < Y and norm(Y) = norm(Xa) .  We insist that  B contains 
at most one pair of the form (Y, X a )  for each choice of variables X, Y, so that  
the cardinality of B is at most O(n2). A base B is full iff whenever Y ,,~ X f l  
with Y > X there exists a pair (Y, Xc~) �9 B such that  c~ ,-~ /~. In particular, 
(X, X)  �9 B for all X �9 V. The key idea is that  infinite relations on V*, in 
particular that  of bisimilarity, may be expressed as the congruence closure of a 
finite base. 

L e m m a  41 I f  the base B is full then ,,, C ~ . 

P r o o f  This result may be proved by induction on norm; however, the effort 
would be unnecessary, as in Subsection 4.1.1 we shall encounter a procedure 
which given a full base B constructs a binary relation on V* that  contains ,~ 

B 
and is contained by = .  D 

t~ 
Let ~B be some relation satisfying ~ C_ - 5  C = whenever B is full. At 

a high level, the exact choice of the relation --~ is immaterial,  as the proof 
B 

of correctness relies only on the inclusions ,-~ C ------B C -- ; later we shall fix 
a particular --B which is computable in polynomial time. It is here that  the 
algorithmic subtlety lies, as efficiency demands a careful choice of =t~ �9 

Our task is to discover a full base that  contains only semantically sound 
decomposition pairs. To do this, we start  with a full (though necessarily small) 
base, and then proceed to refine the base iteratively whilst maintaining fullness. 
Informally, we are proposing that  at any instant the current base should ~ns i s t  
of pairs (X, a)  representing candidate decompositions, that  is, pairs such that  the 
relationship X ,,~ a is consistent with information gained so far. The refinement 
step is as follows. 

Given a base B, define the sub-base B C B to be the set of pairs (X, c~) �9 B 
such that  

�9 if X .A_,/3 then a ~ ~ 7 with j3 -=t~ 7, and 

�9 i f a  ~ T t h e n X  a~j3wi th /~- -=z7 .  

L e m m a  42 I f  B is full then B is full. 

P r o o f  Suppose Y ~ Xj3 with Y _> X.  By fullness of B, there exists a pair 

(Y, Xc~) �9 B such that  ~ -,~ /~. We show that  the pair (Y, X a )  survives the 
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refinement step, to be included in B. Note that ,  since ,,~ is a congruence, Y ,,~ 
Xc~. Thus, if Y _2_, 7 then X a  a ~ 6 for some 6 satisfying 6 -~ 7. By fullness 

of B and Lemma41,  6 -t3 7. Similarly, i f X ~  ~ > 6 then Y a ~ 7 with 7 "" 6, and 
hence 7 --t~ 6. The pair (Y~ X a )  therefore satisfies the conditions for inclusion 
in B. [] 

In general, the refinement step makes progress, i.e., the new base B is strictly 
contained in the base B from which it was derived. If, however, no progress 
occurs, an important  deduction may be made. 

L e m m a  43 I f  B = 13 then =t3 C ,,~. 
B 

P r o o f  The relation --n is contained in = ,  the congruence closure of B, so B 
must be a Caucal base. Now apply Theorem 24. [] 

Note that  by iteratively applying the refinement step B := B to a full initial 
base, we are guaranteed by the preceding three lemmas to stabilise at some full 
base B for which _-__~ = N. 

We are now left with the task of constructing our initial base B0. This is 
achieved as follows. For each X E V and each 0 _< u _< norm(X),  let [X]v be 
some process that  can be reached from X via a sequence of u norm-reducing 
transitions. (Note that  some norm-reducing transition is available to every pro- 
cess.) 

L e m m a  44 The base 13o = ~ (Y, X[Y]norm(X)) " X ~ Y  E V and X < Y ~ is 
] 

full. 

P r o o f  Suppose Y ,~ X/~ with X _< Y, and let v = norm(X);  then (Y, X[Y]v) E 

B0 for some [Y]~ such that  Y ' > [Y]v in  v norm-reducing steps, where s E A V. 
But the norm-reducing sequence Y ' ~ [Y]~ can only be matched by X/~ ' ~/3. 
Hence [Y]~ -~/?, and B0 must be full. [] 

The basic structure of our procedure for deciding bisimilarity between normed 
processes a and/3 is now clear: simply iterate the refinement procedure B := 
from the initial base B = B0 until it stabilises at the desired base B, and then 
test a -=t3/3. By the preceding four lemmas, this test is equivalent to a ,,~/3. 

So far, we have not been specific about which process [X]v is to be selected 
among those reachable from X via a sequence of u norm-reducing transitions. 
A suitable choice is provided by the following recursive definition. For each 
variable X E V, let a x  E V* be some process reachable from X by a single 
norm-reducing transition X " ~ a x .  Then, 

- 

{ [/~]p-norm(X), if p_> norm(X);  
[Xfl]p = [c~x]p_l/3, if p < norm(X).  
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L e m m a  45 With this definition for [.]~, the base Bo introduced in Lemma ,t4 
may be explicitly constructed in polynomial time; in particular, every pair in Bo 
has a compact representation as an element of V • V*. 

P r o o f  It is easily checked that  the natural recursive algorithm based on the 
definition is polynomial-time bounded. O 

We have already observed that  B0 contains O(n 2) pairs, so the refinement 
procedure is i terated at most O(n 2) times. It remains to define the relation =n  

and show that  it may be computed in polynomial time. Once this has been 
done, it is clear that  the entire decision procedure runs in polynomial time. 

T h e o r e m  46 There is a polynomial-time (in the lengths of the words a and fl, 
and the size of the defining grammar) procedure for deciding bisimilarity of two 
normed context-free processes a and ft. 

Recall that  the only condition we impose on the relation -t3 is that  it 
B 

satisfies the inclusions -~ C ---B _ -= whenever B is full. This flexibility in the 

specification of ---s is crucial to us, and it is only by carefully exploiting this 
flexibility that  a polynomial-time decision procedure for =-B can be achieved. 
The definition and computation of --~ is the subject of the following section. 

4 . 1 . 1  A l g o r i t h m i c  c o n c e r n s  

Central to the definition of the relation ---B is the idea of a decomposing func- 
tion. A function g : V ---+ V* is a decomposing function of order q if either 
g(X) = X or g(X) = X1X2 . . .Xp  with 1 < p < q and Xi < X for each 
1 < i < p. Such a function g can be extended to the domain V* in the obvious 

fashion by defining g(e) = e and g(Xa) = g(X)g(c~). We then define g*(~) for 
E V* to be the limit of gt(~) as t --* ~ ;  owing to the restricted form of g we 

know that  it must be eventually idempotent, that  is, that  this limit must exist. 
The notation g[X ~-+ a] will be used to denote the function that  agrees with g 
at all points in V except X, where its value is a.  

The definition of the relation --B may now be given. For base B and de- 
composing function g, the relation a =~/? . i s  defined b y  the following decision 
procedure: 

�9 if g*(c~) = g*(fl) then the result is true; 

�9 otherwise let X and Y (with X < Y) be the leftmost mismatching pair of 
symbols in the words g*(c~) and g*(fl); 

- if (Y, XT) �9 B then the result is given by a - ~  fl, where 9 = g[Y ~-+ 
xT]; 
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- otherwise the result is false. 

Finally, let --=t~ be _--~d where Id is the identity function. 

L e m m a  47 - 6  C --- and ,,~ C -t~ whenever  B is full. 

P r o o f  The first inclusion is easily confirmed , since for any g constructed by the 
B 

algorithm for computing --B , it is the case that  X =_ g ( X )  for each X E V. 
For the second inclusion, suppose that  a ,~ /3 and at some point in our 

procedure for deciding a --t~ fl we have that  g* (a)  # g* (fl), and that  we have 
only ever updated g with mappings X ~ 7 satisfying X -,~ 7. Let X and Y 
(with X < Y) be the leftmost mismatching pair. Then Y ,~ X7  must hold 

for some 7, and so, by fullness, (Y, XT) E B for some 7 with Y ,,* XT. So the 
procedure does not terminate with a false result, but  instead updates g with this 
new semantically sound mapping and continues. [] 

Finally, we are left with the problem of deciding g*(a) = g*(/3), all other 
elements in the definition of ---t~ being algorithmically undemanding. Note 
that  the words g*(a)  and g*(/3) will in general be of exponential (in n) length, 
so we cannot afford to compute them explicitly. 

We shall begin by assuming that  the function g is of order 2, that is, maps 
a single variable to at most two variables; this simplification may be achieved 
using a standard polynomial-time reduction to Chomsky normal form. In the 
sequel, let n denote the total number of variables after this reduction to what 
is essentially Chomsky normal form, and let V refer to this extended set of 
variables. We say that  the positive integer r is a period of the word a E V* if 
1 < r < length(a),  and the symbol at position p in a is equal to the symbol at 

position p + r in a ,  for all p in the range 1 < p < length(a) - r. Our argument 
will be easier to follow if the following lemma is borne in mind; we state it in 
the form given by Knuth, Morris and Prat t .  

L e m m a  48 I f  r and s are periods of  a E Y* ,  and r + s < length(a) + gcd(r, s), 
then gcd(r, s) is a period of  a.  

P r o o f  See [43, Lemma 1]; alternatively the lemma is easily proved from first 
principles. [] 

For a, fl E V*, we shall use the phrase alignment of  a against/3 to refer to a 
particular occurrence of a as a subword of/3. Note that  if two alignments of a 
against/3 overlap, and one alignment is obtained from the other by translating 
a through r positions, then r is a period of a.  Suppose X, ]I, Z E V, and let 
a = g*(X) ,  /3 = g*(Y) ,  and 7 = g*(Z) .  Our strategy is to determine, for all 
triples X,  Y, and Z, the set of alignments of a against/37 that  include the first 
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I ~ = g * ( X )  I 
I I 

fl = g*(Y) t 7 - -  g*(Z) 

First symbol of 7, and ith of 

Figure 1: A alignment of ~ that  spans ~ and 7 

symbol of 7 (see Figure 1). Such alignments, which we call spanning, may be 
specified by giving the index i of the symbol in a that  is matched against the 
first symbol in 7. It happens that  the sequence of all indices i that  correspond 
to valid alignments forms an arithmetic progression. This fact opens the way 
to computing all alignments by dynamic programming: first with the smallest 
variable X and Y, Z ranging over V, then with the next smallest X and ]I, Z 
ranging over V, and so on. 

L e m m a  49 Let a, 6 E V* be words, and I be the set of all indices i such that 
there exists an alignment of (~ against 6 in which the ith symbol in a is matched 
to a distinguished symbol in 6. Then the elements of I form an arithmetic 
progression. 

P r o o f  Assume that  there are at least three alignments, otherwise there is 
nothing to prove. Consider the leftmost, next-to-leftmost, and rightmost possible 
alignments of c~ against 6. Suppose the next-to-leftmost alignment is obtained 
from the leftmost by translating c~ though r positions, and the rightmost from 

the next-to-leftmost by translating a through s positions. Since r and s satisfy 
the condition of Lemma 48, we know that  gcd(r, s) is a period of (~; indeed, since 
there are by definition no alignments between the leftmost and next-to-leftmost,  
it must be the case that r -- gcd(r, s), i.e., that  s is a multiple of r. Again by 
Lemma 48, any alignment other than the three so far considered must also have 
the property that  its offset from the next-to-leftmost is a multiple of r. Thus 
the set of all alignments of c~ against 6 can be obtained by stepping from the 
leftmost to the rightmost in steps of r. 

This completes the proof, but it is worth observing for future reference, that  
in the case that  there are at least three alignments of c~ against 6 containing 
the distinguished symbol, then c~ must be periodic, i.e., expressible in the form 

= eka, where k >_ 2 and cr is a (possibly empty) strict initial segment of e. 
D 

In the course of applying the dynamic programming technique to the problem 
at hand, it is necessary to consider not only spanning alignments of the form 

illustrated in Figure 1, but also inclusive alignments: those in which a = g* (X) 
appears as a subword of a single word fl = g* (Y). Fortunately, alignments of 
this kind are easy to deduce, once we have computed the spanning alignments. 
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Figure 2: Trapping an alignment 

L e m m a  50 Suppose spanning alignments of o~ = g*(X) against 7 -- g*(Z) and 
7 ~ = g*(Z ~) have been pre-computed for a particular X and all Z, Z ~ E V.  Then 
it is possible, in polynomial time, to compute, for any Y and any distinguished 
position p in 13 = g* (Y) ,  all alignments of (~ against ~ that include p. 

P r o o f  Consider the sequence 

{ g. (.:0)) }, 

{ g. }, 
{ g. (y:2)), g. }, : 

of partitions of fl = g*(Y),  obtMned by the following procedure. InitiMly, s e t  
y(0) = y .  Then, for i > 1, suppose that g.(yj(i-1)) is the block of the ( i -  1)th 

partition that contains the distinguished position p, and let Z = y ( i -D  be 
the symbol generating that block. Let the ith partition be obtained from the 
( i -  1)th by splitting that block into two- -g*(Z ' )  and g*(Z")--where where 
g(Z)  = Z 'Z" .  The procedure terminates when g(Z)  = Z, a condition which is 
bound to hold within at most n steps. Observe that, aside from in the trivial 
case when length(a) -- 1, any alignment of c~ containing position p will be at 
some stage "trapped," so that the particular occurrence of the subword a in fl 
is contained in g*(Yj(i))g*(Yj(+)), but not in g. (yj(0) or g* (Yj(+))separately (see 
Figure 2). 

For each such situation, we may compute the alignments that contain posi- 
tion p. (By Lemma 49, these form an arithmetic progression.) Each Mignment of 

that includes p is trapped at least once by the partition refinement procedure. 
�9 The required result is the union of at most n arithmetic progressions, one for 
each step of the refinement procedure. Lemma 49 guarantees that the union of 
these arithmetic progressions will itself be an arithmetic progression. Thus the 
result may easily be computed in time O(n) by keeping track of the leftmost, 
next-to-leftmost, and rightmost points. [] 

The necessary machinery is now in place, and it only remains to show how 
spanning alignments of the form depicted in Figure 1 may be computed by 
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Figure 4: Dynamic programming: the leftmost alignment 

dynamic programming, with X ranging in sequence from the smallest variable 
up to -the largest. 

If g(X) = X,  the task is trivial, so suppose g(X) = X ' X ' .  The function g 
induces a natural partition of d = g*(X) into a '  = g*(X') and a "  = g*(X"); 
suppose it is a "  that  includes p, the first symbol in 3' (see Figure 3.) We need to 
discover the valid alignments of cd against fl, and conjoin these with the span- 
ning al ignments-- that  we assume have already been computed--of  a "  against 

fl and 3'. 
Consider the leftmost valid alignment of a "  and let p' be the position imme- 

diately to the left of cr Figure 4). We distinguish two kinds of alignments 
f o r  o~ = o~1or t l .  

CASE I. The alignment of a '  against ~3' includes position p'. These alignments 
can be viewed as conjunctions of spanning alignments of a "  (which are precom- 
puted) with inclusive alignments of a '  (which can be computed on demand using 
Lemma 50). The valid alignments in this case are thus an intersection of two 
arithmetic progressions, which is again an arithmetic progression. 

CASE II. The alignment of c~' against f13' does not includes position p', i.e., ties 
entirely to the right ofp ' .  If there are just one or two spanning alignments of a "  
against ~ and % then we simply check exhaustively, using Lemma 50, which, if 
any, extend to alignments of c~ against/~3'. Otherwise, we know that  a "  has the 
form p%r with k > 2, and ~ a strict initial segment of p; choose p to minimise 
length(e ). A match of a "  will extend to a match of a only if c / =  cr'p m, where 
or' is a strict final segment of e. (Informally, a '  is a smooth continuation of the 
periodic word a "  to the left. Thus either every alignment of c~" extends to one 
of a = a%" ,  or none does, and it is easy to determine which is the case. As in 
Case I, the result is an arithmetic progression. 

The above arguments were all for the situation in which it is the word a "  
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that contains p; the other situation is covered by two symmetric cases--Case I ~ 
and Case II~--which are as above, but with the roles of a I and a"  reversed. To 
complete the inductive step of the dynamic programming algorithm, it is only 
necessary to take the union of the arithmetic progressions furnished by Cases I, 
II, I ~, and II~: this is straightforward, as the result is known to be an arithmetic 
progression by Lemma 49. 

At the completion of the dynamic programming procedure, we have gained 
enough information to check arbitrary alignments, both spanning and inclusive, 
in polynomial time. From there it is a short step to the promised result. 

Lemma 51 There is a polynomial-time (in the lengths of o~ and/3, and the size 
of the description of g) algorithm for the problem of deciding g*(~) = g*(fl) for 
arbitrary o~,~ E V*. In the case that g*(o~) r g*(fl), the algorithm returns the 
leftmost position at which there is a mismatch. 

P r o o f  Let ~ = ]I1112...]I,. Apply the partition refinement procedure used in 
the proof of Lemma 50 to the word c~ to obtain a word c~ I = X1X2 . . .Xr  with 
the property that each putative alignment of g*(Xi) against the corresponding 
g*(Yj) or g*(Yj)g*(Yj+l) is either inclusive or spanning. This step extends 
the length of a by at most an additive term length(~)n. Now test each Xi 
either directly, using the precomputed spanning alignments, or indirectly, using 
Lemma 50. In the case that g*(a) • g*(~), determine the leftmost symbol Xi 
such that g*(X~) contains a mismatch. If g(Xi) = X~ we are done. Otherwise, 
let g*(X~) = ZZ',  and test whether g*(Z) contains a mismatch: if it does, 
reeursively determine the leftmost mismatch in g*(Z); otherwise determine the 
leftmost mismatch in g* (ZI). 

During the dynamic programming phase, there are O(n 3) subresults to be 
computed (one for each triple X, Y, Z E V), each requiring time O(n); thus 
the time-complexity of this phase is O(n4). Refining the input a to obtain 
cd, and checking alignments of individual symbols of cd takes further time 
O(n 2 length(~fl)). The overall time complexity of a naive implementation is 
therefore O(n 4 + n 2 length(c~fl)). [] 

4.1.2 S imple  context - free  grammars  

Recall that a simple grammar is a context-free grammar in Greibach normal form 
such that for any pair (X, a) consisting of a variable X and terminal a, there is 
at most one production of the form X :-* ac~. The decision procedure given by 
Korenjak and Hopcroft [44] for deciding language equivalence between simple 
grammars is doubly exponential; this time complexity was recently improved 
improved by Caucal [11] to be singly exponential. Hence this result represents 
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the first polynomial algorithm for the (language) equivalence problem for simple 

grammars. 

T h e o r e m  52 There is a polynomial-time algorithm for deciding equivalence of 
simple grammars 

P r o o f  To obtain a polynomial-time decision procedure for deciding language 
equivalence of simple context-free grammars,  we merely recall from Corollary 10 
and Lemma 12 that  in the case of normed simple grammars, language equiva- 
lence and bisimulation equivalence coincide. We can restrict attention to normed 
grammars, as any unnormed grammar can be transformed into a language- 
equivalent normed grammar by removing productions containing unnormed non- 
terminals. (Note that  this transformation does not preserve bisimulation equiva- 
lence, which makes it inapplicable for reducing the unnormed case to the n o r m e d  
case in checking bisimilarity.) Thus language equivalence of simple grammars 

may be checked in polynomial time b y  the procedure presented in the previous 
two sections. [] 

4 . 2  C o n c u r r e n t  C o n t e x t - F r e e  P r o c e s s e s  

To demonstrate that  we can decide bisimilarity between concurrent context-free 
processes in polynomial time, we require a vastly different technique than that  
used for the sequential case; nonetheless the technique still relies completely on 
the unique factorisation property. 

To start off, we assume without loss of generality that  the variables are 
given in order of non-decreasing norm, so that  norm(X1) < norm(X~) < . . .  < 
norm(Xn).  Define the size of monomial a E V* to be the sum of the lengths of 
the binary encodings of the various exponents appearing in the monomial; the 

size of a production X a,  fl to be the length of the triple (X, a, fl), encoded in 
binary; and the size of a context-free grammar  G to be the sum of the sizes of 
all the productions contained within it. Our aim is to prove the following. 

T h e o r e m  53 Suppose the set V* of processes is defined by a normed, context- 
free grammar G in Greibach normal form. There is a polynomial-time (in the 
size of ~, /3, and G) algorithm tO decide (~ ~ /3 for arbitrary (~,/3 E V*. 

To prepare for the description of the algorithm and the proof of the theorem, 
we require some definitions and a few preparatory lemmas. To ensure a smooth 

development, the proofs of the lemmas are deferred to the end of the section. 
Suppose T~ is any relation on V*. We say that  a pair (c~,/3) E V* x V* 

satisfies (norm-reducing) expansion in TI if 

* if c~ a ) a~ is a norm-reducing transition then/3  a ~ /3~ for some/3~ with 
c~ 17r 
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and 

�9 if ~ ~ ~/3' is a norm-reducing transition then a a ~ a '  for some a '  with 
a '  T~ ~'. 

Observe that  a relation T~ is a bisimulation if every pair (a,/3) E T~ satisfies 
expansion in ~.  Observe also that  if ~ is an equivalence relation (respectively, 
congruence) then the relation "satisfies (norm-reducing) expansion in 7~" is an 
equivalence relation (respectively, congruence). 

Define a unique decomposition base, ~P, to be a pair (II, F), where II = 

II(7:)) = { P 1 , . . . , P r }  _C V is a set of primes, and F = F(:D) is a set of pairs 
(X, p~l . . .  pr~r), one for each non-prime elementary process X E V - II. The 
set F may be viewed as specifying, for each non-prime process X,  a decompo- 
sition of X into primes.* A unique decomposition base defines an equivalence 
relation --79 on V*: the relation (~ = v / 3  holds between c~,/3 E V* if the prime 
decompositions of c~ and/3 are equal (as monomials). 

L e m m a  54 Let :D be a unique decomposition base. Then: 

(i) the equivalence relation =-79 is a congruence with cancellation, t which 
79 

coincides with =-, the smallest congruence containing F(T)); 

(ii) there is a polynomial-time (in the size of  o~ and/3)  algorithm to decide 

o~ =_79 ~ for arbitrary c~,/3 E V* ; 

(iii) the relation =_79 is a bisimulation provided every pair in F(:D) satisfies 
expansion within =-79 ; this condition may be checked by a polynomial-time 

algorithm; 

(iv) the maximal bisimulation ,~ coincides with the congruence =-79 , where :D 

represents the unique decomposition in ,,,. 

The next lemma allows us to shrink a congruence, defined by a unique de- 
composition base, whenever it is strictly larger than the maximal bisimulation. 

L e m m a  55 Let 7) be a unique decomposition base such that the congruence =-79 
is norm-preserving and strictly contains the maximal bisimulation ,.~. Then it 

is possible, in polynomial time, to find (a representation of) a relation - on V* 
such that: 

(i) the relation c~ - / 3  is decidable in polynomial time (in the sum of the sizes 

of ~ and/3); 

*These "pr imes" axe no t  in general  the  pr imes  wi th  respec t  to the  m a x i m a l  bis imulat ion,  
which were tile sub jec t  of  Theorem 19. 

tThus ,  in  add i t ion  to sat isfying the  condi t ions  of a congruence ,  - - ~  has  t he  p rope r ty  tha t  
c~ _--v t3 whenever  c~"/-l~ ~lY. 
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(ii) the relation - is a congruence; 

(iii) there is a variable X E V that is decomposable in - v  but not  in - ;  

(iv) the inclusions ,,~ C_ - C - - v  hold. 

The final lemma allows us to "smooth out" an unmanageable congruence 
into a congruence defined by a unique decomposition base. 

L e m m a  56 Let  ~ be a norm-preserving,  po lynomial - t ime  computable congru- 

ence sat is fying ~ C_ =_-, where N deno te s 'max ima l  bisimulation.  Then there is a 

decomposit ion base 2), computable in polynomial  t ime,  such that ,,~ c_ - 9  c_ - .  

With the three preceding lemmas in place, the procedure for deciding bisim- 
ulation equivalence writes itself; in outline it goes as follows. 

(1) Let the congruence =- be defined by  c~ -- ~ iff norm(a)  = norm(fl). 

(2) Compute a decomposition base 7) with ,~ C -=9 _C - ,  using Lemma 56. 

(3) If -----9 is a bisimulat ion--a condition that  can be checked in polynomial 
t ime using Lemma 54-- then halt and return the relation - 9  �9 

(4) Compute a congruence - satisfying ,-~ C_ - C --9 , using Lemma 55. Go 
to step 2. 

The proof of the main result is virtually immediate. 
P r o o f  o f  T h e o r e m  53 On each iteration of the loop formed by lines (2)-(4), 
the number of primes increases by at least one. Thus the number of iterations 
is bounded by n, and each iteration requires only polynomial t ime by the three 
preceding lemmas. [] 

We complete the section by providing the missing proofs of the various lem- 
m a s .  

P r o o f  o f  L e m m a  54 

(i) It is easy to check that  -z)  is a congruence with cancellation contain- 

ing F(/)); thus - v  certainly includes - , the smallest congruence con- 

taining F(O). On the other hand, if a - v  fl, then fl can be obtained from 
a via a finite sequence of substitutions chosen from F(O), and the reverse 
inclusion holds. 

(ii) The algorithm may be modelled directly on the definition of - v  . 

(iii) Suppose a ~ v  fl and let c~ =~  p ~ l . . . p a r  =V fl be the common prime 
decomposition of c~ and ft. By assumption, the pairs (c~, p~l  , . .  p ~ )  and 
(fl, p~l . . .  prar) both satisfy expansion in - z~ ,  and so then does the pair 
(a,  fl), by transitivity of the relation "satisfies expansion in --~ ." 
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(iv) This part  follows from Theorem 19. 

This concludes the proof of the lemma. [:3 

P r o o f  o f  L e m m a  55 Define the relation = as follows: for all c,,/3 E V*, the re- 
lationship a = /3  holds iff a - -~/3 and the pair (a,/3) satisfies expansion in --~9 �9 
We must demonstrate that  - satisfies conditions (i)-(iv) in the statement of the 
lemma. 

i The relationship a = fl is clearly decidable in polynomial time: an algo- 
r i thm follows directly from the definition of - .  

ii The relation = is the intersection of two congruences, and hence itself a 
congruence. 

iii If the 'congruence - v  is not a bisimulation then, by Lemma 54, there is 
a first (non-prime) variable X such that  the pair (Z,  P ~ . . . P T " )  E F(:D) 

does not satisfy expansion in -=v �9 We show that  X is indecomposable 
with respect to the relation =. 

Suppose to the contrary that  X is decomposable, that  is to say, X = a E 
V*, where a contains only variables smaller than X.  By definition of =,  
the pair (X, a)  satisfies expansion in = v  , and X =z~ a =~  P ~  . . .  P~ ' .  
By minimality of X,  for every non-prime variable Y occurring in a,  the 

pair (Y,P~'...P~') e F(:D) satisfies expansion in ----v. Thus the pair 
(a,  P ~  . . .  PrX~), and by transitivity the pair (X, p~x . . .  p [ , ) ,  satisfies ex- 
pansion in = v ,  contradicting the choice of X.  

iv It is clear that  the relation = is contained in = v  �9 On the other hand, if 
a ,-, fl then the pair (a,/3) satisfies expansion in --, and hence in -=v ; it 
follows that  a =/3.  

This concludes the proof of the lemma. [] 

P r o o f  o f  L e m m a  56 As before, assume that  variables are in order of non- 
decreasing norm. Given a congruence = __D -~ on V* we define, by induc- 
tion, a unique decomposition base :P~ for {X1 , . . . ,  X~}*, with primes 1I(2)) = 
{P1 , . . . ,  P~}, such that:  

* the inclusion =v i  C_ = holds on the set { X 1 , . . . ,  Xi}*; 

* i fX j  =z,i p~l  . . . p : ~  is the decomposition of Xj ,  for some j < i, then the 
pair (Xj,  P ~ ' . . .  P [ , )  satisfies norm-reducing expansion in =z,, ; 
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�9 if Xj ,,, Q ~ ' . . .  Q~' is the prime decomposition of Xj with respect to ,~, 
for some j < i, then Xj --~i Q~I . . .  Q~,~ ;~ 

�9 if P ~ : . . .  p i t  = p ~ l . . ,  pflr and the pair ( p [ 1 . . .  p f r ,  p~x . . ,  pfl,) satisfies 
norm-reducing expansion in =z~,, then ( x : , . . . ,  xr) = (Yl , . - . ,  Yr). 

Assume that there exists a unique decomposition base :Di for { X : , . . . ,  Xi}* that  
satisfies these properties. We wish to demonstrate that  :Di may be extended to a 
unique decomposition base Di+l for {X1 , . . . ,  Xi+:}* Mso satisfying conditions 
(a)-(d) above; this involves finding, in polynomial time, a consistent decompo- 
sition for the variable Xi+l. 

The extension of the unique decomposition base is achieved as follows. By 
condition (d) we know that  there is at most one product P ~ ' . . .  P~" of primes 
of /9i  such that Xi+: ==- P[~... P[" and such that the pair (Xi+:,  P~ '  . . .  P[~) 
satisfies norm-reducing expansions in - - ~ .  If there is such a product, it is 
declared as the decomposition of Xi+:; otherwise Xi+: is declared to be prime. 
It is clear that  conditions (a) and (b) continue to hold. 

To show (c), assume that Xi+: "~ Q ~ . . , Q ~  is the prime decomposition 
of Xi+: with respect to the maximal  bisimulation ,,,. Note that  if Xi+: is prime 
with respect to ,,, then there is nothing to prove, so we may assume the decom- 
position is non-trivial. Let Q1 =9~ c~1, . . . ,  Qt =9~ c~t be the prime decompo- 
sitions of Q:,  �9 �9 ., Q,t with respect to --9,.  Then Xi+: -- c~ : .  .. at~t, where, it. 
will be observed, the right-hand side is a product of primes with respect to -9~ .  
The pairs (Qj, a j )  satisfy norm-reducing expansion in --9,,  by condition (b), 
and the pair Xi+: " Q~'...  Q~' satisfies norm-reducing expansions in -z~,, b y  
virtue of Xi+: and Q ~  . . .  Q ~  being bisimilar; it follows by transitivity that  the 
pair (Xi+l,  c~ '  .. �9 a~") also satisfies norm:reducing expansion in --9,- Thus, by 
the uniqueness condition (d), Xi+: ----9,+1 c~'  . . . a~ '  must be the chosen prime 
decomposition of Xi+l with respect to --z~,+a. 

To show (d), assume to the contrary that  II(:Di+:) = { P : , . . . ,  Pr} is the set 
of primes with respect to =9 ,+ , ,  and that the pair (c~, fl), where a = p~l . . .  par  
and fl = P ( ~ . . . P ~ ' ,  is a counterexample to condition (d): that  is, c~ - /?, 
( a : , . . . ,  a~) 5~ ( b : , . . . ,  br), and the pair (a, fl) satisfies norm-reducing expansions 
in --9~+1. We demonstrate that this assumption leads to a contradiction. 

Let j be the largest index such that aj ~ bj, and assume, without loss of 
generality, that  aj > bj. We distinguish three cases: 

CASE I. If ak > 0 for some k < j ,  then let a perform some norm-reducing 
transition via process Pk. Process/3 cannot match this transition, since it 
cannot increase the exponent bj without decreasing some exponent t o t h e  
right of bj. 

~Again, note  tha t  Q 1 , . . . ,  Qt, al though primes with respect to ,,~, are not  in  general primes 
with respect to ---~i" 
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CASE II. Ifak > O for some k > j ,  then let c~ perform a norm-reducing transition 
via process Pk that  maximises the increase in the exponent aj. Again the 
process fl is unable to match this transition. 

CASE ]II.  The monomial ~ = pjaj is a power of a prime with respect to - ~ + 1 .  
Note that  bk = 0 for all k > j by choice of j ,  and aj > 2, otherwise, Pj 
would not be prime with respect t o / ) i+1 .  If bj > 0, let/3 perform a norm- 
reducing transition via Pj; this transition cannot be matched by c~, since 
it would require the exponent aj to decrease by at least two. Finally, if 
bj = 0, then let (r perform a norm-reducing transition via Pj; this transition 

cannot be matched by/3, since/3 is unable to increase the exponent bj. 

This completes the inductive step. 
It only remains to show that  the extension of ~Di to :D~+I may be computed 

in polynomial time. We need to investigate the possibility that  Xi+l may be 

expressed as Xi+l =- P ~  . . .Pr  ~ where the pair (Xi+I,P~ ~ . . . P f ' )  satisfies 
norm-reducing expansion in =-v~. Recall that  effecting the transition X a )/3 
may be viewed as multiplication by /3 /X;  thus the transition a a )/3 may occur 
precisely if of ~ = c~/3/X is a monomial (i.e., the exponent of X is non-negative), 
in which case a~ is the resulting process. 

Now choose any norm-reducing transition Xi+l a ) ~ E { X 1 , . . . ,  Xi}*, and 
let c~ - V ,  P~a �9 �9 �9 par  be the prime decomposition of c~. If this transition is to be 
matched by/3 = p~l  . . .  prz~ then (r//3 must be one of a finite set of possibilities, 
one for each production in G. Thus there are only as many possibilities for the 

process/3 as there are productions in G; for each possibility it is easy to check 

whether (i) Xi+l - P;" . . . P f ' ,  and (ii) the pair ( X i + I , P ~ I . . . P f ' )  satisfies 
norm-preserving expansion in -v~ .  Thus the extension of :Di to :Di+l may 
indeed be computed in polynomial time. [2 
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